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Abstract
Objective: Tracking seizures is crucial for epilepsy monitoring and treatment evalu-
ation. Current epilepsy care relies on caretaker seizure diaries, but clinical seizure 
monitoring may miss seizures. Wearable devices may be better tolerated and more 
suitable for long-term ambulatory monitoring. This study evaluates the seizure de-
tection performance of custom-developed machine learning (ML) algorithms across 
a broad spectrum of epileptic seizures utilizing wrist- and ankle-worn multisignal 
biosensors.
Methods: We enrolled patients admitted to the epilepsy monitoring unit and asked 
them to wear a wearable sensor on either their wrists or ankles. The sensor recorded 
body temperature, electrodermal activity, accelerometry (ACC), and photoplethys-
mography, which provides blood volume pulse (BVP). We used electroencephalo-
graphic seizure onset and offset as determined by a board-certified epileptologist as 
a standard comparison. We trained and validated ML for two different algorithms: 
Algorithm 1, ML methods for developing seizure type-specific detection models for 
nine individual seizure types; and Algorithm 2, ML methods for building general 
seizure type-agnostic detection, lumping together all seizure types.
Results: We included 94 patients (57.4% female, median age = 9.9 years) and 548 
epileptic seizures (11 066 h of sensor data) for a total of 930 seizures and nine seizure 
types. Algorithm 1 detected eight of nine seizure types better than chance (area under 
the receiver operating characteristic curve [AUC-ROC] = .648–.976). Algorithm 2 
detected all nine seizure types better than chance (AUC-ROC = .642–.995); a fusion 
of ACC and BVP modalities achieved the best AUC-ROC (.752) when combining all 
seizure types together.
Significance: Automatic seizure detection using ML from multimodal wearable sen-
sor data is feasible across a broad spectrum of epileptic seizures. Preliminary results 
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1  |   INTRODUCTION

Epilepsy is a common cause of morbidity and mortality, es-
pecially among children, despite advances in management 
regimens.1,2 Accurate monitoring and tracking of seizures 
are important to evaluate seizure burden, recurrence risk, and 
response to treatment. Outside the hospital, seizure track-
ing relies on patients' and families' self-reporting, which is 
often unreliable due to underreporting, seizures missed by 
caregivers, and patients' difficulties recalling seizures.3–6 
Although long-term video-electroencephalography (EEG) 
in the epilepsy monitoring unit (EMU) is the gold standard 
for accurately diagnosing and evaluating epilepsy,7 it is also 
time-consuming and costly, can be perceived as stigmatizing, 
and places a greater burden on patients and caregivers than 
seizure monitoring with wearable devices. Based on prior 
studies, there exists a large clinical gap and urgent medi-
cal need to detect a broad range of seizures, beyond focal 
to bilateral tonic–clonic seizures (FBTCSs) and generalized 
tonic–clonic seizures (GTCSs), with wearable devices.3,8–10

Recent advances in the use and development of non-EEG-
based seizure detection devices utilizing a variety of sensors 
and modalities provided innovative opportunities to fill this 
gap and to monitor patients continuously in the outpatient 
setting. Examples include wrist-worn or arm-worn devices, 
devices worn on the chest, and mattresses,11–19 which, among 
others, are less stigmatizing and better tolerated by patients 
during extended use.11,20–23 Furthermore, analyzing signal 
recordings using artificial intelligence learning algorithms 
led to improved performance of seizure detection systems.

Machine learning (ML) algorithms are trained to au-
tomatically detect signal patterns of epileptic seizures. 
Previous studies have demonstrated the feasibility of using 
ML, and in particular deep learning models, to automati-
cally detect seizures and classify seizure types based on 
EEG data.24,25 Although similar ML approaches applied to 
monitoring data from mobile devices can detect generalized 
tonic and tonic–clonic seizures,26 detection of other seizure 
types using data from wearable devices is limited. There 
exists a critical need for reliable, automatic, nonintrusive 
methods to detect additional clinical seizure types. Based 
on the analysis of a large clinical seizure dataset of wrist- 
and ankle-worn wearable device data confirmed by time-
synchronized EEG, we aimed to evaluate seizure detection 

with wearable devices for a broad spectrum of epileptic sei-
zures. We hypothesized that detection of a variety of seizure 
types solely based on wrist- and ankle-worn sensor data is 
feasible, utilizing EEG seizure onset and offset annotations 
as a gold standard comparison.

