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ABSTRACT
Mechanisms of protein homeostasis are crucial for overseeing the clearance of misfolded and toxic 
proteins over the lifetime of an organism, thereby ensuring the health of neurons and other cells of 
the central nervous system. The highly conserved pathway of autophagy is particularly necessary for 
preventing and counteracting pathogenic insults that may lead to neurodegeneration. In line with 
this, mutations in genes that encode essential autophagy factors result in impaired autophagy and 
lead to neurodegenerative conditions such as amyotrophic lateral sclerosis (ALS). However, the 
mechanistic details underlying the neuroprotective role of autophagy, neuronal resistance to auto-
phagy induction, and the neuron-specific effects of autophagy-impairing mutations remain incom-
pletely defined. Further, the manner and extent to which non-cell autonomous effects of autophagy 
dysfunction contribute to ALS pathogenesis are not fully understood. Here, we review the current 
understanding of the interplay between autophagy and ALS pathogenesis by providing an overview 
of critical steps in the autophagy pathway, with special focus on pivotal factors impaired by ALS- 
causing mutations, their physiologic effects on autophagy in disease models, and the cell type- 
specific mechanisms regulating autophagy in non-neuronal cells which, when impaired, can con-
tribute to neurodegeneration. This review thereby provides a framework not only to guide further 
investigations of neuronal autophagy but also to refine therapeutic strategies for ALS and related 
neurodegenerative diseases.
Abbreviations: ALS: amyotrophic lateral sclerosis; Atg: autophagy-related; CHMP2B: charged multi-
vesicular body protein 2B; DPR: dipeptide repeat; FTD: frontotemporal dementia; iPSC: induced 
pluripotent stem cell; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 
light chain 3; MTOR: mechanistic target of rapamycin kinase; PINK1: PTEN induced kinase 1; RNP: 
ribonuclear protein; sALS: sporadic ALS; SPHK1: sphingosine kinase 1; TARDBP/TDP-43: TAR DNA 
binding protein; TBK1: TANK-binding kinase 1; TFEB: transcription factor EB; ULK: unc-51 like auto-
phagy activating kinase; UPR: unfolded protein response; UPS: ubiquitin-proteasome system; VCP: 
valosin containing protein.
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Introduction

The diverse cellular processes involved in protein homeostasis 
are critical for maintaining neuronal health and preventing 
neurodegenerative disease. Genetic, biochemical and patho-
physiological evidence in model systems have repeatedly 
shown that dysfunction of these homeostatic mechanisms 
leads to the accumulation of misfolded proteins and neuro-
degeneration in multiple contexts. Of particular interest 
among proteostasis pathways that have been characterized to 
date is the process known as autophagy, the term for which 
was first coined by Christian de Duve in 1963 [1,2] from the 
Greek αὐτός (the reflexive pronoun, for the “self”) and φαγεῖν 
(to eat). This self-consumptive pathway maintains cellular and 
organismal integrity in the setting of various developmental 
events or stressors by degrading cellular components and 
organelles for reuse or redistribution. The ability of autophagy 
to address disparate needs of the cell arising during stress and 
development is achieved through specialization among the 
major autophagy subtypes – designated macroautophagy, 
microautophagy, and chaperone-mediated autophagy –

together with additional organelle- or compartment-specific 
mechanisms (e.g., mitophagy, granulophagy, pexophagy, reti-
culophagy, aggrephagy, nucleophagy, and xenophagy, among 
others). Moreover, autophagy is an essential pathway, as illu-
strated by embryonic lethality in animals missing key compo-
nents of the autophagic machinery [3–9], and the high degree 
of evolutionary conservation across eukaryotes [10].

The individual stages of autophagy, each with its own set of 
regulatory factors, provide numerous potential points of dys-
function that can confer vulnerability to disease. Furthermore, 
mounting evidence shows that autophagy is regulated by 
distinct mechanisms in different cell types [11–26], and 
these cell type-specific mechanisms underlie the differential 
vulnerability of separate tissues to autophagy mutations, 
resulting in heterogenous manifestations of disease. 
Accordingly, to fully understand the implications of autopha-
gy regulation and autophagy disruption in amyotrophic lateral 
sclerosis (ALS) and other neurodegenerative diseases, we will 
review the current understanding of mammalian autophagy, 
with a particular focus on pivotal regulatory features that
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differ between specific cell types. The clinicopathological fea-
tures of ALS are beyond the scope of this review and are 
described elsewhere [27–30]. Here, we will first provide an 
overview of the autophagy process and describe essential 
components of each stage of the pathway. Second, we will 
focus on specific pathway components for which there are 
ALS-related mutations and describe the physiologic sequelae 
of these mutations. We will also delineate the extent to which 
autophagy is affected by common ALS-related genes, as 
demonstrated by cell and animal models of ALS. Third, we 
will explore autophagy machinery in the nervous system on 
a cell type-specific basis to highlight tissue-specific pheno-
types caused by autophagy disruption, how these relate to 
ALS and neurodegeneration, and identify potential targets 
for selective modulation of autophagy in each cell type. 
Finally, we will conclude by integrating the concepts exam-
ined in this review to provide frameworks for investigating 
remaining critical questions surrounding autophagy and neu-
ronal proteostasis, thereby informing strategies for developing 
effective autophagy-based therapies in neurodegenerative 
disease.

Overview of autophagy

Macroautophagy, often referred to simply as autophagy, is an 
evolutionarily conserved eukaryotic pathway for bulk and 
selective degradation of proteins and organelles [31]. It is 
characterized by a multi-step process in which cytoplasm 
and its contents are sequestered within double-membraned 
autophagosomes (Figure 1). The first step in autophagosome 
formation involves induction of a nascent autophagosome, or 
phagophore, which is regulated by a multimeric structure 
known as the phagophore assembly site (PAS) [32–35]. This 
complex is composed of three ULK (unc-51 like autophagy 
activating kinases; ULK1, ULK2, and ULK3), ATG13 (auto-
phagy related 13), ATG101, and RB1CC1/FIP200 [36]. The 
initiation step begins with the dissociation of MTOR 
(mechanistic target of rapamycin kinase) from the PAS, 
cued by nutrient starvation or treatment with rapamycin or 
its various derivatives [36,37]. Next, nucleation of the nascent 
phagophore is orchestrated by a class III phosphatidylinositol 
3-kinase (PtdIns3K) complex containing BECN1, PIK3C3/ 
VPS34, PIK3R4/p150, NRBF2 and either ATG14 or UVRAG 
[38,39]. Expansion then occurs through maturation of the

Figure 1. Dysfunction of autophagy-related proteins impairs proteostasis and leads to neurotoxicity in ALS. (A) Under normal conditions, SQSTM1 serves as 
a receptor protein in selective autophagy and binds both LC3-II and polyubiquitinated proteins, thereby targeting ubiquitinated substrates to phagophores (left); 
Mutations in SQSTM1 abrogate SQSTM1’s binding activities (right top) or result in the aggregation of SQSTM1 into ubiquitin-positive inclusions (right bottom). (B) The 
C9orf72 protein participates in several autophagy-related complexes, including the autophagy induction complex (ULK1-RAB1A) that promotes autophagosome 
biogenesis, the RAB7-RAB11 complex (RAB complex) that regulates endosome maturation, and the C9orf72-SMCR8-WDR41 (CSW) complex that regulates lysosomal 
dynamics and autophagic flux (left). Disease-associated C9orf72 mutations reduce C9orf72 protein levels (right), while dipeptide repeat proteins generated from the 
C9orf72 expansion localize to SQSTM1- and ubiquitin-positive inclusions (right). (C) In normal mitophagy, TBK1 binds and phosphorylates OPTN, enhancing its affinity 
for polyubiquitinated mitochondria and LC3-II (left). TBK1 and OPTN mutations perturb these functions and compromise efficient mitophagy, leading to failed 
mitochondrial clearance and dysfunctional mitochondria.
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extending phagophore membrane guided by the ATG12– 
ATG5-ATG16L1 complex, catalyzing insertion of 
MAP1LC3/LC3 (microtubule associated protein 1 light 
chain 3) into the phagophore membrane [40,41]. Before 
membrane insertion, the unbound and immature LC3 pre-
cursor protein (LC3-I) undergoes proteolytic processing by 
ATG4, and conjugation to phosphatidylethanolamine through 
ATG7 and ATG3. The resulting mature, lipidated isoform 
(LC3-II) is incorporated into the phagophore membrane [41].

In the sequestration phase, the extending ends of the pha-
gophore fuse with one another, forming a double membrane- 
bound vesicle called an autophagosome that surrounds 
a segment of cytoplasm, together with its macromolecular 
and organellular constituents [42]. Molecular motors trans-
port autophagosomes along microtubules to coordinate fusion 
with lysosomes and form autolysosomes, within which the 
vesicular constituents are exposed to hydrolytic proteases for 
degradation [43,44]. Fusion of the autophagosome and lyso-
some is mediated by the homotypic fusion and protein sorting 
(HOPS) complex, whose subunits include VPS11, VPS16, 
VPS18, VPS33A, VPS39, and VPS41 [45,46]. Dismantled cel-
lular components in the autolysosome lumen are actively 
exported for reconstitution into new macromolecules or for 
energy metabolism [42]. Global regulation of the myriad 
effectors and phases of autophagy is overseen by TFEB (tran-
scription factor EB), a basic helix-loop-helix leucine zipper 
that directs expression of autophagy and lysosomal genes 
comprising the coordinated lysosomal expression and regula-
tion (CLEAR) network by binding to a conserved promoter 
motif [47,48]. Further details regarding TFEB activity and 
regulation are reviewed elsewhere [49–52].

Although autophagic cargo can be trapped passively within 
the autophagosome in nonselective autophagy, direct sub-
strate recruitment to phagophores in selective autophagy is 
mediated by a series of receptor proteins (e.g., SQSTM1/p62 
[sequestosome 1], NBR1, AMBRA1) that contain both an 
LC3-interacting region (LIR) and separate motifs for binding 
polyubiquitinated proteins [41]. These receptor proteins 
therefore serve as molecular scaffolds for targeting ubiquiti-
nated proteins to phagophores for degradation via autophagy 
rather than the proteasome.

Additional autophagic specialization is achieved through cha-
perone-mediated autophagy (CMA), microautophagy, tar-
geted degradation of mitochondria in mitophagy, and 
degradation of ribonucleoprotein particles (RNPs) in granulo-
phagy. Client proteins that harbor an internal or masked amino 
acid motif (lysine-phenylalanine-glutamate-arginine-glutamine, 
or KFERQ) are recognized by the molecular chaperone HSPA8/ 
HSC70 upon partial protein unfolding, enabling CMA. Once 
bound by HSPA8, the protein is targeted to the lysosome via 
interaction between HSPA8 and the lysosomal protein LAMP2A 
[53]. The substrate protein is fully unfolded by HSPA8, LAMP2, 
and additional co-chaperones as it translocates into the lysoso-
mal lumen for degradation [54]. In microautophagy, lysosomes 
directly capture cargo from the cytoplasm by membrane invagi-
nation to form intraluminal “autophagic tubes,” which expand 
and pinch off to form microvesicles within the lysosome that are 
ultimately degraded by lysosomal hydrolases [55].

