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Abstract: One of the most important goals of the postgenomic era is understanding the 

metabolic dynamic processes and the functional structures generated by them. Extensive 

studies during the last three decades have shown that the dissipative self-organization of the 

functional enzymatic associations, the catalytic reactions produced during the metabolite 

channeling, the microcompartmentalization of these metabolic processes and the 

emergence of dissipative networks are the fundamental elements of the dynamical 

organization of cell metabolism. Here we present an overview of how mathematical models 

can be used to address the properties of dissipative metabolic structures at different 

organizational levels, both for individual enzymatic associations and for enzymatic 

networks. Recent analyses performed with dissipative metabolic networks have shown that 

unicellular organisms display a singular global enzymatic structure common to all living 

cellular organisms, which seems to be an intrinsic property of the functional metabolism as 

a whole. Mathematical models firmly based on experiments and their corresponding 

computational approaches are needed to fully grasp the molecular mechanisms of metabolic 

dynamical processes. They are necessary to enable the quantitative and qualitative analysis 

of the cellular catalytic reactions and also to help comprehend the conditions under which 

the structural dynamical phenomena and biological rhythms arise. Understanding the 

molecular mechanisms responsible for the metabolic dissipative structures is crucial for 

unraveling the dynamics of cellular life. 
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1. Introduction to Molecular Self-Organization in the Cellular Metabolism 

Living cells are essentially dynamic metabolic systems, which are highly self-organized and formed 

by complex membranes surrounding a dense fluid mixture where millions of different biochemical 

elements interact to form self-assembled aggregates, a rich variety of supra-macromolecular functional 

structures and a great diversity of temporal metabolic behaviors. 

The enzymes are the most outstanding molecules of these surprisingly reactive systems. They are 

responsible for almost all the biomolecular transformations, which globally considered are called 

cellular metabolism. Likewise, the dynamic functional organization of the cellular metabolism acts as 

an intricate network of densely integrated biochemical reactions forming one of the most complex 

dynamical systems in nature [1,2]. 

From another perspective, the cells can be considered as open systems that operate far-from- 

thermodynamic-equilibrium and exchange energy and matter with the external environment. A part of 

the energy inflow is used to produce a form of energy of higher thermodynamic value, i.e., lower 

entropy, which allows to diminish the number of chemical entities and to increase their dimension by 

means of biochemical interactions and molecular bonds, emerging highly ordered macro structures and 

complex functional dynamic behaviors [3]. 

These kinds of spatial and functional molecular structures constitute a new type of supramolecular 

organization in the far-from-equilibrium open systems that was called dissipative structures by  

I. Prigogine [4].  

The dissipative structure constitutes the fundamental element to understand the emergence of the 

spatial-functional architecture in cells and provide a conceptual framework that allows us to unify the 

dynamic, self-organized metabolic processes that occur in all biological organisms. 

1.1. Supramolecular Self-Organization of the Catalytic Activities 

The conditions prevailing inside the cell are characterized by a surprising molecular crowding and, 

in this interior medium, the enzymes do not work in an isolated way but forming molecular 

associations (supramolecular organization), e.g., the analysis of proteome of Saccharomyces cerevisiae 

has shown that at least 83% of all proteins form complexes containing from two to 83 proteins, and its 

whole enzymatic structure is formed by a modular network of biochemical interactions between 

enzymatic complexes [5]. 

Intensive studies of protein-protein interactions show thousands of different interactions among 

enzymatic macromolecules, which self-assemble to form large supramolecular complexes. These 

associations occur in all kinds of cells, both prokaryotes and eukaryotes [6–10]. 

Likewise, experimental observations have explicitly shown that many enzymes that operate within 

metabolic pathways may form functional supramolecular catalytic associations. Some of the first 

experimentally isolated enzymatic associations were, among others, the glycolytic subsystem [11], five 

enzymes from the cycle of the tricarboxylic acid [12], a triple multienzymatic-associate formed by the 

alpha-ketoglutarate dehydrogenase complex, the isocitrate dehydrogenase and the respiratory chain 

[13], and the complex formed by malate-dehydrogenase, fumarase and aspartate transferase [14]. 

