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C-X-Cmotif ligand 10 (CXCL10), or interferon-inducible protein-10, is a small chemokine belonging to the CXC chemokine family.
Its members are responsible for leukocyte trafficking and act on tissue cells, like endothelial and vascular smooth muscle cells.
CXCL10 is secreted by leukocytes and tissue cells and functions as a chemoattractant, mainly for lymphocytes. After binding to
its receptor CXCR3, CXCL10 evokes a range of inflammatory responses: key features in cardiovascular disease (CVD). The role of
CXCL10 in CVD has been extensively described, for example for atherosclerosis, aneurysm formation, and myocardial infarction.
However, there seems to be a discrepancy between experimental and clinical settings. This discrepancy occurs from differences in
biological actions between species (e.g. mice and human), which is dependent on CXCL10 signaling via different CXCR3 isoforms
or CXCR3-independent signaling. This makes translation from experimental to clinical settings challenging. Furthermore, the
overall consensus on the actions of CXCL10 in specific CVD models is not yet reached. The purpose of this review is to describe
the functions of CXCL10 in different CVDs in both experimental and clinical settings and to highlight and discuss the possible
discrepancies and translational difficulties. Furthermore, CXCL10 as a possible biomarker in CVD will be discussed.

1. Introduction

Chemokines are soluble low molecular weight proteins that
are involved in a wide variety of processes during physio-
logical and pathological conditions. They can be secreted by
and act on different cell types depending on the expression
of specific receptors. Chemokines are known to be involved
in leukocyte trafficking but can also act on other cells like
endothelial cells and vascular smooth muscle cells (VSMCs)
[1]. Subgroups of chemokines that have been identified are
C, CC, CX3C, and CXC, based on molecular structure
and arrangement of cysteine residues that form disulfide-
bonding pairs. C chemokines mainly recruit lymphocytes,
while CC chemokines recruit monocytes. So far, only one
CX3C chemokine has been described. CX3CL1 (fractalkine)

can act as a chemoattractant for different leukocytes (soluble
CX3CL1) and promotes cell adhesion to activated endothelial
cells (cell-bound CX3CL1). The last family of chemokines,
the CXC chemokines, is involved in leukocyte trafficking
and endothelial and vascular smooth muscle cell (VSMC)
proliferation and motility [2–4]. In this review, the role of
C-X-C motif ligand 10 (CXCL10) in different cardiovascular
disease models will be highlighted. CXCL10 belongs to the
CXC chemokine family [4]. The CXC chemokines can be
subdivided into two groups according to the presence or
absence of a tripeptide glutamic acid-leucine-arginine (Glu-
Leu-Arg motif; “ELR”) motif preceding the first conserved
cysteine: the ELR motif positive (ELR+) and ELR motif
negative (ELR−) CXC chemokines. ELR+ CXC chemokines
are known to attract neutrophils and hold more angiogenic
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properties, whereas ELR− CXC chemokines are lympho-
cyte attractants with angiostatic properties [5, 6]. CXCL10
belongs to the ELR− CXC chemokines and is also known as
interferon-inducible protein-10 (IP-10). As the name implies,
this chemokine can be secreted upon interferon gamma
(IFN𝛾) production by a wide variety of cell types, such as
endothelial cells, fibroblasts, keratinocytes, monocytes, and
T lymphocytes [7], but secretion can also be induced by
lipopolysaccharide and proinflammatory cytokines such as
IFN-alpha and IFN-beta as well as tumor necrosis factor-
alpha [8, 9], depending on the cell type. CXCL10 exerts
its biological effects mainly via binding to CXCR3 [10].
Also, CXCR3-independent pathways have been studied for
CXCL10 involving binding of CXCL10 to heparan sulfate
glycosaminoglycans (GAGs) [11–14] for cells not express-
ing CXCR3. CXCL10 not only induces chemoattraction of
inflammatory cells, but also migration and proliferation of
endothelial cells and VSMCs [15–18]. CXCL10 has been
studied extensively in cardiovascular diseases, both experi-
mentally and clinically.