Physiologic and chemical insults to mitochondria – via 
reactive oxygen species, disruption of the inner membrane 
potential in disease models, or treatment with protonophores 
such as carbonyl cyanide 3-chlorophenylhydrazone (CCCP) – 
triggers mitophagy. Upon mitochondrial damage, PINK1 
(PTEN induced kinase 1) is recruited to the outer mitochon-
drial membrane [56], where it phosphorylates and activates 
the E3 ubiquitin ligase PRKN/parkin, which in turn ubiquiti-
nates mitochondrial surface proteins [24]. These polyubiqui-
tin chains are also phosphorylated by PINK1, and the 
resultant phospho-ubiquitin moieties not only bind the recep-
tor proteins OPTN (optineurin), CALCOCO2/NDP52, and 
SQSTM1, but also activate TBK1 (TANK-binding kinase 1) 
[57]. OPTN, CALCOCO2, and SQSTM1 contain ubiquitin- 
binding domains and LIR motifs, thereby providing a means 
for delivering ubiquitinated mitochondria to autophagosomes 
[58]. Additionally, TBK1 amplifies the signaling cascade for 
mitophagy by phosphorylating OPTN and SQSTM1 (which 
enhances binding to ubiquitin and LC3) and promoting TBK1 
autophosphorylation in a positive-feedback manner [58,59]. 
Interestingly, degradation of neuronal mitochondria can 
occur in a non-cell autonomous fashion, as demonstrated by 
the astrocytic engulfment and degradation of mitochondria 
excreted from retinal ganglion cells [60].

Essential processes such as translation may stall during 
specific phases of development or when cells are exposed to 
certain stressors (heat shock, ER perturbation, proteasomal 
dysfunction, or hyperosmolar exposure). To prevent poten-
tially toxic errors in translation and facilitate mRNA degrada-
tion, cells upregulate granulophagy, a distinct subtype of 
autophagy that acts on ribonuclear protein (RNP) granules 
[61]. Several different RNPs are granulophagy substrates, 
including cytoplasmic stress granules and processing bodies, 
which dynamically assemble to sequester non-translating 
mRNA-ribonuclear protein complexes (mRNPs), translation 
initiation factors, translational repressors, and mRNA decay 
machinery until the stress resolves or is removed [62]. In 
granulophagy, RNP granules that contain RNA-binding pro-
teins and their associated mRNAs are targeted for degradation 
via VCP/p97 (valosin containing protein), a chaperone-like, 
type II AAA+ ATPase that binds and delivers large ribosomal 
subunits to autophagosomes [63–66]. Granulophagy can also 
serve a compensatory role in the setting of dysfunctional 
macroautophagy [67].

Key autophagy factors and disease-causing 
mutations in ALS

The long-term health of neurons is inextricably reliant on 
intact proteostasis. This notion is underscored by the fact 
that nearly every neurodegenerative disorder is marked by 
the accumulation of misfolded proteins within or adjacent to 
affected neurons and glia, in spite of heterogeneous clinical 
and pathological characteristics among these diseases [68,69]. 
The abnormal and age-dependent, progressive formation of 
protein inclusions observed in disease-affected regions of the 
nervous system implies that proteostasis mechanisms become 
overwhelmed or dysfunctional with time [68–73]. Molecular
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and histopathologic analyses of patient tissues demonstrate 
mislocalized or accumulated autophagy machinery, patho-
genic mutations underlying familial neurodegenerative dis-
eases disable known autophagy-related factors, and 
genetically ablating autophagy effectors produce neurodegen-
eration in cell and animal model systems [74–81], supporting 
a role for autophagy dysfunction in the development of age- 
related neurodegenerative diseases. Accordingly, precisely 
defining the functions performed by key autophagy effectors 
in each phase of autophagy, and the dysfunction conferred by 
genetic mutations in each factor in relation to disease pheno-
types, is essential for the development of effective, autophagy- 
based therapies for neurodegenerative diseases. Furthermore, 
the degree to which autophagy is differentially regulated in 
a cell type-specific manner, and how each of the myriad 
autophagy effectors functions in distinct cell types, remains 
insufficiently explored, potentially contributing to the disap-
pointing results of indiscriminate autophagy modulation in 
disease models to date. Ultimately, these are crucial consid-
erations when deciding on discrete targets, maximizing clini-
cally meaningful benefits, and minimizing off-target toxicity. 
Below, we consider the physiological and pathophysiological 
relevance of autophagy-related factors in the development of 
two neurodegenerative disorders, ALS and frontotemporal 
dementia (FTD), since these disorders often share 
a common background, and arise due to mutations in genes 
encoding fundamental components of the autophagy path-
way. We will also discuss the impact of autophagy on ALS- 
FTD in a cell type-specific manner, with particular attention 
paid to autophagy effectors and their function in discrete cell 
types within the central nervous system (CNS).

SQSTM1/p62

Selective autophagy relies on autophagy receptor proteins that 
recognize ubiquitinated cargo and target them to the autopha-
gy machinery [82]. The LC3-interacting region (LIR) enables 
autophagy receptors to interact with the Atg8 family of pro-
teins within the nascent autophagosome. The ubiquitin- 
binding protein SQSTM1 harbors a well-characterized LIR 
[83,84]. Besides its LIR domain, SQSTM1 contains an N- 
terminal Phox1 and Bem1p (PB1) domain, a zinc finger 
(ZZ), a TRAF6 (TNF receptor associated factor 6)-binding 
(TB) motif, a KEAP1-interacting region (KIR), and 
a ubiquitin-associated (UBA) domain [85,86]. 
Homodimerization of the UBA domain maintains SQSTM1 
in an inactive state by preventing its interaction with ubiqui-
tin [87,88]. Upon cargo protein ubiquitination, the UBA 
domain of SQSTM1 is phosphorylated by ULK1 on serine 
407, liberating the protein from dimeric inactivation [89]. 
Subsequently, TBK1, CSNK2 (casein kinase 2), or ULK1 
phosphorylate the UBA domain on serine 403, increasing 
the affinity of SQSTM1 for ubiquitin chains [59,90]. The 
interactions between SQSTM1, ubiquitinated cargo proteins, 
and membrane-bound LC3-II are reinforced by homopoly-
merization of the SQSTM1 PB1 domain [91]. The resulting 
complex undergoes liquid-liquid phase separation (LLPS), 
facilitating assembly of the phagophore [92,93]. 
Incorporation of SQSTM1 into the autophagosome leads to

its degradation upon fusion with lysosomes, along with its 
ubiquitinated targets. As such, SQSTM1 levels inversely cor-
relate with autophagy efficiency, and are often used to esti-
mate autophagy flux [84,94,95].

In addition to targeting ubiquitinated proteins, SQSTM1 
also mediates the degradation of ubiquitinated bacteria and 
dysfunctional mitochondria [96]. As discussed above, the 
selective degradation of mitochondria by autophagy, or mito-
phagy, is regulated by the serine/threonine protein kinase 
PINK1 and the ubiquitin E3 ligase PRKN [97,98]. During 
PRKN-dependent mitophagy, SQSTM1 is recruited by TBK1 
phosphorylation on serine 403 and is essential for the clear-
ance of polyubiquitinated mitochondria [59,99].

SQSTM1 is also involved in several key physiological sig-
naling pathways, including MTOR-dependent signaling, reg-
ulation of the ubiquitin-proteasome system (UPS), 
inflammation, the response to oxidative stress, and apoptosis 
[86,100–102]. When amino acids are abundant, SQSTM1 is 
phosphorylated and forms a signaling hub on the lysosomal 
membrane through its interaction with RPTOR, which in turn 
recruits and activates MTORC1 on the surface of the lyso-
some [103–105]. Additionally, SQSTM1 directly associates 
with the proteasome through its PB1 domain [106–108] and 
is itself a proteasome substrate [109]. Under conditions of 
proteasomal impairment, or when the UPS is overwhelmed, 
SQSTM1 delivers ubiquitinated substrates to the lysosome for 
autophagic degradation, thereby providing a crucial link 
between these two cellular degradation pathways.

SQSTM1 is also significantly upregulated during oxidative 
stress. The transcription factor NFE2L2/NRF2 (nuclear factor 
erythroid-derived 2-like 2) is an essential component of the 
oxidative stress response and is normally degraded by the UPS 
via its interactions with KEAP1 (kelch-like ECH-associated pro-
tein 1) [110]. Under oxidative stress, KEAP1 releases NRF2 to 
translocate to the nucleus and activate the transcription of genes 
involved in the antioxidant response, including SQSTM1 [110–-
110–112]. SQSTM1 interacts with KEAP1 and displaces NRF2, 
promoting its own transcription as well as other genes involved 
in the antioxidant response [110]. This positive feedback loop 
significantly enhances the cellular capacity for selective autopha-
gy, contributing to the clearance of damaged organelles and 
proteins, and eventually recovery from stress [111,113].

SQSTM1/p62 in disease

SQSTM1 is a major component of neuronal and glial cyto-
plasmic inclusions that characterize many neurological disor-
ders such as Alzheimer disease and Parkinson disease 
[114,115]. Furthermore, SQSTM1-positive inclusions are 
found in the majority of patients with ALS and FTD, and 
often overlap with inclusions that stain for ubiquitin and 
TARDBP/TDP-43 (TAR DNA binding protein), an essential 
RNA-binding protein integrally connected with ALS-FTD 
[82,116–118] (Figure 1). In the most commonly inherited 
form of ALS and FTD due to mutations in the C9orf72 gene 
(described below), SQSTM1 accumulates together with ubi-
quitin in neurons and glia [119–121] as well as muscle fibers 
[122]. In fact, individuals with disease-associated C9orf72 
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mutations display a significantly greater burden of SQSTM1-
positive glial inclusions than those with sporadic ALS [82].