Nowadays there are enough experimental data confirming the existence of numerous enzymatic 
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associations belonging to metabolic routes, such as lipid synthesis, glycolysis, protein synthesis, the 

Krebs cycle, respiratory chain, purine synthesis, fatty acid oxidation, urea cycle, DNA and RNA 

synthesis, amino acid metabolism, cAMP degradation, etc. [15–20]. 

Association of various enzymes in large complexes (metabolon) allows the direct transfer of their 

common intermediate metabolites from the active site of one enzyme to the catalytic centre of the 

following enzyme without prior dissociation into the bulk solvent (substrate channeling). This process 

of non-covalent direct transfer of metabolic intermediates allows for a decrease in the transit time of 

reaction substrates, originating a faster catalysis through the pathway, preventing the loss of reaction 

intermediates by diffusion and increasing the efficiency and control of the catalytic processes in the 

multienzymatic aggregate [21–25]. Substrate channeling can occur within protein matrix channels or 

along the electrostatic surface of the enzymes belonging to macromolecular complex [26,27]. 

Different studies have shown that many enzymes that operate within metabolic pathways exhibit 

substrate channeling, including glycolysis, the Krebs cycle, purine and pyrimidine biosynthesis, protein 

biosynthesis, amino acid metabolism, DNA replication, RNA synthesis, lipid metabolism,  

etc. [28–33]. 

1.2. Structural Microcompartmentalization of the Metabolic Processes  

In addition, reversible interactions of enzyme aggregates with structural proteins and membranes are 

a common occurrence in eukaryotic cells, which can originate the emergence of metabolic 

microcompartments within the soluble phases of cells [34–42]. 

Substrate channeling and microcompartmentalization of the cytoplasm provide high catalytic 

efficiency and biochemical mechanisms of great physiological importance for the control of specific 

enzymatic pathways and for the inter-pathway regulations. 

Metabolic microcompartmentalization has been notably investigated in several eukaryotic cells, 

fundamentally in muscle and brain cells. In this sense, it is to highlight the works of V. Saks and 

colleagues on the structural organization of the intracellular energy transfer networks in cardiac cells 

where macromolecules, myofibrils, sarcoplasmic reticulum and mitochondria are involved in multiple 

structural and functional interactions, which allow the organization in the intracellular medium of 

compartmentalized energy transfer and other related metabolic processes. This supra structural 

organization has been called ―intracellular energetic units‖ (ICEU) and represents the basic 

organization of muscle energy metabolism [43–50].  

Similarly to what has been described for cardiac cells, it also functions in brain cells, particularly in 

synaptosomes [51,52]. 

Extensive studies of spatial metabolic structures during the last three decades have shown that the 

formation of functional enzymatic associations (macromolecular self-organization), the metabolite 

channeling and the microcompartmentalization of the metabolic processes (supra-macro-molecular 

organization) are the principal ways of structural organization of the eukaryotic cell metabolism. 

Prokaryotic cells also exhibit microcompartments, but in this case they have outer shells which are 

composed of thousands of protein subunits and are filled with enzymes belonging to specific metabolic 

pathways in the interiors [53,54]. 
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Contrary to eukaryotic cells, prokaryotic microcompartments do not contain lipid structures and 

consist of widespread compartments (about 100–200 nanometers) made of protein shells (the major 

constituents are proteins of the so-called ―bacterial micro-compartment‖) which surround and enclose 

different enzymes [55–59]. 

Although bacterial microcompartments were first observed more than 40 years ago, a detailed 

understanding of how they function is only now beginning to emerge [54].  