The aim of this review is to summarize the role of CXCL10
in cardiovascular disease in both experimental and clinical
studies and highlight the discrepancies between the different
settings.

2. CXCL10 Signaling and Effects

2.1. CXCL10 Signaling. CXCL10 signals via binding to its
receptor CXCR3. Next to CXCL10, CXCL9 and CXCL11 can
also bind to this receptor. CXCR3 is a seven trans-membrane-
spanning G-protein-coupled receptor (GPCR). This receptor
is composed of the G𝛼, B𝛽, and G𝛾 subunit. Binding of
a ligand to CXCR3 leads to the exchange of guanosine
triphosphate (GTP) to guanosine phosphate (GDP), which
is followed by dissociation of the regulatory G𝛼 subunit
from the catalytic G𝛽𝛾 subunit dimer. Upon activation, the
G protein subunits can activate different enzymes leading
to the production of inositol phosphates, protein kinase
activation, an increase in intracellular Ca2+ production, and
actin reorganization. Activation of the CXCR3 by CXCL10
leads to different cellular actions, such as chemotaxis, phago-
cytosis, cell degranulation, and respiratory burst [10, 43, 44].
Signaling via CXCR3 after CXCL10 binding is dependent on
the type of target cell and the type of CXCR3 isoform bound
to the surface of this cell.

The biological effects of CXCR3 signaling after CXCL10
between mice and humans are critically different. This is
the result of differences in isoform expression in mice and
humans.After the identification ofCXCR3 expression inmice
[45], no other isoforms are identified. In humans, the known
isoforms identified are CXCR3-A, CXCR3-B, and CXCR3-alt.
CXCR3-A consists of 368 amino acids and is associated with
a G𝛼i or a G𝛼q subunit. It is widely expressed by different cell
types.This isoform is similar to theCXCR3 inmice, regarding
cell expression and signaling effects [46]. CXCR3-B is a
larger receptor of 415 amino acids with a larger N-terminus,
compared to CXCR3-A. This isoform is mainly expressed
by (microvascular) endothelial cells [44]. The third isoform,

CXCR3-alt, is generated by posttranscriptional exon skipping
resulting in only four to five trans-membrane domains and
shows a drastically altered C-terminal protein sequence. Its
functions are relatively unknown, except that it is coexpressed
with CXCR3-A at very low levels and that CXCL10 does not
bind to this isoform and only mediates functions of CXCL11
[47].

As mentioned, CXCL10 can also exert its functions via
CXCR3-independent pathways, mostly studied in an in vitro
setting. CXCL10 is able to bind to GAGs [6] and is involved
in inhibiting endothelial cell proliferation, independent of
CXCR3 signaling [13]. The angiostatic properties of CXCL10,
however, seem to be dependent on CXCR3 binding and not
binding byGAGs [48]. Fibroblast recruitment byCXCL10 has
also been linked to binding to GAGs instead of CXCR3, in
which CXCL10 functions as an antifibrotic chemokine [12].
Interestingly, evidence has been found for CXCL10 signaling
independent of binding to CXCR3 or GAGs, which might be
related to epithelial and endothelial cell functions. The exact
mechanism is not described yet [14].

2.2. CXCL10 Effects. CXCL10 can function via autocrine or
paracrine effects. CXCL10 has versatile biological functions
on different cell types, which are mostly dependent on the
expression of CXCR3. Actions include attraction of inflam-
matory cells, such as monocytes and T lymphocytes, but
CXCL10 can also function in proliferation and migration of
endothelial cells and VSMCs [15–18, 49].