2  |   MATERIALS AND METHODS

We obtained approval from the institutional review board of 
Boston Children's Hospital before enrollment and data ac-
quisition. We prospectively enrolled patients admitted to the 
Boston Children's Hospital EMU between February 2015 and 
November 2017. We asked participants to wear sensors (E4; 
Empatica) on either the left or right wrist or ankle for long-
term recording during their admission. The wearable devices 
recorded body temperature (TEMP), electrodermal activity 
(EDA), accelerometry (ACC), and photoplethysmography to 
provide blood volume pulse (BVP; Figure S1a). We obtained 
written informed consent or assent from all participants or 
their guardians.

show better than chance seizure detection. The next steps include validation of our 
results in larger datasets, evaluation of the detection utility tool for additional clinical 
seizure types, and integration of additional clinical information.
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Key Points
•	 We evaluated the seizure detection performance 

of custom-developed machine learning algorithms 
across a spectrum of nine epileptic seizure types

•	 We analyzed electrodermal activity, accelerome-
try, and photoplethysmography recorded by wrist- 
and ankle-worn wearable devices

•	 ACC and BVP data fusion with CNN algorithms 
outperformed single data modality, with an over-
all AUC-ROC of .752 when applied to the com-
plete dataset

•	 Machine learning models trained using all seizures 
regardless of their type performed better overall 
than models trained on specific seizure types

•	 Automatic epileptic seizure detection using ma-
chine learning and wearable device data is feasible 
across a broad spectrum of motor and nonmotor 
seizures
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2.1  |  Patient and seizure selection criteria

We extracted clinical data from the electronic medical re-
cords with a standardized data collection tool in Microsoft 
Excel and REDCap (Research Electronic Data Capture; 
Vanderbilt University), a secure web-based application that 
facilitates data acquisition and storage. We collected demo-
graphic data, clinical patient data, and seizure characteristics. 
Epileptic seizure semiology and etiology were classified ac-
cording to the International League Against Epilepsy crite-
ria,27 and patients with a high hourly frequency of seizures 
or clusters of four or more seizures in 15-min time windows 
were excluded.

2.2  |  Seizure data collection

This study utilized the conventional 10–20 electrode scalp 
EEG system during video-EEG monitoring.28 Video-EEG 
review by a board-certified clinical epileptologist confirmed 
electrographic seizure onset and offset annotations as well as 
semiology of seizure types.

2.3  |  Synchronization of EEG and wearable 
device clocks

The wearable device and EEG monitor record with independ-
ent clocks. To compensate for the time drift between the de-
vice and EEG clocks, we synchronized the device clocks at 
the start of the device recording. After we turned on the re-
cording device, we simultaneously pressed the device button 
and EEG event marker button. This created a time tag on both 
the device and EEG recordings. When we placed two weara-
ble devices on the patient, the button press was done simulta-
neously for both. We recorded a video of the syncing process 
and used video timestamps to verify device placement times 
in cases where we could not find EEG event markers due 
to button press failures. When patients agreed to wear the 
recording device again on a second day or in another admis-
sion, they were enrolled again, and the process was repeated.

We defined the start timing error between the wristband 
and EEG clock as the time difference between the wristband 
and EEG clock at the beginning of the experiment (Figure 
S1b). Figure 1A shows the distribution of start timing errors 
observed in our study; absolute errors follow approximately 
a Gaussian distribution and are predominantly shorter than 
20 s.

The wearable devices also have button press failures, 
which are indicated by a large start timing error. We set the 
start timing error to 0 when there is a button press failure. 
To ensure the seizure segment is within the annotation, we 
added 20-s preseizure and 20-s postseizure end windows. 

Figure 1B shows the timing drift of the Empatica E4 for 11 
different devices at different time points, confirming device-
agnostic frequency stability of 1 ppm12 and a constant timing 
drift of 13 s in 24 h. These observations allowed us to derive 
the following three-step timing error compensation scheme: 
(1) 13-s offline timing drift compensation was added to the 
signal data; (2) the start timing error was calculated (Figure 
S1b), and labels were adjusted accordingly; and (3) 20-s pre-
seizure and 20-s postseizure end windows were added. In a 
final step, we added verified seizure annotations to the signal 
data.