The organization of cooperating enzymes into macromolecular complexes and their integration in 

microcompartments is a central feature of cellular metabolism, crucial for the regulation and efficiency 

of cellular processes and fundamental for the functional basis of cell life.  

1.3. Metabolic Temporal Self-Organizations 

The cellular organization at the molecular level presents another relevant characteristic: the 

emergence of functional structures which allow the temporal self-organization of metabolic processes. 

A large number of experimental observations have shown that the enzymes apart from forming 

functional catalytic associations can exhibit oscillatory catalytic patterns (temporal self-organization). 

In the far-from-equilibrium conditions prevailing inside the cell, the catalytic dynamics of enzymatic 

sets present transitions between different stationary and oscillatory molecular patterns. Each 

dissipatively structured functional enzymatic association (metabolic subsystem) acts as a catalytic 

entity, in which the activity is autonomous with respect to the other enzymatic associations and 

spontaneously organized molecular oscillations may emerge comprising an infinite number of distinct 

oscillatory activity regimes. When the oscillations in an enzymatic association are periodic [3,60–63], 

all the metabolic intermediaries oscillate with the same frequency but different amplitudes [60]. 

Numerous experimental observations of temporal metabolic structures both in prokaryotic and 

eukaryotic cells have shown the spontaneous emergence of molecular oscillations in most of the 

fundamental metabolic processes. For instance, there are oscillatory biochemical processes involved in: 

intracellular free amino acid pools [64], biosynthesis of phospholipids [65], cytokinins [66], cyclins 

[67], transcription of cyclins [68], gene expression [69–72], microtubule polymerization [73], 

membrane receptor activities [74], membrane potential [75], intracellular pH [76], cyclic AMP 

concentration [77], ATP [78], respiratory metabolism [79], NAD(P)H concentration [80], glycolysis 

[81], intracellular calcium concentration [82], the metabolism of carbohydrates [83], beta-oxidation of 

fatty acids [84], the metabolism of mRNA [85], tRNA [86], proteolysis [87], urea cycle [88], the Krebs 

cycle [89], mitochondrial metabolic processes [90], nuclear translocation of the transcription factor 

[91], amino acid transports [92], peroxidase-oxidase reactions [93], photosynthetic reactions [94], and 

protein kinase activities [95]. 

Oscillations represent one of the most striking manifestations of dynamic behavior, of not only 

qualitative but also quantitative importance, in cell metabolic systems; e.g., considering only the 

transcription processes, it has been reported that at least 60% of all gene expression in S. cerevisiae 

oscillate with an approximate period of 300 min [96]. 

These functional structures that provide the temporal self-organization of metabolism correspond to 

dissipative systems, and the catalytic oscillatory behaviors find their roots in the many regulatory 

processes that control the dynamics of the enzymes that belong to them [3,97]. 
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The temporal organization in the metabolic processes in terms of rhythmic phenomena covers a 

wide time window with period lengths ranging from milliseconds [98], to seconds [99], minutes 

[100,101] and hours [102]. 

The transition from simple periodic behavior to complex oscillatory phenomena, including bursting 

(oscillations with one large spike and series of secondary oscillations) [103] and chaos (irregular 

oscillations), is often observed in metabolic behaviors [104].  

Many cytological processes such as biosynthetic pathways, assembly of macrostructures, 

membranes and organelles, migration and cell division, require temporal organization with many 

simultaneous time scales [105–108], which implies that the metabolic rhythms also require an internal 

coordination between different enzymatic subsystems in order to maintain the spatial and temporal 

organization of the dynamic metabolic processes [109–112] as well as the necessity to synchronize 

actively these metabolic oscillations [113]. 

Evidence that the cells exhibit multi-oscillatory processes with fractal properties has been reported 

and these dynamic behaviors seem to be consistent with scale-free dynamics spanning a wide range of 

frequencies of at least three orders of magnitude [90]. 