2.2.1. CXCL10 Effects in Mice. In mice, one isoform of
CXCR3 receptor is identified as mediating angiostatic effects
of CXCL10, similar to the CXCR3-A receptor identified in
humans [46]. Effects of CXCL10 in mice have been described
extensively.These areTh1 lymphocyte recruitment, activation
and attraction of B lymphocytes, macrophages, and natural
killer (NK) cells to the site of inflammation [43]. Effects of
CXCL10 on endothelial cells and VSMCs have rarely been
described in mice. In rats, however, Wang et al. described
upregulation of CXCL10 by VSMCs and reported both pro-
liferative and chemotactic effects of CXCL10 on VSMCs [15].

2.2.2. CXCL10 Effects in Humans. In humans, the effects of
CXCL10 differ from those in mice. This is largely due to
discrepancies in CXCR3 isoform expression between human
andmice.The variety of effects of CXCL10 primarily depends
on binding to CXCR3 and is therefore cell dependent. In
humans, three isoforms of this receptor have been identified
to which CXCL10 binds: CXCR3-A and CXCR3-B, differen-
tially expressed by various cell types.

The first discovered isoform, CXCR3-A, is formed after
the splicing of a single intron. CXCR3-A is known as
the “angiostatic” isoform and is expressed by leukocytes
[46, 50] and (vascular) SMCs [51, 52] and epithelial cells
[53]. Functions of CXCR3-A are comparable to the CXCR3
functions in mice. Expression of the CXCR3-B or CXCR3-
alt isoform has not been described in mice, suggesting
that the “antiangiogenic” properties of CXCR3 only emerge
in humans [18]. After binding to CXCR3-A, CXCL10 can
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Figure 1: The effect of CXCL10 on CXCR3 isoforms in mouse and human tissues. Schematic overview of CXCR3 isoform expression in
mouse and human cells and its actions after CXCL10 binding. In mice, one isoform of CXCR3 receptor has been identified and known as
an angiostatic receptor. CXCR3 is expressed by T lymphocytes (Th1), monocytes, NK cells, VSMCs and endothelial cells (low expression
levels). After binding of CXCL10, the murine CXCR3 receptor mediates cell functions, such as chemotaxis, cell proliferation, migration,
and survival. In humans, this isoform is known as CXCR3-A with similar expression patterns and functions. In addition, a second isoform,
known as CXCR3-B, is identified in human binding CXCL10. This isoform is primarily expressed by endothelial cells and is known for its
antiangiogenic properties.These include promoting cell apoptosis and inhibiting cell proliferation andmigration. CXCL10: chemokine (c-x-c
motif) ligand 10; CXCR3: chemokine (c-x-c motif) receptor 3; ECs: endothelial cells; NK cell: natural killer cell; VSMCs: vascular smooth
muscle cells.

promote cell proliferation and functions as a chemoattractant
for leukocytes, especially Th1 lymphocytes [43]. CXCL10
has also recently been described in VSMC dedifferentiation
during spiral artery remodeling in human VSMC cell line
[54]. CXCR3-B, the “antiangiogenic” isoform, is primarily
expressed by epithelial and endothelial cells. Binding of
CXCL10 to CXCR3-B inhibits cell migration and promotes
cell apoptosis. These data emerge from in vitro experiments
performed with different human vascular endothelial cells,
such as human umbilical cord endothelial cells (HUVECs) or
humanmicrovascular endothelial cells (HMECs) [46, 55–57].

The schematic Figure 1 summarizes the effects of CXCL10
on different cell types after binding to the different CXCR3
isoforms in both mouse and human.

3. CXCL10 in Cardiovascular Disease

3.1. Chemokines in Cardiovascular Disease. Vascular remod-
eling can be a consequence of (cardio)vascular disease and
describes structural adaptation (enlargement or contraction)

of the vascular lumen and vascular wall in response to various
stimuli. These can be changes in blood flow leading to shear
stress and hypoxia or immunological or mechanical changes
leading to vascular wall damage [1, 58]. During vascular
remodeling, structural changes occur in all layers of the
vascular wall. These changes can result from disturbance of
the structural and functional integrity of the endothelium,
accumulation of inflammatory cells, and changes in SMC
composition, all contributing to the severity of the disease
[50, 51].