2.4  |  Data quality check

We downloaded EEGs and wearable sensor device data sepa-
rately and manually labeled each dataset. Subsequently, we 
reviewed data for possible missing or incorrect annotations, 
recording failures, or missing data by running seizure an-
notations and wearable sensor device data through custom-
developed quality check processes (Figure S2).

Patients occasionally removed wristbands. In this study, 
we used TEMP sensor data to detect whether the wristband 
had been removed. We used a 10-min moving average to 
smoothen the TEMP recordings. For temperature values 
higher than 45° or lower than 27°, we added 10-min safety 
windows to both ends of the segment, and we excluded this 
time window from the study.

2.5  |  Data analysis

2.5.1  |  ML techniques

We used a convolutional neural network (CNN) to classify 
raw time series data and applied random undersampling to 
balance the raw data. We first trained different detection 
models separately on individual ACC, EDA, and BVP data. 
Then we serially trialed different combinations of sensor mo-
dalities, including ACC and EDA, ACC and BVP, EDA and 
BVP, and ACC, BVP, and EDA. The entire ML framework 
and the architectures and functionalities of the developed 
CNN models are shown in Figure 2.

Our CNN model consists of two convolutional layers. 
Convolutional Layer 1 is followed by Rectified Linear Unit 
(ReLU) and dropout operations. Convolutional Layer 2 is fol-
lowed by ReLU and max pooling. The final layer is a global 
average pooling29 layer. The network outputs are probabilis-
tic distributions related to the target classes.

In Poh et al.,30 data reduction and support vector machines 
(SVMs) were used to detect secondarily generalized tonic–
clonic seizures with 94% sensitivity and a .74/24-h false 
alarm rate (FAR). We applied this method to tonic–clonic 
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seizure data in our dataset and compared the performance to 
that of our CNN model for the same data.

2.5.2  |  Seizure detection scenarios

We trained and validated ML methods for two different sce-
narios: (1) ML methods for developing seizure type-specific 
detection models for nine individual seizure types; and (2) 
ML methods for building general type-agnostic seizure de-
tection models, in which case seizures from different seizure 
types were lumped together.

To ensure the availability of sufficient data to train the 
seizure type-specific ML models (Scenario 1), we chose to 
apply leave-one-subject-out cross-validation to those seizure 
types for which datasets contained more than five patients 
and in total 10 seizures. This allowed us to test the perfor-
mance of the developed ML models for nine seizure types 
(Table 1).

For validating the general seizure detection method 
(Scenario 2), we applied 10-fold cross-validation to evaluate 
the performance of the developed ML models for all patients 
and seizure types. For each fold, the patients in the validation 
dataset are excluded from the training dataset.

The majority of patients in our cohort wore two func-
tioning sensor devices on opposite sides of the body on their 
wrists and/or ankles. For some patients, one device stopped 
working during the study due to battery life limitations. 
Additionally, some patients chose to wear only one device. 
We treated each wearable sensor device recording of a sei-
zure as an individual sample during training, which allowed 
us to maximize the amount of training data. During testing, 
we used only one wristband recording for those seizures with 
two simultaneous wristband recordings. We strictly excluded 
all seizure samples contained in the training dataset from the 
respective test dataset at all times, and therefore model per-
formance was never tested on any data that had been used for 
training such models.

F I G U R E  1   Wristband and electroencephalographic (EEG) monitor clocks show different drift rates over time. For seizure detection with 
seconds-level accuracy, the timing error must be measured and compensated to enable consistent data labeling and analysis consistent with video-
EEG recordings. (A) Relative start timing error distribution between the wristband and EEG monitor. (B) Timing drift of the wristband mapped 
over 24 h is plotted. STD, standard deviation
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2.6  |  Statistical methods

Previous studies26,31 utilized custom-defined seizurewise 
performance metrics to account for specific experimen-
tal scenarios, data formats, and clinical use cases. We also 
custom-defined and applied seizurewise performance met-
rics. We added 1-min preictal and postictal buffers before 
and after each ictal segment. We consider a seizure detected 
if it is correctly labeled within the preictal, ictal, and postictal 
windows.

We divide the interictal period into nonoverlapping 1-min 
intervals. If multiple false alarms occurred within a single 
1-min interval, they are reported as one single false alarm.

The sensitivity measures apply to the proportion of cor-
rectly identified seizures. FAR is the number of incorrectly 
detected seizures over 24 h. We defined detection delay as the 
difference between the seizure onset and detector recognition 
of seizure activity.