Consistent with the pivotal links between SQSTM1 and 
several distinct signaling pathways, SQSTM1 mutations result 
in multiple overlapping disease phenotypes. SQSTM1 muta-
tions are not only a rare cause of ALS-FTD, accounting for 
~1-3.5% of cases with or without family history [123–125], 
but also Paget’s disease of bone (PDB), a chronic and pro-
gressive skeletal disorder characterized by disorganized bone 
turnover [126,127], and inclusion body myositis (IBM) [128]. 
Rather than being mutually exclusive, each of these conditions 
may co-exist with one another, resulting in a spectrum of 
overlapping clinical signs collectively referred to as “multi-
system proteinopathy” [129]. In contrast to PDB-associated 
mutations that affect mainly the UBA domain [127], SQSTM1 
mutations identified in ALS-FTD affect several different 
regions. ALS-FTD-associated SQSTM1 mutations frequently 
affect the UBA and LIR domains involved in autophagy and 
include both missense and nonsense mutations [123–125]. 
SQSTM1 mutations affecting the UBA domain impair ubiqui-
tin recognition [130], whereas mutations within the LIR 
domain impact LC3 recognition and substrate delivery to 
the autophagosomes [84,131]. Additionally, mutations 
detected in the SQSTM1 promoter region are associated 
with reduced SQSTM1 protein levels in familial ALS-FTD 
[132,133].

Evidence from animal models strengthens the association 
between SQSTM1, autophagy impairment, and multisystem 
proteinopathy. sqstm1-knockout mice display reduced num-
bers of osteoclasts as well as cognitive impairment and anxi-
ety, associated with hyperphosphorylated MAPT/tau and 
neurofibrillary tangles [134–136]. Knockdown of the 
SQSTM1 ortholog in zebrafish leads to an ALS-like phenotype 
consisting of locomotor and motor neuron axonal abnormal-
ities. Overexpression of wild-type human SQSTM1 or appli-
cation of the autophagy activator rapamycin rescues these 
phenotypes [137]. On the other hand, overexpression of 
SQSTM1 variants carrying disease-associated mutations in 
the UBA domain exhibit a PDB-like skeletal disorder 
[138,139] as well as impaired spatial learning and long-term 
memory [140]. Additional knock-in models involving the 
introduction of disease-associated mutations into endogen-
ously expressed SQSTM1 are needed to clarify its function 
in select cell types, and how pathogenic SQSTM1 mutations 
result in neuronal dysfunction as well as disorders of bone 
and muscle.

C9orf72

In 2011, the seminal discovery of disease-associated expansion 
mutations within the C9orf72 gene uncovered the most com-
mon genetic cause of inherited ALS and FTD, accounting for 
23–47% of familial cases and 4–21% of sporadic disease. 
Unaffected individuals carry 2–30 repeated stretches of 
GGGGCC within the first intron of the gene, but patients 
with C9orf72-associated ALS-FTD harbor several hundred to 
thousands of repeats [141,142].

The C9orf72 protein belongs to the DENN (differentially 
expressed in normal and neoplastic cells) family [143,144] and

binds the GTPases RAB7 and RAB11, which are involved in 
endosome maturation and recycling [145]. C9orf72 also forms 
a complex with SMCR8, a guanine nucleotide exchange factor, 
and WDR41, a WD40 protein essential for targeting the 
C9orf72-SMCR8-WDR41 complex to lysosomes [146–150]. 
Here, this complex interacts with RB1CC1-ULK1-ATG13- 
ATG101, which together are involved in autophagosome for-
mation [149]. Separately, the C9orf72-SMCR8-WDR41 com-
plex acts as a guanine nucleotide exchange factor for RAB8A 
and RAB39B, regulating vesicle trafficking and autophagic 
flux [148]. Additionally, through its interactions with ULK1 
and RAB1A, a GTP-binding protein involved in vesicular 
protein trafficking and MTOR regulation [151,152], C9orf72 
promotes autophagy initiation [153]. Together, these findings 
suggest that C9orf72 assists in the formation of nascent auto-
phagosomes, consistent with the finding of impaired autopha-
gy in murine cortical neurons [148] and human iPSC-derived 
neurons [154] upon C9orf72 knockdown.

C9orf72 in disease

The C9orf72 hexanucleotide repeat expansion exhibits sub-
stantial pleiotropy at the clinical and molecular levels. For 
instance, C9orf72 expansion mutations are associated not 
only with ALS/FTLD, but also with symptoms reminiscent 
of Parkinson disease, Alzheimer disease, Huntington disease, 
and corticobasal syndrome, reinforcing the imperfect connec-
tion between clinical and molecular phenotypes and empha-
sizing the need for molecular diagnostics [155–164]. ALS- 
FTD due to C9orf72 mutations displays TARDBP pathology, 
consisting of granular neuronal cytoplasmic inclusions, dif-
fuse neuronal cytoplasmic staining, and glial cytoplasmic 
inclusions rich in TARDBP [120]. A unique hallmark of 
C9orf72-related disease is the presence of cytoplasmic star- 
like inclusions positive for SQSMT1 and ubiquitin, but not 
TARDBP, in cerebellar granule neurons and other cell types 
(Figure 1). Nevertheless, the impact of these inclusions is 
uncertain, as cerebellar degeneration and clinical phenotypes 
attributable to cerebellar dysfunction are lacking in C9orf72- 
related disease.

Although the C9orf72 mutation occurs within a non- 
coding region of the gene, the unique secondary structure of 
the expansion triggers ribosome stalling and the initiation of 
translation through a process known as repeat-associated 
non-AUG (RAN) translation. As there is no true start 
codon, the GGGGCC expansion is translated in all three 
reading frames into repeating elements of two peptides: GP, 
GA and GR (sense), and PG, PR and PA (antisense) [165–-
165–168]. Antibodies specific for each dipeptide repeat (DPR) 
also stain SQSTM1-positive inclusions, including the star-like 
inclusions unique to C9orf72-related disease, suggesting that 
DPRs are targeted for clearance by the UPS and/or autophagy 
[119,169–171] (Figure 1). Furthermore, the loss of C9orf72 
function and consequent impairment in autophagy may 
enhance DPR accumulation in C9orf72 mutation carriers, 
acting synergistically to accentuate neurodegeneration 
[154,172,173]. On the other hand, DPR inclusions rarely co- 
label with TARDBP pathological inclusions and are mainly 
found in areas of the CNS that are not pathologically affected
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[171,174–177], arguing against a direct role for DPRs in 
neurodegeneration.

C9orf72 mutations are associated with reduced basal auto-
phagy and enhanced sensitivity to autophagy inhibitors in 
human iPSC-derived neurons [153,178]. Paradoxically, how-
ever, c9orf72 knockout in mouse (which models the loss of 
function attributed to the hexanucleotide repeat expansion) 
enhances autophagy by de-repressing MTOR and, in turn, 
increasing TFEB nuclear translocation [179,180]. In addition, 
conditioned medium from astrocytes differentiated from 
patient-derived iPSC lines (two of which harbor C9orf72 
expansion mutations) applied to HEK293T cells reduces LC3- 
II while increasing SQSTM1 levels [181], suggesting non-cell 
autonomous inhibition of autophagy by astrocytes in ALS. 
Overall, further studies are needed to determine if disease- 
associated C9orf72 expansions affect autophagy through addi-
tional means independent of loss-of-function mechanisms 
and whether the C9orf72 protein may have cell type-, species- 
specific, and non-cell autonomous effects that explain these 
discrepancies.

Deletion of the zebrafish and C. elegans homologs of C9orf72 
results in impaired locomotion and motor axon degeneration 
[182,183], implying that the C9orf72 protein is essential for 
motor neuron function and survival in these systems. In con-
trast, deletion of the mouse C9orf72 ortholog leads to splenome-
galy, lymphadenopathy, dysregulation of macrophages and 
microglia, and excess production of inflammatory cytokines 
[184–187]. While c9orf72 knockout animals exhibit 
a shortened lifespan [184,185,187], no specific neuronal defects 
have been identified in these mice. On the other hand, loss of 
endogenous murine C9orf72 results in glial activation, impaired 
autophagy and toxicity when combined with the C9orf72 expan-
sion mutation [173]. Further, neurons derived from iPSCs car-
rying the C9orf72 repeat expansion recapitulate key features of 
cellular pathology associated with ALS, including hyperexcitabil-
ity [154,188,189] and decreased viability upon exposure to exci-
totoxic agents such as glutamate [154,190,191]. These results are 
consistent with those in animal models, suggesting that the 
endogenously encoded C9orf72 repeat expansion mutation 
leads to toxicity by both gain and loss of function mechanisms.

TBK1

TBK1/NAK/T2K (TANK binding kinase 1) is 
a cytoplasmically-localized homodimeric multidomain pro-
tein with an ubiquitin-like domain, a N-terminal serine/threo-
nine kinase domain, and two coiled-coil domains [192]. TBK1 
is expressed in all tissues, but at much higher levels in neurons 
of the hippocampus, cortex and lateral ventricle. Moderate 
levels of the protein have been detected in the glial cells of the 
cortex and cerebellum [193]. Through its phosphorylation of 
the autophagy receptors OPTN, SQSTM1, and CALCOCO2/ 
NDP52 (calcium binding and coiled-coil domain 2) 
[58,59,194], TBK1 regulates several aspects of autophagy, 
including macroautophagy, xenophagy and mitophagy 
[59,90,148,194–196]. TBK1-dependent effects on autophagy 
and autophagy receptor proteins are spatially and functionally 
regulated by interactions with the ULK1 initiation complex 
[148,150,153,197]. TBK1 also phosphorylates SMCR8, which

forms a complex with C9orf72 and WDR41, thereby enhan-
cing autophagy initiation [148]. In neurons, TBK1 knock-
down enhances the accumulation of SQSTM1, which can be 
rescued by phosphomimetic SMCR8 mutations [148], suggest-
ing that SMCR8 phosphorylation is crucial for TBK1’s effects 
on autophagy.

In addition to its role in modulating autophagy, TBK1 
regulates innate immunity by phosphorylating IRF3 (inter-
feron regulatory factor 3), triggering nuclear localization of 
IRF3 and the subsequent production of IFNA2/IFNα (inter-
feron alpha 2) and IFNB/IFNβ. These events, in turn, stimu-
late the expression of interferon-inducible genes, including 
ISG15, whose protein product interacts with SQSTM1 and 
HDAC6 [198,199]. Whether TBK1 acts on autophagy or 
innate immunity may partially depend on its associations 
with specific adaptor proteins such as NAP1L1 (nucleosome 
assembly protein 1), TANK and TBKBP1/SINTBAD that bind 
in a mutually exclusive manner [58,200,201].

TBK1 in disease

TBK1 mutations were initially described in conditions with 
prominent neuroinflammatory responses, including two 
forms of glaucoma [192,202,203] and herpes simplex ence-
phalitis [204]. Whole exome sequencing studies revealed that 
mutations in TBK1 are also responsible for ~1% of patients 
with familial or otherwise sporadic ALS [205,206]. Supporting 
the link between ALS and FTD, TBK1 mutations have also 
been identified in FTD patients, and in fact occur more 
frequently in patients with combined ALS-FTD than in 
those with ALS alone [207–209]. Neuropathological analysis 
of CNS tissue from ALS patients with TBK1 mutations shows 
SQSTM1- and TARDBP-positive inclusions in motor neurons 
and glia [206,210,211], along with reduced TBK1 mRNA and 
protein, suggesting haploinsufficiency mechanisms [205,206]. 
Consistent with this, most ALS-associated TBK1 mutations 
affect the kinase and the coiled-coiled domains, both of which 
are vital for TBK1 function [206].