Some temporal functional metabolic processes are not compatible with one another. In this sense, 

there is also evidence of the necessity for temporal compartmentalization in cells [114–117].  

Furthermore, different studies have shown that many metabolic subsystems and genes oscillate as a 

function of the metabolic cycle, which has added another level of complexity to these kinds of 

functional metabolic structures [118–123]. 

1.4. Metabolic Temporal Self-Organizations with a Period of 24 Hours 

Second types of temporal-functional metabolic structures are those implied in the circadian rhythms 

which occur with a period close to 24 hours (the exogenous period of the rotation of the earth).  

Cells adapt their metabolism to the appropriate time of day synchronizing the timing of metabolic 

reactions with cyclic changes in the external environment [124–126]. 

Circadian rhythms govern a wide variety of metabolic and physiological processes in all organisms 

from prokaryotes to human cells [126,127]. 

An intimate interplay exists between circadian clocks and metabolic functions and at least 10% of 

all cellular transcripts oscillate in a circadian manner [128]. 

The molecular processes underlying circadian rhythms have been extensively studied over the past 

ten years and they are based on clock proteins organized in regulatory feedback loops [129,130]. More 

concretely, the metabolic core that regulates circadian rhythms is based on interconnected 

transcriptional positive and negative feedback loops in which specific clock-factors repress the 

transcription of their own genes [131]. 

In addition to transcriptional-translational feedback loops, further levels of regulation operate to 

maintain circadian rhythms. These include modulation of many transcriptional factors [132,133],  

post-transcriptional regulation [134,135], participation of kinases [136,137] and phosphatases in the 

modification of the clock proteins [138], post-translational modifications [139], dynamic changes in 

chromatin transitions [140,141], and stability of clock proteins [142]. 
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Quantitative molecular models for circadian rhythms have been proposed to investigate their 

dynamic properties based on interconnected transcriptional-translational feedback loops in which 

specific clock-factors repress the transcription of their own genes [143]. 

Theoretical and experimental advances during the past decade have clarified the main molecular 

processes of these circadian rhythms which can be considered as a subset of metabolic rhythms with a 

period, defined as the time to complete one cycle of 24 hours. Likewise, there is experimental evidence 

that the circadian clock shares common features with the cell cycle [144] and with other cellular 

processes as apoptosis [145]. 

1.5. Metabolic Temporal-Spatial Self-Organizations 

When spatial inhomogeneities develop instabilities in the intracellular medium, it may lead to the 

emergence of spatio-temporal dissipative structures which can take the form of propagating 

concentration waves. This dynamic behavior is closely related to temporal metabolic oscillations. 

Biochemical waves are a rather general feature of cells in which are involved pH, membrane 

potential, flavoproteins, calcium, NAD(P)H, etc. They are linked to central metabolic processes and 

specific physiological functions, mainly with the signal transduction and intercellular  

communication [146]. 

There are several types of waves and they vary in their chemical composition, velocity, shape, 

intensity, and location [147–149]. Some examples are as follows: intercellular Na
+ 

waves in parallel 

with Ca
2+

 waves [150], complex spatiotemporal patterns of redox [151], dynamic spatial organization 

of ATP [152,153], travelling waves of pH [154], metabolic waves of NAD(P)H [155], phase-coupled 

of NAD(P)H waves and calcium oscillations [156], propagation of self-organized reaction-diffusion 

waves of actin filament assembly during cell locomotion [157], intracellular waves of 

phosphatidylinositol (3,4,5)-trisphosphate (PIP3) [158].  

In spite of its physiological importance, many aspects of the spatial-temporal dissipative structures 

(such as their molecular regulatory mechanisms, the relationship to the cell cycle and the temporal 

metabolic behaviors) are still poorly understood. 

1.6. Global Self-Organized Metabolic Structures 

The cellular organization at the molecular level presents another relevant characteristic: the 

emergence of global functional structures.  