We calculated seizurewise area under the curve (AUC)–
receiver operating characteristic (ROC) value, sensitivity, 
and FAR per 24 h. The ROC curve is created by plotting the 

true positive rate (also known as sensitivity) against the FAR 
at various threshold settings. AUC is the area under the ROC 
curve. The higher the AUC, the better the model is at distin-
guishing seizures from nonseizure events.

For leave-one-subject-out cross-validation, we calculated 
sensitivity, FAR, detection delay, and AUC-ROC by combin-
ing all subjects' prediction results. For leave-one-subject-out 
cross-validation, we calculated sensitivity, FAR, detection 
delay, and AUC-ROC by combining all folds' prediction 
results.

3  |   RESULTS

We included 94 patients who met our inclusion criteria (me-
dian age = 9.9 years, range = 27.2, interquartile range = 9.2; 
54 [57.4%] males; Table 1, Figure S3), and 548 seizures. For 
training purposes, we had seizure onset and offset annotations 
for 930 seizures captured by both left and right sensor devices. 
The dataset is highly imbalanced, containing 153 h of ictal and 
10 913 h of normal interictal brain activity signals.

F I G U R E  2   FIGURE (A) Machine learning (ML) framework for computing seizure detection baseline performance. The full pipeline 
depicted columnwise from left to right consists of the following modules: (1) individual sensor modalities generating raw time series data, (2) 
modality fusion techniques, (3) data sampling methods to compensate for data imbalance, and (4) ML techniques adapted to raw time series. (B) 
A convolutional neural network (Conv: Convolutional, ReLU: Rectified Linear Unit) is used to analyze raw time series data. ACC, accelerometry; 
BVP, blood volume pulse; EDA, electrodermal activity
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T A B L E  1   Demographic and clinical characteristics for patients 
with seizures during enrollment (N = 94 patients, n = 548 seizuresa)

Demographic and clinical characteristics Value

Age at first enrollment, median years (range, IQR) 9.9 (27.2, 9.2)

Male, n (%) 54 (57.4)

Ethnicity, n (%)

Not Hispanic or Latino 71 (75.5)

Unknown 9 (9.6)

Not reported 8 (8.5)

Hispanic or Latino 6 (6.4)

Race, n (%)

White 64 (68.1)

Unknown 17 (18.1)

Black or African American 6 (6.4)

Not reported 6 (6.4)

Asian 1 (1.1)

History of clinical epilepsy characteristics

Diagnosis of epilepsy, n (%) 92 (97.9)

Age at first seizure, median years (range, IQR) 1.8 (16.0, 6.6)

Seizure frequency [n = 82], median 
seizures/30 days (range, IQR)b 

32.2 (2880.0, 
119.2)

Epilepsy etiology [n = 92], n (%)

Unknown 39 (42.4)

Structural 34 (37.0)

Genetic 13 (14.1)

Infectious 3 (3.3)

Metabolic 2 (2.2)

Immune 1 (1.1)

2017 ILAE seizure semiology, n patients (n 
seizures)c 

Focal onset 62 (548)

Focal to bilateral tonic–clonice  21 (38)

Subclinicale  14 (66)

Awareness and motor semiology unavailable 6 (7)

Aware 6 (9)

Motor 4 (4)

Tonice  2 (2)

Clonice  1 (1)

Automatismse  1 (1)

Nonmotor 2 (5)

Sensory 2 (5)

Impaired awareness 28 (69)

Motor 21 (49)

Automatismse  10 (21)

Tonice  7 (18)

Hyperkinetic 4 (6)

Clonice  4 (4)

(Continues)

Demographic and clinical characteristics Value

Nonmotor 10 (20)

Behavior arreste  10 (16)

Cognitive 1 (4)

Unclassified awareness 22 (145)

Motor 16 (78)

Tonice  6 (47)

Automatismse  3 (4)

Hyperkinetic 3 (3)

Myoclonic 3 (14)

Clonice  2 (5)

Atonic 1 (5)

Nonmotor 5 (57)

Behavior arreste  3 (5)

Autonomic 1 (50)

Unclassified 1 (1)

Sensory 1 (1)

Unclassified movement 5 (10)

Generalized onset 35 (213)

Subclinical 2 (2)

Motor semiology unavailable 4 (5)