In vitro, silencing of TBK1 or ALS-related TBK1 variants 
reduces the recruitment of OPTN and LC3B to damaged 
mitochondria [212,213], thereby impairing mitophagy and 
resulting in the accumulation of defective mitochondria 
(Figure 1). Tbk1 haploinsufficiency impairs motor neuron 
autophagy and accelerates clinical phenotypes as well as the 
accumulation of mutant SOD1 in transgenic ALS mouse 
models [214,215]. Unexpectedly, however, TBK1 loss of func-
tion also prolongs the disease course by reducing neuroin-
flammation, suggesting that the dual functions of TBK1 in 
autophagy and inflammation independently and inversely 
impact ALS pathogenesis. In keeping with this, Tbk1 deletion 
disrupts the migration of T-cells [216] that may exert anti- 
inflammatory effects in ALS models [192,217].

Other ALS-related mutations and their relation to 
autophagy

UBQLN2
UBQLN2 (ubiquilin 2) is an adaptor protein that binds poly-
ubiquitinated substrates via a C-terminal ubiquitin-associated
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(UBA) domain, and directs them to the UPS for degradation 
through an N-terminal ubiquitin-like (UBL) domain [218]. 
UBQLN2 can also act as an autophagy receptor by directly 
interacting with LC3 in autophagosomes [219,220]. Rare 
UBQLN2 mutations are associated with familial forms of 
ALS and ALS-FTD [221–223], and UBQLN2 colocalizes 
with SQSTM1 and ubiquitin in neuronal aggregates charac-
teristic of both ALS and ALS-FTD [221,224]. Overexpression 
of ALS-linked UBQLN2 mutants interrupts the interaction 
between UBQLN2 and ATG9-ATG16L1 [225], while also 
triggering intracellular inclusions [226,227] and motor defects 
in vitro and in vivo [226]. In rats, overexpression of ALS 
mutant UBQLN2 leads to motor neuron loss and accumula-
tion of autophagy substrates such as SQSTM1 and LC3-II 
[228]. Consistent with a central role for ubiquilins in auto-
phagy, UBQLN2 modulates MTORC1 activity, lysosomal 
acidification, and, in turn, autophagosome maturation 
[229–231].

FUS
FUS (Fused in Sarcoma) is a DNA/RNA-binding protein that 
participates in DNA damage, RNA transport, and RNA spli-
cing. As with TARDBP, mutations in the gene encoding FUS 
cause familial ALS with FUS-positive pathology, but neuronal 
inclusions in sporadic disease show little FUS staining. The 
majority of disease-associated FUS mutations affect the 
C-terminal nuclear localization signal, resulting in cytosolic 
mislocalization and aggregation of mutant FUS [232–234]. In 
cultured neurons, mutant FUS impairs stress granules clear-
ance; this effect is exacerbated by genetic loss of ATG5, 
enhancing stress granule accumulation and, ultimately, lead-
ing to cell death [235]. Conversely, rapamycin-mediated acti-
vation of autophagy ameliorates these features, suggesting that 
FUS-positive inclusions are autophagy substrates [235]. 
Supporting this, autophagy activation via PI3K, AKT or 
MTOR inhibition reverses stress granule accumulation caused 
by ALS-linked mutant FUS [236], and autophagy induction 
extends survival in a Drosophila model of FUS-ALS [236]. 
Intriguingly, FUS may exert a direct influence on autophagy 
initiation and autophagosome elongation by maintaining 
expression of factors including RB1CC1 and ATG16L1, 
which are diminished after CRISPR-mediated knockout of 
Fus but restored with re-introduction of wild-type FUS in 
N2A cells [237].

VCP
VCP/p97/Cdc48 (valosin containing protein) is involved in 
a wide range of essential cellular processes, including DNA 
replication and repair, cell cycle regulation, and protein clear-
ance [238,239]. Mutations in VCP most commonly lead to the 
combined disorder of inclusion body myopathy, Paget disease 
of the bone, and FTD (IBMPFD) [240], but are also respon-
sible for ~1-2% of familial ALS cases [241–243]. Thus, as with 
SQSTM1, OPTN, HNRNPA2B1, MATR3, and TIA1, VCP 
mutations result in pleiotropic phenotypes affecting muscle, 
nerve, bone and brain. Histopathological analyses consistently 
illustrate TARDBP, ubiquitin and SQSTM1-positive inclu-
sions in VCP-related diseases [244–247]. Moreover, muscle 
from IBMPFD patients carrying VCP mutations [246] and

transgenic mice expressing VCP mutants [244,248,249] dis-
play accumulations of SQSTM1- and LC3-positive autopha-
gosomes and abnormal mitochondria [250,251]. Together, 
these observations suggest a conserved pattern of autophagy 
dysfunction in association with VCP mutations, implying 
a crucial role for VCP in autophagy and the maintenance of 
protein homeostasis.

Supporting this, several studies have highlighted key func-
tions for VCP in autophagosome maturation. In IBMPFD 
murine muscle lysates, VCP mutations disrupt autophago-
some maturation and fusion with lysosomes, but not the 
formation of early autophagosome precursors [246,249]. 
Similarly, enlarged and acidified autophagic vacuoles accumu-
late in cells expressing disease-associated VCP mutants, sug-
gesting a late-stage block in the fusion of lysosomes with 
autophagosomes [249]. Motor neurons and astrocytes derived 
from iPSCs carrying pathogenic VCP mutations demonstrate 
cytoplasmic TARDBP accumulation, endoplasmic reticulum 
(ER) stress, mitochondrial dysfunction, and oxidative stress, 
ultimately leading to cell death [252]. Neurons may not be the 
only cell type affected by VCP mutations in these conditions – 
mutant VCP iPSC-derived astrocytes were unable to suffi-
ciently support motor neuron survival, indicating the pre-
sence of non-cell autonomous mechanisms of 
neurodegeneration in VCP-related diseases [252].

OPTN
OPTN has emerged as a key player in the regulation of 
various cellular mechanisms, including vesicular trafficking, 
maintenance of the Golgi, NFKB/NF-κB signaling and 
immune response [253]. OPTN is an autophagy receptor 
that binds ubiquitinated cargo (via its UBAN domain) and 
LC3 (via its LIR domain) [194,254,255], although it can also 
act independently of target ubiquitination [254]. Upon mito-
chondrial damage, OPTN translocates to the surface of mito-
chondria, an interaction that is stabilized via TBK1-mediated 
phosphorylation, facilitating the engulfment of mitochondria 
into phagophores [256]. OPTN also directly interacts with 
SQSTM1 to form an autophagy receptor complex that accel-
erates autophagy flux [257]. Genetic analyses have uncovered 
>20 OPTN mutations in ALS patient cohorts, accounting for 
~3% of familial disease and ~1% of sporadic disease [258]. 
Interestingly, the majority of pathogenic OPTN mutations are 
located in its UBAN domain and may impair ubiquitin bind-
ing [259], suggesting that defects in the targeting of ubiquiti-
nated substrates could be important for ALS pathogenesis. In 
addition, ALS-associated OPTN mutations enhance microglial 
NFKB1 expression [260], which may accentuate neuronal loss 
secondary to neuroinflammation [261].

CHMP2B
CHMP2B (charged multivesicular body protein 2B) is 
a subunit of the endosomal sorting complex required for 
transport-III (ESCRT-III) [262]. ESCRT-III is one of the 
four multiprotein complexes required for multivesicular 
body formation, and is responsible for the membrane defor-
mation that enables autophagosome initiation and endolyso-
somal trafficking [263]. CHMP2B mutations were initially 
associated with rare cases of chromosome 3-linked familial
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FTD [264,265], but CHMP2B mutations were subsequently 
identified in ALS patients with a lower motor neuron pre-
dominant syndrome [266,267]. Although TARDBP is typically 
absent from neuronal inclusions found in CHMP2B- 
associated disease, SQSTM1-positive oligodendroglial inclu-
sions are found in the motor cortex of ALS patients with 
CHMP2B mutations [267]. Motor neurons from CHMP2B 
mutant ALS patients show increased calcium concentrations, 
reduced ATP availability, downregulation of the MAPK/p38 
signaling pathway and impaired autophagy initiation [266]. 
Furthermore, overexpression of CHMP2B mutants leads to 
the formation of large cytoplasmic vacuoles and increased 
LC3-II protein levels [266], suggesting that disease- 
associated CHMP2B mutations disrupt autophagy. In agree-
ment with these observations, CHMP2B downregulation or 
expression of disease-associated CHMP2B mutants in 
Drosophila and mammalian cell lines results in aberrant endo-
somal structures, impaired autophagosome maturation, and 
cytosolic TARDBP aggregates [264,265,268,269].

Transgenic mice expressing mutant CHMP2B develop pro-
gressive neurological defects, axonal pathology, early mortal-
ity and neuronal loss reminiscent of FTD [270,271]. These 
mice also develop lysosomal storage pathology characterized 
by large neuronal aggregates derived from the endosomal 
system [272], and early microglial proliferation leading to 
a pro-inflammatory phenotype at later stages [270]. In con-
trast, few phenotypes were noted in chmp2b knockout animals 
[271], suggesting predominantly gain of function toxicity in 
association with pathogenic CHMP2B mutations.

Autophagy in the context of ALS

Disrupted autophagy and proteostasis are not only apparent 
in experimental models of familial ALS, with defined genetic 
mutations impairing autophagy effectors or imparting proteo-
toxic stress, but also likely play a key role in the pathogenesis 
of sporadic ALS (sALS). In humans with sALS, pathologic 
inclusions found in motor neurons are surrounded by LC3 
and SQSTM1 [273], suggesting failed or stalled clearance via 
autophagy. SQSTM1-positive inclusions are also ubiquitin- 
positive, consistent with a disruption in the UPS [118]. 
Furthermore, biochemical and histopathologic examination 
of frontotemporal cortex and spinal cord in sALS patients 
reveals that ubiquitin-positive inclusions contain TARDBP 
[274,275], which is itself involved in the regulation of auto-
phagy [276]. Markers of oxidative stress, ER stress, and the 
UPR are upregulated in spinal cords and anterior horn cells 
from human patients with sALS [277–280]. Accumulations of 
dysmorphic and enlarged mitochondria, many with deficien-
cies of critical oxidative enzymes, in anterior horn cells, intra-
muscular nerves, and skeletal muscle are characteristic of 
sALS [281–285]. Such mitochondrial abnormalities, together 
with observations of OPTN-positive inclusions and de novo 
OPTN mutations found in sALS [286–289], are suggestive of 
attenuated mitophagy. Collectively, these findings indicate 
autophagy dysfunction compounded by failures in additional 
proteostatic mechanisms, which may together lead to the 
degeneration of susceptible neuronal populations in sALS.