In 1999, the first model of a metabolic dissipative network was developed, which was characterized 

by sets of catalytic elements (each of them represents a dissipatively structured enzymatic association) 

connected by substrate fluxes and regulatory signals (allosteric and covalent modulations). These 

enzymatic sets of enzymes (metabolic subsystems) may present oscillatory and stationary activity 

patterns [159]. 

By means of numerical studies, a singular global metabolic structure was found to be able to  

self-organize spontaneously, characterized by a set of different enzymatic associations always locked 

into active states (metabolic cores) while the rest of metabolic subsystems presented dynamics of  

on-off changing states (structural plasticity). In this numerical first work with dissipative metabolic 

networks it was also suggested that the global metabolic structure could be present in all living cells. 
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Later studies carried out in 2004 and 2005, implementing a flux balance analysis applied to 

metabolic networks, produced additional evidence of the global functional structure in which a set of 

metabolic reactions belonging to different anabolic pathways remains active under all investigated 

growth conditions, forming a metabolic core, whereas the rest of the reactions belonging to different 

pathways are only conditionally active [160,161]. The existence of the global metabolic structure was 

verified for Escherichia coli, Helicobacter pylori, and S. cerevisiae [161,162].  

The metabolic core exhibits a set of catalytic reactions always active under all environmental 

conditions, while the rest of the reactions of the cellular metabolism are only conditionally active, 

being turned on in specific metabolic conditions. The core reactions conform a single cluster of 

permanently connected metabolic processes where the activity is highly synchronized, representing the 

main integrators of metabolic activity. Two types of reactions are present in the metabolic core: the 

first type is essential for biomass formation both for optimal and suboptimal growth, while the second 

type of reactions is required only to assure optimal metabolic performance. It was also suggested that 

this self-organized enzymatic configuration appears to be an intrinsic characteristic of metabolism, 

common to all living cellular organisms [161,162]. 

More recently, it has been observed in extensive dissipative metabolic network simulations that the 

fundamental factor for the spontaneous emergence of this global self-organized enzymatic structure is 

the number of enzymatic dissipative associations (metabolic subsystems) [163,164].  

Metabolic dissipative networks exhibit a complex dynamic super-structure which integrates 

different dynamic systems (each of them corresponds to different enzymatic associations dissipatively 

structured) and it forms a global and unique, absolutely well defined, deterministic, dynamical system, 

in which self-organization, self-regulation and persistent properties may emerge [165]. 

1.7. Quantitative Analysis of Functional Metabolic Structures  

Theoretical and experimental data convincingly show that cellular metabolism cannot be understood 

if cell interior medium is considered as a homogenous solution with dispersed isolated enzymes and 

without any diffusion restrictions. On the contrary, cellular organisms display a rich variety of 

dynamics structures, both spatial and temporal, where enzymes together with other bio-molecules form 

complex supramolecular associations.  

Each set of cooperating enzymes, dissipatively structured and integrated into macromolecular 

complexes and microcompartments, acts as a metabolic dynamic subsystem and they seem constitute 

the basic units of the cellular metabolism. 

As shown below, metabolic subsystems are advantageous thermodynamically biochemical 

structures, which acting as individual catalytic entities forming unique, well-defined dynamical systems 

and their activity are autonomous with respect to the other enzymatic associations. The understanding 

of the elemental principles and quantitative laws that govern the basic metabolic structure of cells is a 

key challenge of the post-genomic era. 

In this task, it becomes totally necessary to use mathematical and physical tools based on 

experiments. Mathematical models and non-linear dynamics tools are useful to fully grasp the 

molecular mechanisms of metabolic dynamical processes. They are necessary to enable the quantitative 
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and qualitative analysis of the functional metabolic structures and also to help to comprehend the 

conditions under which the structural dynamical phenomena and biological rhythms arise. 