Motor 30 (174)

Tonice  15 (90)

Epileptic spasmse  8 (47)

Tonic–clonice  6 (15)

Myoclonic 3 (9)

Clonic 2 (7)

Atonic 2 (5)

Unclassified 1 (1)

Nonmotor 2 (16)

Typical absence 2 (16)

Unclassified movement 6 (16)

Unknown onset/unclassified movement 1 (1)

Wristband location, n patientsc,d 

Left wrist 35

Right wrist 40

Left ankle 94

Right ankle 59

Abbreviations: ILAE, International League Against Epilepsy; IQR, interquartile 
range.
aIn total, 930 seizures were captured when seizures from both left and right 
sensor devices are combined.
bMedian number of seizures in 30 days before first enrollment.
cPatients may be represented in more than one category.
dWristband location may change over the course of an enrollment period.
eSeizure type included in the seizure-specific analysis.

T A B L E  1   (Continued)
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In Algorithm 1, we trained seizure-type specific detection 
models for nine seizure types based on the following inclu-
sion criteria: FBTCSs, GTCSs, focal tonic seizures, focal 
subclinical seizures, focal automatisms, focal behavior arrest, 
focal clonic seizures, generalized tonic seizures, and general-
ized epileptic spasms (Table 2). We found better than chance 
detection for eight of nine seizure types.

In Algorithm 2, we lumped all seizures from different 
seizure types together to build a general type-agnostic sei-
zure detection system. For this scenario, we also display 
individual seizure type-specific detection performance 
and compare it to Algorithm 1 (Table 3). We found bet-
ter than chance detection potential for all nine seizure 
types, including seizures with and without robust motor 
components.

3.1  |  Algorithm 1: Specific ML model for 
individual seizure types

We trained a specific model for each seizure type with leave-
one-subject-out cross-validation (Table 2). ACC performed 
best for focal tonic seizures and BVP for focal behavior arrest 
and generalized tonic seizures. ACC + BVP data fusion pro-
vided the best averaged AUC-ROC performance. The model 
detected GTCSs and FBTCSs with an AUC-ROC of .976 and 
.932, respectively. The algorithm detected focal tonic sei-
zures, focal automatisms, focal behavior arrest, generalized 
tonic seizures, and focal clonic seizures with an AUC-ROC 
of more than .6, suggesting better than chance detection. 
AUC-ROC for focal subclinical seizures was less than .6, in-
dicating a poor, close to chance detection performance of our 
algorithm for this seizure type.

3.2  |  Algorithm 2: Generalized ML model 
for all seizure types

We trained a model with all 94 patients and 548 seizures with 
10-fold cross-validation, shown in Table 3. Except for EDA, 
the overall AUC-ROC performance was greater than .6 for 
all modalities, yielding better than chance detection perfor-
mance. ACC and BVP modalities reached AUC-ROC values 
of .72 and .744, respectively, and ACC + BVP data fusion 
reached the highest overall AUC-ROC of .752.

3.3  |  Comparison of Algorithms 1 and 2

We calculated the AUC-ROC performance comparison be-
tween Algorithm 1 (type-specific ML model for individual 
seizure types) and Algorithm 2 (type-agnostic generalized 
ML model) for all seizure types (Figure 3). For all three 
sensors, the averaged results show that the generalized ML 
model for all seizure types performs better than the specific 
ML model for individual seizure types.

3.4  |  Impact on EDA shift

We visualized seizure annotations and sensor data. EDA 
shows a delayed response time. Figure S4a shows two ex-
amples of EDA increasing after a seizure. We compared the 
performance of the EDA sensor without shifting and with 
shifting 120 s ahead. Figure S4b shows AUC-ROC for dif-
ferent seizure types, and EDA shifting shows an AUC-ROC 
improvement for FBTCSs (.716 vs. .516) and GTCSs (.830 
vs. .519) without a major impact on other seizure types. 