In familial ALS, apart from the ALS-associated mutations 
that directly affect autophagy-related genes, genetic mutations 
in TARDBP and SOD1 deserve particular mention not only 
because they are responsible for some of the more common 
familial forms of ALS but also because of their intrinsic con-
nections with autophagy. Mutations in TARDBP, which 
encodes the transactive response DNA binding protein 43 
kDa (TDP-43), are the third most common cause of familial 
autosomal dominant ALS and account for rare cases of spora-
dic ALS [290–293]. Mutations in the SOD1 gene, which 
encode the free radical/reactive oxygen species scavenger 
superoxide dismutase 1 [294,295], represent the second most 
common cause of familial ALS in Europeans and the most 
common cause in those of Asian descent [296]. Disease mod-
els involving mutations in either of these genes have been 
indispensable for uncovering fundamental mechanisms of 
ALS pathogenesis. Models of TARDBP proteinopathy range 
from transient transfections in primary rat cortical cultures 
[297], to motor neurons [298] and astrocytes [299] differen-
tiated from patient-derived induced pluripotent stem cells 
(iPSCs) or murine embryonic stem cells [300], to transgenic 
or virally transduced rodents overexpressing wild-type [301–-
301–316], truncated [317,318], or mutant TARDBP harboring 
the A315T [301,308,319], Q331K [310], M337V [301,310,311,-
311,320–322], G348C [308] mutations, knock-in mutant 
TARDBPN390D [300], or tardbp knockouts [323–328] (these 
models are reviewed in further detail elsewhere [329–334]). 
SOD1 model systems include human and murine motor neu-
ron cultures [335,336], and transgenic mice expressing SOD1 
with the G93A [214,215,335–338], G86R [335,339], or H46R/ 
H48Q [340] mutations (also reviewed elsewhere [341–344]).

Several studies employing these models point to cell- 
autonomous toxicity in both neurons and astrocytes in 
TARDBP- and SOD1-related ALS, in addition to non-cell 
autonomous mechanisms, implying that therapies should tar-
get both cell types for optimal effect. iPSC-derived motor 
neurons harboring the ALS-associated TARDBPM337V muta-
tion demonstrate an accumulation of insoluble mutant 
TARDBP at native expression levels [298], which in previous 
models has not only been closely linked to neurodegeneration 
[297], but also increases the risk of death in iPSC-derived 
astrocytes [299]. Furthermore, glial TARDBP inclusions pre-
dominantly reside in oligodendrocytes [345,346], and expres-
sion of TARDBPM337V in astrocytes exerts cell autonomous 
toxicity [299]. Supporting the notion of non-cell autonomous 
contributions to disease, transplantation of SOD1G93A astro-
cytes into the spinal cords of wild-type mice induced motor 
neuron loss [347]. In addition, transplantation of wild-type 
astrocytes into SOD1G93A rat spinal cords was neuroprotective 
[348], and limited overexpression of NRF2 in astrocytes miti-
gated neurodegeneration in SOD1G93A and SOD1H46R/H48Q 

mice [340].
These models also revealed key abnormalities in autophagy 

that occur in the context of ALS pathogenesis and suggest that 
autophagy modulation can dramatically influence ALS-related 
neurodegeneration. For example, loss of nuclear TARDBP 
leads to reduced ATG7 expression [349], and embryonic 
stem cell-derived motor neurons expressing TARDBPN390D 

show increased levels of the autophagy suppressor, BCL2,
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and reduced autophagic activity [300]. TARDBP downregula-
tion promotes TFEB nuclear localization and TFEB target 
gene expression, but it also reduces DCTN1 (dynactin sub-
unit 1) expression, thereby blocking autolysosome formation 
and impairing autophagic flux [350]. Transgenic expression of 
a C-terminal TARDBP fragment commonly associated with 
ALS and FTD leads to decreases in several autophagy effec-
tors, including ATG3, ATG7, LC3, SQSTM1, and BECN1 
[351]. Together, these findings link autophagy dysfunction 
to TARDBP pathology in ALS and suggest that correcting 
autophagy dysregulation or promoting the autophagic degra-
dation of TARDBP may be of therapeutic benefit in ALS.

To this end, inducing autophagy with rapamycin reduces 
TARDBP accumulation and mislocalization in vitro [352] and 
in vivo [353], whereas inhibiting autophagy with 3-methyla-
denine impairs TARDBP degradation [352]. Autophagic 
degradation of TARDBP is enhanced by downregulation of 
HSP90AA1 and CDC37, suggesting that these chaperones are 
key suppressors of autophagy and may accentuate TARDBP- 
related toxicity in ALS [354]. HSPB8 overexpression also 
enhances autophagic clearance of TARDBP via elevations in 
TFEB, SQSTM1, and LC3 [355,356]. Importantly, autophagy 
induction rescues relevant outcomes in models that do not 
involve protein overexpression, but rather native mutant 
forms of TARDBP associated with familial disease. For exam-
ple, inducing autophagy using novel compounds belonging to 
the benzoxazine class of molecules, including 10-NCP, 
enhance TARDBPM337V degradation and extend survival in 
rodent and human neurons [357]. Inhibition of MTOR like-
wise reduces TARDBP aggregation and toxicity in multiple 
cell and animal models of ALS [353,358,359]. Similarly, the 
phosphodiesterase inhibitor ibudilast induces autophagy by 
promoting TFEB activity, which enhances clearance of 
TARDBP aggregates and reduces cytotoxicity [360].

Although stimulating autophagy improves outcomes in 
TARDBP ALS models, autophagy induction has complex 
effects in ALS due to SOD1 mutations. Inducing autophagy 
with lithium [361] rescues SOD1G93A-related pathology and 
cell death, and overexpression of TFEB enhances LC3 expres-
sion and prevents cytotoxicity in SOD1G93A-expressing NSC- 
34 cells [362]. Furthermore, antagonizing the unfolded pro-
tein response (UPR) through deletion of XBP1 [335] triggers 
autophagy and the clearance of SOD1 inclusions, in the pro-
cess delaying disease onset and improving survival. Although 
these studies suggest that therapies capable of stimulating 
autophagy hold great promise for SOD1-related ALS, many 
caveats still remain. For instance, neurodegeneration may 
itself stimulate autophagy, and it is unclear whether this 
response is beneficial or maladaptive [78]. In a SOD1G93A 

transgenic mouse model of ALS, motor neurons of sympto-
matic animals show increased levels of LC3-II and autophagic 
vacuoles compared to controls or pre-symptomatic mice. 
Although elevated LC3-II in this context could represent 
compromised autophagy flux, reduced levels of active/phos-
phorylated markers of the MTOR pathway [337] suggest 
autophagy induction. In addition, rapamycin facilitates 
motor neuron degeneration and rapid disease progression in 
SOD1G93A ALS mice [338], and excess mitophagy accelerates 
neurotoxicity and metabolic compromise in ALS models

[363]. It is possible that overactive autophagy in SOD1- 
related ALS may generate toxic fragments of SOD1 or accel-
erate the atrophy of denervated muscle [71,364]. Regardless, 
the nature of autophagy induction in these biologic settings, 
whether representing a coping response to antecedent proteo-
toxicity or an active component of pathogenesis at disease 
onset (or both), remains incompletely defined.

Interestingly, mutant SOD1 may act in combination with 
autophagy dysfunction to promote motor neuron loss in ALS. 
Ubiquitous expression of ALS-related TBK1 mutations, het-
erozygous TBK1 deletion, or motor neuron-specific TBK1 
deletion result in loss of function phenotypes but are insuffi-
cient to produce ALS-related neurodegeneration in mice 
[214,215]. However, in the setting of the SOD1G93A mutation, 
loss of TBK1 or pathogenic TBK1 mutations accentuate sev-
eral pathologic features of ALS (disease onset, muscle dener-
vation) while ameliorating others (inflammation, early death) 
[214]. Similarly, conditional deletion of Atg7 in mouse motor 
neurons accentuates early ALS pathology but mitigates glial 
inflammation and early death [336]. These findings not only 
suggest that impaired autophagy sensitizes the nervous system 
to key pathogenic events occurring early in ALS pathogenesis, 
but also highlight the importance of neuroinflammation in 
disease progression [215].

The interplay between autophagy and TARDBP or SOD1 
mutations is complex and influences ALS pathogenesis within 
and between different cell types of the nervous system. 
Identifying whether and how specific autophagy factors are 
differentially affected by TARDBP and SOD1 mutations, and 
to what extent these alterations are salient for neurons, glia, 
and/or muscle, is critical for refining therapeutic strategies 
and targeting cell type-specific regulators. In so doing, future 
ALS therapies may be able to effectively induce autophagy in 
the relevant cell types without adversely affecting others, 
maximizing on-target benefits while reducing off-target side 
effects that would be unavoidable with indiscriminate auto-
phagy inducers.

Cell type-specific regulation of autophagy

Genetic disruption of key autophagy effectors is sufficient to 
cause ALS, highlighting the integral relationship between au-
tophagy and neuronal survival. Moreover, individual ALS 
mutations affect all phases of autophagy, from early 
(C9orf72), intermediate (SQSTM1, CHMP2B), and late 
(VCP) stages of the pathway. Since neuronal death and dys-
function occur regardless of the point at which autophagy is 
impaired by disease-causing mutations, enhancing flux 
through the pathway as a whole is indispensable for prevent-
ing neurodegeneration. Notably, with global expression of 
germline mutations associated with ALS, neural and non- 
neural tissues manifest the detrimental effects of compro-
mised autophagy [11], but to varying extents [365,366]: 
SQSTM1 mutations affect muscle, bone, and liver 
[125,367,368]; C9orf72 deficiency leads to lymphocytic 
inflammation, lymphadenopathy, and splenomegaly [149]; 
CHMP2B mutations induce oligodendroglial pathology 
[267]; OPTN mutations produce microglial activation and 
glaucoma [288]; and VCP mutations cause extensive cardiac
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and skeletal muscle pathology [248]. Since a given autophagy- 
related mutation is identical in all tissues, the heterogeneous 
manifestations of autophagy dysfunction between tissues may 
relate to differences in autophagy regulation specific to each 
cell type. Below we describe cell type-specific mechanisms 
regulating autophagy, emphasizing the distinct phenotypes 
observed in each tissue upon autophagy dysfunction, and 
outlining therapeutic strategies for selectively modulating au-
tophagy within predetermined cell types. A summary of key 
cell type-specific regulators is included in Figure 2 and 
Table 1.