Here we present an overview, within the area of Systems Biology, of how mathematical models and 

non-linear dynamics tools can be used to address the properties of functional dissipative metabolic 

structures at different organizational levels, both for simple sets of enzymatic associations and for large 

enzymatic networks.  

Models and computational simulations, firmly based on experiments, are particularly valuable for 

exploring the dynamic phenomena associated with protein-protein interactions, substrate channeling 

and molecular microcompartmentalization processes. These procedures and methods allow to explain 

how higher level properties of complex molecular systems arise from the interactions among their 

elemental parts.  

Clarifications of the functional mechanisms underlying dynamic metabolic structures as well as the 

study of regulation in cellular rhythms are some of the most important applications of Systems 

Biology. In fact, one of the major challenges in contemporary biology is the development of 

quantitative models for studying regulatory mechanisms in complex biomolecular systems. 

Mathematical studies of metabolic processes allow rapid qualitative and quantitative determination 

of the dynamic molecular interactions belonging to the functional structures, and thereby can help to 

identify key parameters that have the most profound effect on the regulation of their dynamics. 

Likewise, the advent in the field of the molecular biology of non-linear dynamics tools, such as 

power spectra, reconstructed attractors, long-term correlations, maximum Lyapunov exponent and 

Approximate Entropy, should facilitate the collection of more quantitative data on the dynamics of 

cellular processes. 

Systems biology is fundamental to study the functional structures of metabolism, to understand the 

molecular mechanisms responsible for the most basic dissipative metabolic processes and will be 

crucial to elucidate the functional architecture of the cell and the dynamics of cellular life. 

2. Dissipative Structures: Thermodynamic Aspects of Self-Organization 

The spontaneous self-organization of metabolic processes (such as the formation of macromolecular 

structures and the emergence of functional patterns) is one of most relevant questions for contemporary 

biology. 

The theoretical basis of dissipative self-organization processes was formulated by Ilya Prigogine [4]. 

Within the framework of this theory, a dissipative structure is an open system that operates far from 

thermodynamic equilibrium and exchanges energy and matter with the external environment, and as a 

consequence of the interchange processes, spontaneous self-organization can emerge in the system 

producing higher ordered spatial macro-structures and temporal-functional metabolic  

patterns [3,166,167]. 

According to these studies, the entropy of an isolated system tends to increase toward a maximum at 

thermodynamic equilibrium but in an open system the entropy can either be maintained at the same 

level or decreased (negative variation of entropy) and the overall system does not violate the Second 

Law. Negative variation of entropy can be maintained by a continuous exchange of materials and 

energy with the environment avoiding a transition into thermodynamic equilibrium.  
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Entropy is a quantification of randomness, uncertainty, and disorganization. Negative variation of 

entropy corresponds to relative order, certainty, and organization in the system. The opposite tendency 

for an open system which eats up energy of low entropy and dissipates energy of higher entropy to its 

environment may allow for the self-organization of the system.  

A system capable of continuously importing free energy from the environment and, at the same 

time, exporting entropy (the total entropy of the system decreasing over time) was called dissipative 

structure. These advantageous thermodynamic systems use a part of the energy inflow to produce a 

new form of energy characterized by lower entropy which self-organizes the systems [168–171]. 

Therefore, the dissipative structure acts as a kind of energy-transforming system that uses a part of the 

energy inflow to produce a new form of energy which is of higher thermodynamic value (i.e., lower 

entropy) and the negative variation of entropy corresponds to a positive variation of information  

[172–174] which allows increasing the complexity of the molecular organization, producing higher 

ordered macro structures and functional dynamic behaviors.  

When a biochemical dissipative structure diminishes the number of bimolecular entities and 

increases their size by means of metabolic interactions and molecular bonds complex spatial  

macro-structures emerge in the biochemical system from simpler structures.  

In the functional plane, the ordered interacting catalytic processes of the biochemical subsystem 

may exhibit long range correlations originating diversity of functional dynamical patterns which 

corresponds to ordered temporal-functional behaviors (metabolic rhythms) [3]. 