T A B L E  2   Leave-one-subject-out performance

Seizure type ACC EDA BVP
ACC + 
BVP

ACC + 
EDA

BVP + 
EDA

ACC + EDA 
+ BVP

Focal to bilateral tonic–clonic .921 .712 .888 .921 .932 .876 .910

Focal tonic .786 .570 .751 .776 .671 .603 .754

Focal subclinical .548 .550 .496 .528 .488 .537 .504

Focal automatisms .688 .728 .682 .750 .743 .806 .795

Focal behavior arrest .635 .415 .706 .678 .557 .619 .594

Focal clonic .516 .268 .648 .534 .420 .534 .396

Generalized epileptic spasms .594 .480 .627 .633 .507 .617 .583

Generalized tonic .588 .507 .814 .770 .519 .741 .687

Generalized tonic–clonic .975 .830 .904 .945 .976 .933 .965

All nine seizure types .673 .559 .716 .721 .613 .679 .682

Note: Leave-one-subject-out performance of detection models trained on individual modality data (Columns 1–3) and multimodality data fusion (Columns 4–7). In 
each row the best AUR-ROC value is highlighted in bold. An AUC-ROC less than .6 is not significantly better than random guess. Although ACC and BVP modalities 
performed best for some specific seizure types, in general, ACC + BVP data fusion provided the best averaged AUC-ROC performance.
Abbreviations: ACC, accelerometry; AUC-ROC, area under the receiver operating characteristic curve; BVP, blood volume pulse; EDA, electrodermal activity.
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We applied EDA shifting for 120 s to all fusions of sensor 
modalities.

4  |   DISCUSSION

4.1  |  Summary

In our study, we used a seizure-level evaluation for seizure 
detection and found that fusing ACC and BVP data modali-
ties achieved the best AUC-ROC of .752 applied to all sei-
zure samples lumped together across all seizure types when 
we trained one generalized model with all seizure types. 
Results show the feasibility of seizure detection across a 
broad spectrum of seizure types, including but not limited to 
GTCSs, with wrist-worn wearable sensors in a large cohort 
of patients. Our study expands current literature by demon-
strating that noninvasive, wrist- and ankle-worn sensors and 
custom-developed deep learning techniques can automati-
cally detect a variety of epileptic seizure types.

Numerous previous studies have shown the feasibility of 
using ML and, in particular, deep learning models to auto-
matically detect,24 classify,25 and predict5,32 epileptic seizure 
episodes in EEG signals. Initial studies using electrodes im-
planted in the brain have increasingly been followed with less 
intrusive systems measuring scalp EEG data.33 The advent 
of commercially available medical-grade wearable sensors 
and mobile smart devices, such as smartwatches, provided 
an opportunity to assess the suitability of other data modal-
ities for seizure detection.8 Some of these explorations have 
shown promise for detecting GTCSs,23,26,31,34 and based 
thereon smartwatches have first received US Food and Drug 
Administration approval and medical clearance for use as ep-
ilepsy monitoring devices.35,36

4.2  |  Performance comparison for GTCSs

We compared a previously utilized detection method30 with a 
CNN to detect GTCSs. In the previous study, the authors ex-
tracted 19 features from ACC and EDA, then applied SVM, 
and reached an AUC-ROC of .896, a sensitivity of 73%, and 
a FAR of 12.52/24 h. Our CNN reached an AUC-ROC of 
.957, a sensitivity of 80%, and a FAR of 13.63/24  h. The 
CNN performed better than Poh et al.'s method, as shown 
by the 5.9% higher AUC-ROC value. However, the perfor-
mance of the CNN is lower than the SVM reported in the 
mentioned study30 (94% sensitivity and .74/24h FAR). One 
main reason could be that our dataset contains mainly chil-
dren, a cohort that tends to exhibit pronounced movement 
activity during seizure-free times. Additionally, the study 
reported a median electrographic latency of 42.95 s. In our 
study, the average latency is 51.67 s. Onorati et al.26 included 
55 convulsive epileptic seizures (six focal tonic–clonic sei-
zures and 49 FBTCSs) from 22 patients and achieved 83.6% 
sensitivity and .29/24h FAR. Their study26 included 24 chil-
dren and 45 adults, with an age range of 4–18 and 19–60 
years, respectively, including patients who did not experi-
ence seizures during the experiment. In comparison, our 
patients are children, with only three patients older than 20 
years. Once monitoring data from children and adolescents 
are included in a dataset, seizure detection may become more 
challenging. The algorithm in Onorati et al.26 failed to detect 
all three seizures of a 4-year-old child.