Neurons

Neurons exhibit specialized topology that includes not only 
dendrites capable of extensive arborization, but also axons 
that extend at times over a meter in length [369]. As 
a result, autophagy must operate within the contexts of 
these localized compartments since the autophagy-lysosomal 
system of the soma is metabolically and temporally incapable

of meeting all dendritic, axonal and synaptic demands [370]. 
Another critical factor that uniquely impacts neuronal auto-
phagy is the requirement of neurons to maintain protein 
homeostasis for the entire lifespan of an organism; this arises 
from the extended post-mitotic state of neurons, and the lack 
of their renewal and replacement [371]. Neuronal autophagy 
also exhibits physiologic characteristics that are fundamentally 
distinct from those in other cellular types, as detailed further 
below.

Autophagic activity varies significantly within each subcellu-
lar compartment of the neuron. Autophagy initiation typically 
begins outside of the soma, in the distal axon tip [370,372,373]. 
Newly-formed autophagosomes in neuronal processes undergo 
retrograde transport to the soma and proximal segments of 
neurites to fuse with somatodendritic lysosomes for cargo degra-
dation, with maturation and acidification of the autophagosomal 
lumen developing en passant [370,372,374]. Axonal autophagy is 
dependent on specialized enzymatic apparatuses, including the 
PINK1-PRKN complex for localized mitophagy [24], KIF1A/ 
UNC-104 for autophagosome formation at the synapse [22,25],

Figure 2. Distinct factors regulate autophagy among different cell types of the nervous system. In each of the cells which comprise the central and peripheral 
nervous systems, autophagy is differentially regulated by cell type-specific effectors. In neurons (top left), modulation of SPHK1 by phenoxazine compounds such as 
10-NCP, but not starvation, potently induces autophagy. In contrast, nutrient deprivation is sufficient to promote SPHK1 signaling and autophagy induction in 
astrocytes (top center). In the axonal compartment of neurons, KIF1A and PINK1-PRKN are critical for facilitating local autophagic activity (left, middle). MicroRNAs 
such as MIR101 and MIR195 suppress oligodendrocytic and Schwann cell autophagy, respectively (right). Schwann cells also clear myelin debris through 
myelinophagy, a unique form of selective autophagy that is dependent on FIG4 (bottom). In muscle, specific transcription factors can exert activating (FOXO3) or 
suppressive (PPARGC1A, RUNX1) effects on autophagy, and phosphatases such as MTM1 and MTMR14 inhibit autophagy by recycling phosphoinositides needed for 
autophagy induction (bottom left).
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and the HTT-HAP1 complex and MAPK8IP1/JIP1 for retro-
grade transport of autophagosomes [23,26]. Autophagy is also 
necessary for maintaining the structural integrity of the axon 
[375], as Purkinje-specific deletion of Atg7 (encoding an essen-
tial E1-like enzyme required for activating ATG12, ATG8, and 
LC3-I) results in Purkinje cell-autonomous axonal dystrophy 
and degeneration in mice [376]. In addition, autophagy helps 
eliminate synapses during development [377,378], but can also 
accentuate axon degeneration during excitotoxic stress [375].

Baseline autophagy in neurons constitutively operates at 
a highly processive level, such that maturing autophagosomes 
are rapidly incorporated into autolysosomes, which represent 
the majority of the autophagic vesicle population after auto-
phagy induction or flux inhibition [379]. Basal autophagy in 
neurons is essential for maintaining long-term neuronal 
health, since disruption of baseline autophagic activity 
in vivo causes neurodegeneration and the accumulation of 
inclusions containing polyubiquitinated proteins [380,381]. 
With increasing age, basal autophagy and the capacity for 
efficient autophagosome maturation progressively deteriorate 
in neurons, leading to accumulation of malformed and imma-
ture autophagic vesicles, implying reduced proteostatic 
reserve over time [382].

Neuronal autophagy is distinct in several additional phy-
siologic respects. For example, despite serving as a potent 
autophagy inducer in most cell types [383], starvation is an 
ineffective means of stimulating autophagy in neurons, even 
in the face of starvation-related downregulation of neuronal 
MTOR signaling [370]. Similarly, rapamycin and related 
MTOR inhibitors, as well as AKT inhibitors, are ineffective 
inducers of neuronal autophagy [338,384]. Alternative meth-
ods have proven more successful in neurons, however, includ-
ing selective MTORC1 inhibition via everolimus [385–387], 
or modulation of MTOR- and AKT-independent pathways 
with 10-NCP, an N10-substituted derivative of the heterocyclic 
dye compound and antipsychotic analog phenoxazine [384]. 
These observations imply the presence of unknown, cell type- 
specific pathways regulating autophagy in neurons [388].

Glia

In addition to neurons, the central and peripheral nervous 
systems (CNS and PNS) are populated with glial cells in 
approximately equal proportions to neurons [389] and are

comprised of several subtypes: astrocytes, oligodendrocytes 
and Schwann cells (which myelinate neurons in the CNS 
and PNS, respectively), ependymal cells, microglia, enteric 
glia, and satellite cells [390,391]. For the purposes of this 
review, we will examine the current state of knowledge 
regarding glial autophagy in astrocytes, microglia, oligoden-
drocytes and Schwann cells.

Astrocytes. Astrocytes are the most abundant subtype of 
glial cells and provide structural and metabolic support for 
neurons through several mechanisms, including neurotrans-
mitter clearance, free radical scavenging, modulating neuronal 
excitability, maintaining ion homeostasis, regulating synaptic 
maintenance and plasticity, paracrine and autocrine signaling, 
blood-brain barrier formation, modulating inflammation and 
injury with reactive astrogliosis, among other functions [391]. 
Astrocytes are enriched in intermediate filaments (including 
glial fibrillary acidic protein, GFAP) and exhibit morphologic 
heterogeneity ranging from intricately branching processes of 
protoplasmic astrocytes in gray matter to longer but less 
elaborate processes of fibrous astrocytes in white matter [-
392–396]. Not only do astrocytes and neurons harbor exten-
sive morphologic and physiologic differences, but the 
regulatory pathways coordinating autophagy and the physio-
logic consequences of autophagy activation in each cell type 
may also differ considerably, depending on the pharmacologic 
or pathologic context:

● Adaptive proteostasis: Similar to neurons [397], autopha-
gy is activated in astrocytes to compensate for inhibition 
of the UPS [398]. Such compensatory stimulation may 
underlie the activation of astrocyte autophagy observed 
in Alexander disease, a pediatric leukodystrophy caused 
by GFAP mutations which lead to accumulation of 
Rosenthal fibers and, in turn, proteasomal impairment 
[399].

● Mitochondrial homeostasis: Mitochondrial compromise 
and ATP synthase inhibition with oligomycin 
A stimulate autophagy to a greater extent in astrocytes 
than in neurons, although both cell types activate auto-
phagy to similar extents in the face of ischemia [400]. In 
reactive gliosis, a process unique to astrocytes, intact 
mitochondrial health is essential and is maintained 
through autophagy, such that astrocyte-specific deletion 
of Atg7 perturbs the balance of mitochondrial dynamics

Table 1. Role of starvation-induced MTOR inhibition in various cell types of the nervous system.

cell type Starvation MTOR inhibition common factors cell type-specific factors

Neurons Insensitive or mild 
activation [385]

Insensitive [370] AMPK 
TFEB 
ULK1 
PIK3C3/VPS34 
BECN1 
ATG5 
ATG7 
LC3 
ATG12 
ATG14 
SQSTM1 
VCP 
LAMP2 OPTN

PINK1, PRKN (axonal mitophagy) [24] 
KIF1A (synaptic autophagy) [22,25] 
HAP1, MAPK8IP1 (axonal transport) [23,26] 
SPHK1 (benzoxazine treatment) [11]

Glia Astrocytes Activates [404] Activates [404] SPHK1 (starvation induction) [11]
Oligodendrocytes Activates [450] Activates [530] MIR101 [12]
Schwann cells Activates [465] Activates [467,468] FIG4 [13] MIR195 [14,15]

Skeletal muscle Activates [475] Activates [482] RUNX1 [474] 
MTM1 [17] 
MTMR14 [20] 
PPARGC1A [19] 
AKT, FOXO3 [16,18]
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to favor fission over fusion and thereby reduces oxida-
tive capacity [401]. Unlike neurons, astrocytic loss of 
Atg7 or Atg5 is insufficient to cause cell death or the 
accumulation of misfolded and ubiquitinated proteins 
[380,381], implying greater proteostatic reserve in astro-
cytes compared to neurons.

● Differential signaling cascades: In contrast to neurons, 
MTOR inhibition and starvation robustly activate auto-
phagy in astrocytes [402], whereas MTOR-independent 
activation of autophagy with benzoxazines (e.g., 10-NCP 
and fluphenazine) takes place in neurons but not astro-
cytes [11]. These differences in autophagy may be due to 
enhanced phosphorylation of astrocytic SPHK1/SK1 
(sphingosine kinase 1) with starvation, whereas benzox-
azines activate neuronal (but not astrocytic) SPHK1 to 
induce autophagy [11]. Notably, SPHK1 signaling may 
promote autophagy in SH-SY5Y cells and fibroblasts, 
but its role in mature neurons is incompletely elucidated 
[403–406]. Notably, although benzoxazines induce dif-
ferential responses in SPHK1 phosphorylation and au-
tophagy activation, these compounds are sufficient to 
reduce TARDBPM337V-associated toxicity in iPSC- 
derived astrocytes [357], presumably through autophagy 
upregulation.

● Non-cell autonomous effects on neuronal autophagy and 
survival: Astrocytes regulate neuronal autophagy and 
exert non-cell autonomous, neuroprotective effects. In 
the context of neurodegeneration, astrocytes take up 
aggregate-prone MAPT/tau, amyloid beta (Aβ) and 
SNCA (synuclein alpha), and degrade these proteins 
through autophagy [407–412]. Furthermore, not only 
is autophagy responsible for degrading HTT in astro-
cytes, but it also promotes glutamate transporter expres-
sion in these cells [413], thereby providing greater 
capacity for astrocytes to buffer and mitigate glutamate- 
mediated excitotoxicity in disease. In transgenic mice 
overexpressing mutant SOD1 associated with ALS, 
astrocytes display more SOD1-positive inclusions than 
do neurons, and at an earlier stage [414]. Selective 
clearance of SOD1-positive inclusions from astrocytes 
is sufficient to slow disease progression [414], while 
conditioned media from SOD1-expressing astrocytes is 
toxic to cultured human motor neurons in vitro 
[181,415],, implying that astrocytes are both necessary 
and sufficient for neurodegeneration in this ALS model. 
Notably, reactive astrocytes from SOD1 transgenic mice 
secrete TGFB1, which stimulates MTOR signaling and 
impairs autophagy in co-cultured motor neurons [415], 
suggesting that astrocytes can exacerbate neuronal toxi-
city by compromising neuronal proteostasis in a non- 
cell autonomous fashion.