Cellular behavior in vascular tissues is directed by
chemokines. Different types of chemokines and their recep-
tors have been described to be involved in vascular remodel-
ing. CXCL10 is known to contribute to the pathophysiology
of cardiovascular disease, such as atherosclerosis, aneurysm
formation, MI, and PAD, in both experimental and clinical
studies.

3.2. CXCL10 in Atherosclerosis. Atherosclerosis is a progres-
sive inflammatory disease occurring in the middle-sized and
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larger arteries that can result in gradual luminal narrowing
or acute thrombotic occlusion as a result of atheroscle-
rotic plaque rupture [59]. Initially, activated endothelial
cells express adhesion molecules resulting in adhesion and
infiltration of inflammatory cells, such as monocytes and T
lymphocytes. During plaque progression, inflammatory cells
infiltrate the vessel wall and VSMCs start to proliferate and
migrate. Chemokines in general have been described to be
crucial during all phases of atherosclerotic disease progres-
sion [60, 61]. The role of CXCL10 in atherosclerosis has been
studied in the past. Mach et al. were of the first to describe
expression of CXCL10 in human atherosclerotic plaques in
different stages of the disease. Endothelial cells, VSMCs,
and macrophages express CXCL10 at all examined stages
of lesion development. Expression of CXCR3 could also be
observed in these stages, and the vast majority of CXCR3
expressing cells was CD4+ T lymphocytes [62]. Shortly after
this observation, mouse models for atherosclerosis revealed
a role for CXCL10 in (early) lesion development. Compared
to ApoE−/− mice, double knockout mice for ApoE and
CXCL10 demonstrated significant reductions in atherogen-
esis, resulting in smaller lesions. Furthermore, less CD4+
T lymphocytes accumulated in the lesions, with a simul-
taneous increase of regulatory T lymphocytes (Tregs) [18].
ApoE−/−CXCR3−/− mice also displayed significantly reduced
atherosclerotic plaque development compared to ApoE−/−
mice, accompanied with increased numbers of Tregs [21]. As a
result, interventions targeting plaque progression have been
tested to elucidate the effect of CXCL10 inhibition in vivo.
Treatment with a specific antagonist for CXCR3 (NBI-74330)
in ApoE−/− mice resulted in similar effects as in CXCR3−/−

mice [22]. Also, treatment of LDLR−/−mice with an inhibitor
for CCR5 and CXCR3 reduced atherosclerotic plaque area,
T lymphocyte number, and IFN𝛾 plaque expression [23].
ApoE−/−mice subjected to shear stress followed by treatment
with an antibody against CXCL10 resulted in a more stable
plaque phenotype with twice as many SMCs compared to
untreated controls but did not change overall plaque size
[19]. Cheng et al. already observed the relation between shear
stress, CXCL10 production, and plaque stability. Low shear
stress resulted in a 10-fold higher CXCL10 mRNA expression
in the vessel wall. Expression of CXCL10 was confirmed
by immunohistochemical analysis, revealing that CXCL10
was mainly localized in the medial regions of the murine
plaques [20]. Lastly, CXCL10 is significantly involved in
VSMC proliferation and intimal hyperplasia, both important
in arterial restenosis [63, 64].

3.3. CXCL10 in Aneurysm Formation. Aneurysm formation
often coexists with advanced atherosclerotic disease [65]
and systemic atherosclerosis is considered a risk factor
for aneurysm formation [66]. Similar to atherosclerosis,
aneurysmal tissue is characterized by inflammatory cell
infiltrates, in particular B and T lymphocytes (mostly Th1)
[67], which is related to aneurysm development and local
thrombus formation [68]. Both inflammation and intra-
luminal thrombus formation have been related to aortic