4.3  |  Effect of detection modality

We expected that models trained on specific seizure types 
would perform better than models trained on the combined 

T A B L E  3   10-fold cross-validation performance

Seizure type ACC EDA BVP
ACC + 
BVP

ACC + 
EDA

BVP + 
EDA

ACC + EDA 
+ BVP

Focal to bilateral tonic–clonic .919 .662 .886 .910 .905 .862 .890

Focal tonic .812 .624 .736 .772 .789 .719 .758

Focal subclinical .555 .429 .642 .623 .520 .603 .568

Focal automatisms .541 .699 .811 .761 .772 .807 .780

Focal behavior arrest .765 .532 .693 .713 .730 .593 .737

Focal clonic .564 .588 .830 .762 .593 .758 .668

Generalized epileptic spasms .840 .450 .711 .831 .796 .632 .789

Generalized tonic .662 .565 .779 .746 .698 .661 .704

Generalized tonic–clonic .995 .802 .889 .992 .987 .939 .990

All nine seizure types .720 .549 .744 .752 .695 .672 .705

Note: 10-fold cross-validation performance of detection models trained on individual modality data (Columns 1–3) and multimodality data fusion (Columns 4–7). In 
each row the best AUR-ROC value is highlighted in bold. An AUC-ROC less than .6 is not significantly better than random guess. Although ACC and BVP performed 
best for selected seizure types, in general, ACC + BVP data fusion provided the best overall AUC-ROC performance, as shown in the last row.
Abbreviations: ACC, accelerometry; AUC-ROC, area under the receiver operating characteristic curve; BVP, blood volume pulse; EDA, electrodermal activity.
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data of all seizure types, but the results show the contrary. 
The main reasons for this are that (1) we have lower patient 
and seizure numbers per seizure type for each type compared 
to the lumped dataset; these lower sample numbers may not 
be enough to train a high-performance ML model; and (2) 
different sensor modalities may perform similarly across dif-
ferent seizure types.

We found better than chance detection potential for all 
nine studied seizure types, including focal and general-
ized seizures. ACC and BVP performed better than chance, 
with an AUC-ROC of .72 and .744, respectively; ACC and 
BVP data fusion achieved the best AUC-ROC of .752 when 

applied to the entire dataset consisting of all seizure sam-
ples lumped together from all nine seizure types. All nine 
clinical seizure types performed better than chance, with an 
AUC-ROC ranging from .648 to .995. ACC sensors achieve 
the best performance for most seizure types, similar to other 
studies that employ commercial smartwatches37 using the 
standard ACC sensors and running the developed analyti-
cal models, showing utility in detecting seizures with motor 
components, especially GTCSs.14,15 BVP performed best for 
some seizure types, namely focal motor seizures with au-
tomatisms and subclinical seizures. Given the sensitivity of 
BVP to motion, which may result in artifactual signals,34,38 

F I G U R E  3   Area under the receiver operating characteristic curve (AUC-ROC) performance comparisons between a generalized type-agnostic 
machine learning (ML) model for all seizure types and a type-specific ML model for individual seizure types. An AUC-ROC less than .6 is not 
significant compared to random guess. For AUC-ROC levels greater than .6, accelerometry (ACC) performed similarly for focal to bilateral 
tonic–clonic seizures (FBTCSs), focal tonic seizures, generalized tonic seizures, and generalized tonic–clonic seizures (GTCSs); blood volume 
pulse (BVP) performed similarly for FBTCSs, focal tonic seizures, focal behavior arrest, generalized tonic seizures, and GTCSs; electrodermal 
activity (EDA) performed similarly for FBTCSs, focal automatisms, and GTCSs. For all three sensors, the average performance of the generalized 
ML model for all seizure types is better than the performance of the specific ML model for individual seizure types
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the seizure detection performance of BVP may improve in 
seizures with a limited motor component. BVP may there-
fore assist in the detection of the peri-ictal period of tonic–
clonic seizures and focal unaware seizures.39,40 EDA with or 
without ACC has shown promise in the evaluation of con-
vulsive seizures,26,30,41 and may also be able to detect focal 
seizures.41 In our study, EDA's overall AUC-ROC of .549 
is not significantly better than chance, but EDA AUC-ROC 
values reached .802, .699, and .662 for GTCSs, focal autom-
atisms, and FBTCSs. Although adding EDA to data fusions 
yielded an overall decreasing performance of all combina-
tions (ACC + EDA, BVP + EDA, ACC + BVP + EDA), the 
detection performance for some seizure types increased when 
EDA was included. For example, in focal automatisms, the 
performance of ACC + EDA is better than ACC only (.772 
vs. .541). Shifting EDA by 120 s showed significant improve-
ment, especially for GTCSs and FBTCSs. Because the delay 
of EDA can vary for different seizures, applying an adaptive 
detection model may further improve its performance.