Further characterization of astrocyte-specific pathways will 
provide critical information for honing the precision of thera-
pies for ALS by targeting neuron-specific autophagy in parti-
cular, potentiating the beneficial cell autonomous and non- 
cell autonomous effects of astrocyte autophagy, or both.

Microglia. Microglia are macrophage-like cells that com-
prise 10–15% of the CNS, and mediate diverse functions

ranging from innate immunity and phagocytosis to synaptic 
pruning and the regulation of synaptic activity [416,417]. 
Activation of microglia through genetic, infectious, inflamma-
tory, or physical stimuli, leads to stereotypical changes in their 
morphology, accompanied by proliferation, migration, and 
the release of proinflammatory cytokines and chemokines 
[417–419]. In neurodegenerative diseases, microglial activa-
tion may accentuate neuron loss by promoting and propagat-
ing regional and local neuroinflammation [420,421]. 
Consistent with this, ALS patients exhibit elevated macro-
phage markers in their CSF compared to unaffected controls 
[422], presumably due to increased CNS microglia or their 
activation, as suggested by positron emission tomography 
(PET) imaging using radiotracers specific for activated micro-
glia [423,424]. Moreover, loss of function mutations in 
TREM2 (triggering receptor expressed on myeloid cells 2), 
which affect microglia phagocytosis and inflammation, are 
risk factors for ALS [425–427], confirming the pivotal role 
played by microglia in ALS pathogenesis.

● Phagocytosis: Autophagy and phagocytosis share key 
morphological and mechanistic features [428]. For 
instance, both pathways rely on vesicular structures to 
deliver contents to lysosomes for degradation. Microglia 
actively clear apoptotic cells, myelin and synaptic debris, 
axonal fragments and protein deposits from the CNS 
through phagocytosis [428–430]. In line with these con-
nections between phagocytosis and autophagy, micro-
glial phagocytosis of Aβ deposits in Alzheimer disease 
models [430,431] requires the autophagy-related factors 
BECN1, ATG7 and LC3 [432,433].

● Neuroinflammation: The activation of CNS microglia 
and astrocytes, and the subsequent production of pro- 
inflammatory cytokines and interleukins (neuroinflam-
mation), is intricately connected to ALS pathogenesis. In 
pre-symptomatic mutant SOD1 transgenic mice, acti-
vated microglia initially display neuroprotective proper-
ties that slow disease progression; however, with time 
the continued and unabridged neuroinflammation only 
enhances neurodegeneration and accelerates disease 
progression [434–436]. Transplanted wild-type micro-
glia effectively extend the survival of mutant SOD1 
transgenic mice [437], confirming the importance of 
microglial activation in ALS pathogenesis. Supporting 
this, ALS patients carrying C9orf72 mutations display 
microglial activation that correlates with disease pro-
gression [438]. The C9orf72 protein – itself closely tied 
to autophagy, as discussed above – is highly expressed in 
myeloid cells such as microglia. C9orf72-deficient mice 
display lysosomal accumulation and a hyperactive 
immune response characterized by enhanced production 
of IL1B and IL6 [184,185,187,439], a phenotype recapi-
tulated by myeloid-specific C9orf72 knockout, indicating 
the significance of C9orf72 in maintaining physiological 
immune responses [440]. Emphasizing the link between 
autophagy and inflammation, impaired autophagy in 
C9orf72-deficient myeloid cells leads to the accumula-
tion of the pro-inflammatory STING (stimulator of 
interferon genes) protein [440]. Likewise, ALS-
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associated mutations in TBK1, OPTN, SQSTM1, and 
VCP all affect autophagy as well as microglial function 
and innate immunity [192,205,206,441–443]. 
Collectively, these findings reinforce the convergence 
between inflammation and autophagy in microglia, and 
their importance for ALS pathogenesis.

Oligodendrocytes. Oligodendrocytes comprise 45–75% of 
the glial population, depending on the region of cerebrum 
or brainstem sampled, and are essential for CNS axon myeli-
nation [389]. Although much of oligodendrocyte autophagy 
remains unknown, this process is important for several 
aspects of development and disease:

● Developmental CNS myelination: Autophagic activity 
increases during progenitor cell differentiation into 
mature oligodendrocytes [444]. During oligodendroglial 
precursor (OPC) differentiation, autophagy becomes 
most active in distal OPC processes, and autophago-
somes are trafficked proximally to the soma in 
a manner similar to neurons [444]. Conditional oligo-
dendrocyte-specific deletion of Atg5 in mice leads to 
incomplete differentiation, reduced myelination, abnor-
mal myelin compaction, oligodendrocytic death, and 
shortened life span [444]. In addition, oligodendrocyte 
autophagy, OPC differentiation, and myelination during 
development are all regulated by MTOR [445–447]. 
Consistent with these findings, autophagy activation 
enhances oligodendrocyte survival and promotes myeli-
nation in a rat model of demyelinating disease [448].

● Non-cell autonomous trophic support: Loss of autophagy 
with oligodendrocyte-specific deletion of Atg5 impairs 
motor recovery after spinal cord contusion in mice 
[449], but rapamycin fails to enhance recovery [449] 
despite effective stimulation of autophagy in these cells 
[449–451]. Paradoxically, suppression of autophagy with 
NTF3 (neurotrophin 3) disinhibits oligodendrocyte pro-
liferation and promotes motor recovery in a separate 
model of spinal cord contusion [452]. These observa-
tions suggest that oligodendrocyte autophagy may play 
a necessary but insufficient role in post-injury repair of 
the spinal cord [453], but excessive autophagy in oligo-
dendrocytes may lead to neuronal toxicity in a non-cell 
autonomous manner.

● Impaired proteostasis in neurodegeneration: In multiple 
system atrophy (MSA), the pathologic hallmark consists 
of cytoplasmic SNCA inclusions in oligodendrocytes 
[12], and the accumulation of these inclusions is exacer-
bated by autophagy inhibition, either pharmacologically 
with chloroquine or genetically by MIR101 overexpres-
sion [12,450,454]. Separately, oligodendrocytes in ALS 
patients demonstrate inclusions containing TARDBP 
and FUS [455–457] and lower levels of SLC16A1/ 
MCT1 (solute carrier family 16 member 1), an essential 
lactate transporter in the CNS whose expression is regu-
lated by autophagy [458]. These findings constitute 
indirect evidence for impaired oligodendrocyte autopha-
gy in ALS; however, direct assessment of

oligodendrocyte autophagy in ALS models has not 
been fully explored.

Current knowledge regarding oligodendrocyte-specific 
mechanisms of regulating autophagy is limited. Additional 
studies are needed to establish the specific autophagy factors 
that distinguish autophagy in oligodendrocytes from that in 
neurons.

Schwann cells. Details regarding Schwann cell-specific au-
tophagy are also limited and are largely devoted to examining 
Schwann cells in development and after traumatic injury to 
peripheral nerves:

● Developmental PNS myelination: During development, 
autophagy is required for refining and culling of 
Schwann cell-mediated myelination, and conditional 
Atg7 deletion in mouse Schwann cells leads to cytoplas-
mic swelling, ribosomal accumulation, dysmorphic ER, 
and dysmyelination [459]. Furthermore, conditional 
deletion of Pik3c3 in murine Schwann cells not only 
results in hypomyelination, but also in non-cell autono-
mous disruption of neuronal autophagic flux and dysre-
gulated neuronal trafficking of ERBB2 or ERBB3 
receptor tyrosine kinases [460]. Additional non-cell 
autonomous effects are observed with Schwann cell- 
specific PTEN deletion or EGFR overexpression, which 
attenuate peripheral nerve autophagy and lead to dis-
organization of the nascent neuromuscular junction 
[461].

● Peripheral nerve trauma: After nerve injury, Schwann 
cells oversee the capture of myelin debris in autophago-
somes in a process termed “myelinophagy” 
[459,462,463], and this function is impaired by 
Schwann cell-specific Atg7 deletion [459,464]. 
Remyelination after peripheral nerve injury is hindered 
by injury-induced upregulation of the microRNA 
Mir195a, which inhibits Atg14 and, in turn, suppresses 
Schwann cell autophagy [14,15]. Conversely, stimulating 
Schwann cell autophagy with rapamycin promotes mye-
lination and improves peripheral nerve regeneration 
[465,466].

● Inherited demyelinating neuropathies: Abnormal 
Schwann cell autophagy is also observed in dysmyelinat-
ing forms of inherited polyneuropathies. For instance, in 
Charcot-Marie-Tooth (CMT) type 1A caused by dupli-
cation of PMP22 (peripheral myelin protein 22), 
Schwann cell autophagy is aberrantly elevated and asso-
ciated with higher levels of JUN/c-Jun, which may be 
part of a compensatory, neuroprotective response to the 
pathogenic effects of the PMP22 duplication [467–469]. 
In CMT4J, autosomal recessive mutations in the gene 
encoding FIG4, a phosphatase required for recycling 
phosphoinositides involved in vesicle trafficking, lead 
to incompetent myelinophagy [13]. Autosomal domi-
nant FIG4 mutations are associated with rare forms of 
familial ALS [470], suggesting that inefficient myelino-
phagy may result in the loss of motor neurons and 
muscle atrophy.
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Together, these studies indicate that targeting Schwann cell 
autophagy in development or following traumatic injury has 
strong therapeutic potential not only for enhancing remyeli-
nation, but also for promoting axonal regrowth through non- 
cell autonomous mechanisms. Even so, treatments for specific 
peripheral myelination disorders must be individualized based 
on the specific pathologic context and the perceived need to 
enhance deficient autophagy, or conversely slow overactive 
autophagy.

Skeletal muscle

Skeletal muscle comprises another integral component of the 
peripheral nervous system. Similar to neurons, muscle fibers 
must contend with life-long metabolic needs due to their 
post-mitotic state, but unlike neurons these cells must adapt 
to mechanical stressors arising from weight-bearing activity 
and locomotion [471]. Structural and oxidative maintenance, 
adaptive hypertrophy, senescent sarcopenia, and pathogenic 
atrophy from neuromuscular disease all appear to require 
regulatory changes in autophagy, and the mechanisms under-
lying these different physiologic states and their impact on 
proteostasis will be the focus of this section.