wall disruption and can therefore contribute to abdominal
aortic aneurysm (AAA) growth and rupture [69]. Inflam-
matory cytokines and chemokines have been considered
to play a causal role in aneurysm formation. CXCL10 and
its receptor CXCR3 have been studied in mouse models
for AAA, with conflicting results. King et al. observed that
ApoE−/−CXCL10−/− mice after angiotensin II infusion had
worse aneurysmal disease accompanied with more dilation
and rupture, suggesting a protective role for CXCL10 in
AAA formation [24]. In contrast, CXCR3 signaling itself
seems to be crucial for aneurysm development in wildtype
mice [26]. However, these results emerge from aneurysm
formation in a different vessel type (aorta versus carotid
artery). Contradictory, in a different murine model for aortic
aneurysm formation, CXCR3 does not seem to play a crucial
role [25]. In clinical studies, CXCL10 and CXCR3 expression
have been related to recruitment of CXCR3+ T lympho-
cytes secreting IFN𝛾 and CXCL10. Furthermore, a correla-
tion could be observed with outward arterial remodeling
and intimal expansion. This remodeling resulted in matrix
degradation [33]. Furthermore, differences were observed in
inflammation between types of aneurysms, since CXCL10
is expressed 20-fold higher in AAA compared to popliteal
artery aneurysms (PAA) [34]. Lastly, patients suffering from
thoracic aortic aneurysms showed significantly elevated cir-
culating CXCL10 levels compared to controls [26]. Although
preclinical data show conflicting results, clinical studies point
out amore clear direction of CXCL10 in aneurysm formation.

3.4. CXCL10 in Myocardial Infarction. During myocardial
infarction (MI), upregulation of chemokines is a promi-
nent feature during the postinfarction period. Several CXC
chemokines are consistently upregulated in different MI
models, where they play a crucial role in leukocyte trafficking
and postinfarct wound healing [27].The exactmechanisms of
chemokine expression regulation are still unclear. In addition,
upregulation of different chemokines at different time points
during and afterMI has not been fully elucidated [70]. Exper-
imental studies have shown that CXCL10 not only functions
as an angiostatic protein, but also acts as antifibrotic [5, 6, 71].
In particular, the latter finding may be crucial in postinfarct
tissue healing and the accompanied fibrosis. In canine and
murine MI models, CXCL10 was upregulated in the ischemic
myocardial tissue during the first 24 hours [27, 28]. CXCL10
can therefore act as an angiostatic and antifibrotic chemokine
to prevent premature neovascularization andfibrosis until the
damaged myocardium is cleared from apoptotic and necrotic
cells. Studying cardiac injury, cardiac repair, and postinfarct
remodeling in CXCL10−/− mice after MI suggested an essen-
tial role for CXCL10 in the infarct healing. CXCL10−/− mice
showed more intense inflammatory cell infiltration, cardiac
remodeling, and expansion of the formed scar. The fibrotic
response was also attenuated and premature compared to
wildtype mice. Surprisingly, CXCL10−/− mice did not show
early neovascularization [29]. CXCL10 has previously been
studied as a circulating biomarker and predictor of cardio-
vascular damage in patients suffering from (acute) MI. The
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use of CXCL10 as a biomarker in cardiovascular disease will
be discussed further in this review.