Whereas we used the same types of analytical models and 
data processing methods for all data modalities and fusion 
datasets in this study, future work will focus on developing 
advanced deep learning architectures and data preprocessing 
schemes individually for each data modality and integrating 
additional clinical features. We expect that this will allow us 
to leverage clinical and data modality-related features, thus 
further improving detection performance and cross-patient 
generalizability of detection models.

4.4  |  Individualized seizure detection

Seizures are associated with altered autonomic nervous 
system activity, manifesting as system changes, including 
changes in heart rate, blood pressure, respiration, and sweat-
ing responses.42 Monitoring of such physiologic signals may 
allow for tracking of seizure-related autonomic changes and 
seizure detection, and ultimately also provide information re-
garding sudden unexpected death in epilepsy (SUDEP) risk 
and seizure severity.41 In particular, multimodal signal analy-
sis has shown promise in this area.43–47 Findings may also 
complement the detection of nonconvulsive seizures, which 
are harder to monitor and detect with non-EEG devices.8

Tracking seizures and evaluating the seizure burden re-
mains challenging, as these tasks rely heavily on patient or 
caregiver reporting that may be incomplete.3,6 Proper track-
ing of seizures, on an individual level, is crucial for disease 
management, improving outcomes, injury prevention, and 
potentially decreasing the risk of SUDEP. A user-friendly, 
portable, noninvasive, nonstigmatizing tool that reliably de-
tects seizures can improve patients' quality of life and their 
health outcomes and may improve the evaluation of treatment 
outcomes based on seizure frequency.11,45,47–49 Closed-loop 

seizure detection systems are aimed at seizure detection and 
prediction to provide early warnings to control or prevent sei-
zures.8,11 Modalities with slower time to detection, such as 
EDA in our study, may be more suitable for seizure diary pur-
poses or clinical trials looking at seizure frequency and recur-
rence assessment with greater sensitivity and specificity. Our 
results suggest that wrist-worn and commercially available 
sensors, running advanced deep learning models and data 
preprocessing techniques, could be a feasible out-of-the-box 
starting alternative to custom-developed monitoring devices. 
Our results also suggest that individualized customization of 
detection modalities based on clinical features, including sei-
zure semiology, may improve detection performance in se-
lected patients.

4.5  |  Challenges

We need to interpret our results in the setting of data acquisi-
tion. Specifically, we included pediatric patients admitted for 
in-hospital long-term EEG monitoring; activities and behav-
iors may differ from those at home and manifest differently 
in wearable device signals. Although the patients were ad-
mitted to the hospital, they were free to move around and per-
form certain activities such as playing video games, drawing, 
pedaling, and watching TV as feasible in this setting. Longer 
recordings over several days may help account for daily pat-
terns and variations of seizure characteristics. We collected 
signals from one or two devices, depending on availability, 
placed on the left or right wrist or ankle. This may interfere 
with the consistency of the signals, as different parts and 
sides of the body may generate signals that differ in quality 
and characteristics. We included various seizure types in our 
analysis, yet there are additional seizure types that we have 
not investigated.

During the data collection phase, EEG labels were manu-
ally inputted into the annotation system, and wearable signal 
data were manually downloaded and saved. Performed man-
ually, these processes are prone to human error. Furthermore, 
signal segments may be compromised by switched-off wear-
able devices and battery failures. To account for these short-
comings, we ran a stepwise quality check process (Figure 
S2).

EEG monitors and wearable devices run on independent 
clocks. Hence, we synchronized EEG and wearable device 
times at the start of each recording and accounted for possible 
time drift between the clocks.

4.6  |  Conclusions

Automatic epileptic seizure detection of a broad variety 
of seizure types using ML and wearable data is feasible. 
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Preliminary results show better than chance seizure detec-
tion across a range of nine seizure types. Future improve-
ments may consider clinical chronoepileptological variables, 
such as seizure duration and etiology or syndrome, as well as 
alternative data balancing, pre- and postprocessing, fusion, 
and ensemble learning methods. Thus, although our findings 
suggest feasibility, future adjustments may further improve 
detection performance.
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