● Muscle atrophy: There is conflicting evidence as to 
whether autophagy contributes to or mitigates muscle 
atrophy in ALS. On the one hand, skeletal muscle dener-
vation causes neurogenic atrophy and may activate au-
tophagy; such a protective response (mounted by the 
transcription factor RUNX1) limits muscle wasting 
after denervation by suppressing autophagy. 
Conversely, genetic ablation of RUNX1 disinhibits auto-
phagy and worsens atrophy [472]. Starvation-related 
atrophy is also associated with upregulated autophagy, 
which in turn is controlled by the transcription factor 
FOXO3 and is independent of MTOR activity [473]. On 
the other hand, neurogenic atrophy can be partially 
mitigated by adrenergic stimulation, which activates au-
tophagy through Atg7 and counteracts denervation- 
induced inhibition of autophagic flux [474]. Autophagy 
appears to be required for muscle regeneration, since 
autophagy inhibition with 3-methyladenine blunts 
recovery in mice after myotoxic injury [475]. Similarly, 
ulk1 knockout impairs muscle regeneration in zebrafish 
[476], and conditional Atg7 deletion in mouse skeletal 
muscle leads to atrophy, weakness, and accumulation of 
unhealthy mitochondria and sarcoplasmic reticulum 
[477]. Analogously, conditional Atg5 deletion in mouse 
skeletal muscle leads to accumulation of ubiquitin- 
positive inclusions and ultrastructural disorganization 
[478]. The discrepancies suggested by these paradoxical 
findings may indicate that autophagy is required for 
muscle maintenance and homeostasis, but there is 
a limit or threshold beyond which autophagy stimula-
tion may exacerbate fiber atrophy.
○ Neuromuscular disease: In ALS, skeletal muscle- 

specific expression of SOD1G93A is associated with 
atrophy and elevated autophagy [479], but these 
effects are mitigated by siRNA-mediated MAP1LC3B

knockdown and the subsequent reduction of auto-
phagy flux [479]. In addition, inherited myopathies 
demonstrate muscle pathology that includes markers 
of elevated autophagy. For instance, centronuclear 
myopathy is caused by mutations in the genes encod-
ing MTM1 (myotubularin1) or MTMR14/Jumpy 
(myotubularin related protein 14) [17,20]. These loss- 
of-function mutations prevent these enzymes from 
metabolizing phosphoinositides required for autopha-
gy, thereby disinhibiting autophagy flux and muscle 
atrophy [17,20]. In contrast, enhancing autophagy in 
mouse models of Duchenne muscular dystrophy 
(DMD) pharmacologically with rapamycin or 5-ami-
noimidazole-4-carboxamide ribonucleotide (AICAR, 
an AMP analog which stimulates AMPK) improves 
muscle strength and contractility [480,481]. 
Moreover, PPARGC1A/PGC1A (PPARG coactivator 
1A) overexpression drives non-MTOR-dependent au-
tophagy by increasing TFEB nuclear localization in 
dystrophin-deficient muscle fibers [19]; however, the 
extent to which this manipulation rescues DMD- 
related pathology, atrophy, or weakness was not 
assessed. These discrepant results may be due to 
effects of the genetic background unique to each dis-
ease, resulting in excessive autophagy stimulation in 
centronuclear myopathy, but insufficient autophagy 
in DMD. In either case, deviation from normal pro-
teostasis results in muscle pathology.

○ Autophagy and exercise: The positive effect of exercise 
on autophagy was first noted in 1984, with the obser-
vation of autophagosome accumulation after exercise 
in rat skeletal muscle [482]. Similar effects have been 
seen in humans and mice after strenuous exercise, 
interpreted as a response to exercise-related muscle 
breakdown [482,483]. Exercise triggers autophagy by 
activating ULK1 and dissociating BCL2 from BECN1, 
thereby disinhibiting the initiation complex 
[484,485]. In muscle biopsies collected from human 
volunteers after endurance exercise, measurements of 
autophagy markers revealed downregulated AKT and 
MTOR signaling, elevated ATG5, ATG12, and LC3-II 
[486]. Similarly, vastus lateralis biopsies taken from 
human runners after a 200-kilometer race showed 
increased transcription of autophagy factors ATG4B, 
ATG12, GABARAPL1, LC3B, CSTL (cathepsin L), 
BNIP3, and BNIP3L [487], which may be an adaptive 
response to muscle injury related to long-distance 
running. Exercise also potentiates autophagy activa-
tion due to starvation and the resulting reduction in 
plasma insulin, which in turn downregulates AKT 
and FOXO3 signaling [16,18]. Autophagy induction 
is not only seen with endurance exercise, but also 
acute bouts of exercise, and this short-term increase 
in autophagy appears to require PPARGC1A [488].

○ Autophagy and aging: Aging is associated with 
a decline in muscle mass (termed sarcopenia) and 
mitochondrial function, both of which are associated 
with dysregulated autophagy [489]. However, there 
remains considerable controversy as to whether
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these events arise due to impaired or overactive auto-
phagy with age. On the one hand, skeletal muscle 
autophagy declines with aging in Drosophila and can 
be rescued by FOXO overexpression or constitutive 
activation of EIF4EBP1 [490]. Mouse muscle also 
shows age-related decline in autophagy machinery 
(LC3, BECN1, and LAMP2), and these deficiencies 
are partially mitigated by 8 weeks of treadmill exercise 
[491]. Age-related declines in MFN2 (mitofusin 2), 
which is associated with macroautophagy and mito-
phagy [492], together with mitochondrial fragmenta-
tion and mitochondrial fission machinery in muscle, 
indicate inefficient mitophagic flux in aging muscle 
[493]. Supporting this, skeletal muscle from aged rats 
exhibits lower LC3 expression, suggesting reduced 
levels of basal autophagy and an overall decreased 
capacity for autophagy [494].

On the other hand, sarcopenia involves autophagy of muscle struc-
tural components, and attenuation of autophagy with PPARGC1A 
overexpression mitigates sarcopenia [495]. In aged rats, muscle 
tissues display elevated basal levels of proteolysis, higher expression 
of autophagy proteins and the accumulation of unfolded protein 
response elements. These changes are accompanied by reduced 
adaptive reserve in response to denervation, with impaired autopha-
gy induction and lower levels of mitophagy compared to young rats 
[496]. Aged rats also show elevated basal mitophagy, higher levels of 
mitophagy proteins, higher TFEB expression and lysosomal markers 
than young mice; these changes were reduced with chronic and 
forced contractile activity induced by implanted stimulators [497]. 
Taken together, the mixed evidence describing age-related changes 
in muscle autophagy emphasizes the need for further investigations 
of the regulatory machinery overseeing autophagy in muscle. This 
issue is particularly prominent given the potential for nonselective 
autophagy-inducing therapies to be used for highly prevalent age- 
related neurodegenerative conditions, and their unknown effects 
upon sarcopenia in susceptible populations. 

Concluding remarks: remaining questions & 
therapeutic implications

Although autophagy affords much potential for disease- 
modifying benefit in neurodegenerative disease, additional 
challenges arise when administering autophagy-modulating 
drugs on a clinical basis. For instance, cell and animal models 
may not faithfully reproduce autophagy regulation in healthy 
subjects or humans with disease. Additionally, treatment with 
autophagy modulating drugs runs the risk of incurring intol-
erable side effects and toxicities, especially when given on 
a long-term basis that may be required to prevent or delay 
late-onset neurodegenerative diseases.

Autophagy induction using MTOR inhibitors is currently 
being tested in ALS – a phase II trial of rapamycin (sirolimus) 
for ALS patients began in 2018 [498]. Results from this trial have 
yet to be announced or published, but the use of rapamycin in 
ALS is complicated not only by its potential for insufficient 
induction of neuronal autophagy per se, but also its capacity 
for modulating multiple MTOR-dependent downstream path-
ways (Figure 3). Rapamycin has been extensively utilized for 
transplant rejection prophylaxis and graft-versus-host disease, 
as well as seizure control and reduction of tumors in tuberous

sclerosis complex patients [499–501]. As a result, the drawbacks 
of chronic rapamcyin therapy – including cytopenias, nephro-
toxicity, metabolic syndrome, dermatitis, and pneumonitis 
[502,503] – are well known. Clinicians may therefore be required 
to implement regular monitoring of serum drug levels, blood 
pressure, skin exams, complete blood counts, liver and renal 
function, cholesterol, and triglycerides, as is commonly per-
formed in those taking rapamycin for FDA-approved indica-
tions [504].

Additional methods for bypassing MTOR to modulate auto-
phagy exist, however, and should be explored in the context of 
ALS. Despite early enthusiasm over lithium in patients and 
mouse models [505,506], five subsequent trials showed no clin-
ical benefit in survival or neuromuscular outcomes for ALS 
patients [507–511]. These negative trials, together with lithium’s 
narrow therapeutic index, severely limit the therapeutic utility of 
lithium for ALS (Figure 3). Modulation of amino acids repre-
sents an alternative strategy for regulating autophagy in an 
MTOR-independent fashion: amino acid starvation induces au-
tophagy, whereas amino acid provision results in RPS6KB/ 
p70S6K phosphorylation and autophagy suppression [512]. 
Neither event is affected by rapamycin, suggesting that MTOR 
is dispensable for this pathway [512]. 10-NCP and related com-
pounds are also capable of inducing neuronal autophagy 
through an MTOR- and AKT-independent signaling cascade 
[357,384]. The array of MTOR-independent methods for stimu-
lating autophagy also includes direct stimulation of AKT and 
BECN1, activating MAPK8/JNK1 to dissociate BCL2 from (and 
thereby disinhibit) BECN1, applying the synthetic peptide Tat- 
Beclin 1, SIRT1-associated starvation, and disrupting nonsense- 
mediated RNA decay [513–517] (Figure 3). Notably, with the 
exception of 10-NCP, the above strategies have been tested 
almost exclusively in non-neuronal model systems. Therefore, 
the applicability of these biologic phenomena to neurons, and 
whether manipulating MTOR-independent effectors and path-
ways are sufficient to modulate neuronal autophagy, must be 
investigated in relevant neuronal model systems to inform their 
suitability for therapy development.

Given the limitations demonstrated by therapeutic strategies 
empirically trialed to date, the rational design of autophagy 
inducers for neurodegenerative disease will require several key 
advances. First, cell type-specific regulatory mechanisms con-
trolling autophagy flux must be elucidated in neurons, astro-
cytes, microglia and muscle. Second, the means to accurately 
measure autophagy induction in each cell type must be estab-
lished. Traditional measures relying upon the accumulation of 
pathway intermediates such as LC3-II cannot discriminate 
between true induction and late-stage inhibition of autophago-
some maturation and should therefore be utilized cautiously in 
estimating the ability of compounds to stimulate autophagy. 
Third, these approaches must be adapted for high-throughput 
screening, enabling the unbiased identification of effective auto-
phagy inducers in multiple cell types [518–520]. Fourth, the 
effectiveness of these compounds must be tested rigorously in 
model systems that do not depend upon the overexpression of 
disease-associated proteins, since this approach may inappropri-
ately emphasize strategies that reduce the non-physiological 
accumulation of exogenous proteins. In this light, the use of 
alternative model systems, such as iPSCs and mature cells
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differentiated from iPSCs, provides a unique advantage, enabling 
investigations of heretofore untestable aspects of neuronal biol-
ogy and cell type-specific autophagy regulation.
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