3.5. CXCL10 in Collateral Artery Formation. Patients suffer-
ing from PAD often have a reduced arterial flow to the lower
limbs due to local atherosclerotic plaques in the middle-
sized and larger arteries. Adaptive collateral artery growth,
known as arteriogenesis, is often hampered in these patients
[72, 73]. The underlying mechanism of arteriogenesis is
not yet fully understood, but important processes involved
are local infiltration and extravasation of inflammatory
cells and proliferation and migration of VSMCs [74, 75].
Chemokines are key players in arteriogenesis and have
already been extensively studied (for review, see Shireman
[76]). Experimental models studying arteriogenesis already
proposed different chemokines involved, such as monocyte
chemoattractant protein (MCP)-1, also known as CCL2 [30,
77, 78]. Earlier studies already showed the role of CXCR3
and IFN𝛾 in hindlimb ischemia models. CXCR3−/− mice
undergoing unilateral femoral artery ligation resulted in
lower perfusion recovery, accompanied with lower capillary
density in the ischemic calf muscle and less infiltration of
macrophages and T lymphocytes in the perivascular space
in the ischemic hindlimb muscles [31]. Lee et al. showed
that CXCL10 is upregulated in the hindlimb muscle tissue
in the late phase of hindlimb ischemia, again suggesting the
involvement of CXCL10 in neovascularization [30]. Recently,
we confirmed the involvement of CXCL10 in arteriogenesis in
a murine hindlimb ischemia model. Compared to wildtype,
CXCL10−/− mice showed significantly reduced perfusion
recovery after unilateral femoral artery ligation. This was
explained by significantly less collateral vessel formation and
hampered enlargement of collateral vasculature. In addition,
we showed that in particular CXCL10 is involved inmigration
of VSMCs in vitro [32].

3.6. CXCL10 as a Biomarker for Cardiovascular Disease. As
described above, CXCL10 is involved in different levels of
cardiovascular disease severity. In the past, clinical studies
have shown that circulating chemokine levels can function
as independent predictors (“biomarkers”) of (acute) ischemic
cardiovascular events and cardiovascular death [79–82]. It is
important to mention that a biomarker is only reliable for its
function if it fulfills certain criteria, such as stability between
individuals, long half-life, and easy and fast measurement
using low-cost methods, and is not dependent of collection
methods (e.g., serum/plasma) [83].

The function ofCXCL10 as a biomarker for cardiovascular
events has been investigated by measuring the transient
levels of circulating CXCL10 protein during (acute) MI and
treatment with percutaneous coronary intervention (PCI).
In patients suffering from acute MI (AMI) CXCL10 serum
levels correlated negatively to creatine kinase (CK)-MB
release, a marker for MI. CXCL10 serum levels before PCI
were considered as an independent predictor of CK-MB
release. Furthermore, CXCL10 serum levels also negatively
correlated to infarct size. Compared to healthy controls, AMI
patients had significantly higher CXCL10 serum levels [40].

In contrast, in a study from Ørn et al. CXCL10 serum levels
measured at the onset of an AMI correlated positively to
infarct size, which did not confirm earlier data [41]. However,
these studies used differentmethods to determinemyocardial
damage (CK-MB release versus Troponin I release). On the
other hand, Herder et al. investigated CXCL10 serum levels
along with other chemokines in a case-cohort study with
patients diagnosed with coronary heart disease (CHD). The
cohort consisted of 381 cases versus 1977 controls included
over an 11-year time period. Although baseline CXCL10
serum levelswere significantly higher in cases versus controls,
adjustment for sex, age, and cardiovascular risk factors
resulted in a nonsignificant contribution of CXCL10 serum
measurements for risk assessment ofCHD[35]. Furthermore,
Ardigo et al. [37] identified CXCL10 as a potential biomarker
in amuch smaller cohort using amultibiomarker approach in
patients suffering from CAD participating in the ADVANCE
study. They report significantly higher serum CXCL10 levels
in patients compared to controls (48 patients versus 44
controls). Nevertheless, measuring multiple chemokines is
recommended for a more relevant biological analysis of the
disease, instead of a single measurement approach of, for
instance, CXCL10.

Simultaneously, Rothenbacher et al. reported a positive
association between CXCL10 serum levels and risk for CHD
in a clinical case-control study of almost 800 patients, even
after adjustment for conventional CHD risk factors. Unfor-
tunately, no (long-term) clinical followup was performed
in these individuals [36]. Clinical studies provided impor-
tant evidence for the role of CXCL10 in patients suffering
from coronary artery disease (CAD). Patients suffering from
unstable angina showed an increased CXCL10 expression in
PBMCs as early as 6 hours after onset of complaints compared
to controls or patients suffering from stable angina [38].
Furthermore, plasma CXCL10 and IFN𝛾 levels have been
associated with the formation of collaterals in CAD patients
[39].

Patients suffering from critical limb ischemia also showed
higher serum CXCL10 levels, next to increased levels of
other inflammatory markers. In addition, they showed a
negative correlation between inflammatory cytokines and
CD34+ bone marrow cells. Teraa et al. discussed that pro-
longed exposure to proinflammatory stimuli may lead to
exhaustion or suppression of the CD34+ cell pool in the
bone marrow [42]. It is important to mention that the mea-
sured circulating CXCL10 levels in different studies mostly
showed a large variation, which is an important indicator
of a low reliability of this approach. Because single CXCL10
measurements did not result in reliable predictions, the
described studies all recommended a combined chemokine
approach for cardiovascular risk prediction. However, this
approach seems unrealistic from a practical and clinical point
of view for obvious reasons, such as variability and costs.
Although chemokines have been extensively described as
pathogenic key players in cardiovascular disease, this does
not automatically mean that they are suited as biomarkers
or risk predictors. Furthermore, the use of chemokines as
biomarkers in cardiovascular risk prediction brings some
challenges. Asmentioned, a biomarker needs to fulfill criteria
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regarding its reliability. Chemokines as biomarkers are chal-
lenged by their stability, half-life, level fluctuation with use
of different anticoagulants, and their low concentrations [83].
CXCL10 has been described to bind locally to endothelial cells
or extracellular matrix components via GAGs, which makes
the function of CXCL10 as a reliable circulating biomarker
questionable.

In the past, genetic variations in chemokine genes have
been extensively described, for example, for MCP-1, CCL2,
and 5 (for reviews, see [83, 84]).Themechanism by which the
9p21 locus is associated with CAD and other cardiovascular
diseases has been investigated in the past by, for instance,
the effect on impaired IFN𝛾 responses [85]. However, this
mechanism does not involve the regulation of CXCL10
responses itself [86]. Until now, no genetic variations in
the CXCL10 gene have been linked to cardiovascular risk
prediction.

Table 1 provides an overview of the role of CXCL10 in
cardiovascular disease in experimental and clinical settings.

4. Summary and Conclusion

In this review, we summarized the role of CXCL10 in different
cardiovascular diseases, in both the experimental and clinical
setting.The role of CXCL10 is rather complex, also depending
on its action on different isoforms of the CXCR3 receptor.
Since CXCR3 is differentially expressed by different cell types,
which also differs betweenmouse andman, translating exper-
imental and clinical data is challenging. Also other signaling
pathways, independent of CXCR3, have been described. The
involvement of CXCL10 in atherosclerosis in both experi-
mental and clinical settings suggests that CXCL10 contributes
positively to the initiation and progression of the disease. In
contrast, the functions of CXCL10 in aneurysm formation
and MI are less consistent. This can be partly explained by
study design and possible (biological) discrepancies between
animal models and patient groups studied. Animal models
for PAD suggest that CXCL10 is positively involved in arte-
riogenesis. Both CXCR3 and CXCL10 deficiencies resulted in
decreased perfusion recovery in a murine hindlimb ischemia
model. To this date, clinical evidence for the role of CXCL10
in PAD patients is scarce.

CXCL10 as a biomarker for cardiovascular risk prediction
has been investigated in different clinical studies. However,
measuring a single marker to predict cardiovascular risk
will not be conclusive, which holds true for most potential
biomarkers. Furthermore, CXCL10 as a reliable biomarker,
regarding its stability, consistency, and possible binding
to GAGs, is suboptimal. Lastly, CXCL10 is significantly
involved inVSMCproliferation and intimal hyperplasia, both
important in arterial restenosis. In particular, since other
inflammatory diseases are also linked to CXCL10, further
research is needed to elucidate the effects of CXCL10.
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