The mutual assistance between self-assembly and dissipative structure formation allows the self-

organization of any metabolic subsystem increasing the molecular order, functionality and complexity. 

A metabolic subsystem is just a dissipatively self-organized structure where a set of functionally 

associated enzymes adopts a new supramolecular configuration in which ordered metabolic dynamical 

patterns (metabolic rhythms) may arise. 

As a consequence of dissipative processes, a metabolic subsystem increases its complexity 

generating new spatial and functional structures that did not exist before. Self-organization is also a 

spontaneous process, i.e., the metabolic subsystem abandoned to itself is ordered in an immediate way, 

emerging without the necessity of an external source of information. 

The problem of the emergence of self-organized structures has been studied extensively over the 

past sixty years and in the dissipative structures theory other important elements must be considered 

such as the amplification of fluctuations, non-linear interactions, bifurcations, phase transitions, 

complexity theory, etc. [175–178]. 

The concept of self-organization is central to the description of molecular-functional architecture of 

cellular live [179–189]. Dissipative molecular self-assembling and the formation of dissipative 

dynamic patterns are the basic fundamental elements of the bio-molecular order, functionality and 

complexity emergent in all living cells. 

3. Dissipative Self-Organization and Temporal Metabolic Patterns 

In the history of research on temporarily self-organized metabolic processes, the glycolytic pathway 

has played an important role. Its oscillatory behavior was observed, for the first time, in the fluorescent 

studies of yeast cells [190] and was subsequently developed in studies on cell-free extracts [191]. The 
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confirmation of these periodic rhythms in glycolytic mediators allowed the construction of the first two 

simple models of those oscillatory reactive processes [192,193]. However, a qualitatively significant 

step was taken with the construction, in the 70's, of the first dynamic model where the allosteric 

kinetics of an enzyme was explicitly considered, reflecting the important nexus existing between the 

molecular basis of enzymatic regulatory processes and the glycolytic oscillations  

[194–196]. More concretely, the main instability-generating mechanism in the yeast glycolysis is based 

on the self-catalytic regulation of the enzyme phosphofructokinase, specifically, the positive feed-back 

exerted by the reaction products, the ADP and fructose-1,6-bisphosphate [60,194,197].  

As an extension of those previous studies for glycolytic oscillations based on a single positive 

feedback, Goldbeter and Decroly analyzed numerically the effect of two feedback loops coupled in 

series on a biochemical system [198]. This model represents a simple metabolic subsystem with two 

irreversible enzymes arranged in series and can serve as an introductory example in quantitative 

numerical analysis of dissipative temporal self-organization.  

The diagram <1> shows how the metabolite S brought into the system at constant speed; its 

transformation is catalyzed by the first allosteric enzyme E1, which is activated by its product P1; the 

second allosteric enzyme E2 is also activated by its product P2. The removal of the product P2 is 

supposed to be linear, with a lost constant of ks. 

 Diagram <1> 

The processes represented in the diagram are converted to differential equations describing their 

rates as follows:  

1a. (Rate of change of [S]) = (Rate of input of [S]) - (Rate of degradation of [S]). 

The explicit equation for 1a is .1max  Vv
dt

dS
 

2a. (Rate of change of [P1]) = (Rate of synthesis of [P1]) - (Rate of degradation of [P1]) and the 

corresponding equation is 

     2max1max
1 VV

dt

dP
  

3a. (Rate of change of [P2]) = (Rate of synthesis of [P2]) - (Rate of removal of [P2]); the equation is 

     2max
2  skV

dt

dP
  

Here, V is the speed of the substrate S brought into the metabolic subsystem; Vmax1 and Vmax2 denote 

the maximum activities of enzymes E1 and E2; ks is the first-order rate constant for removal of P2; Φ 

and η are the enzymatic rate laws for E1 and E2 developed in the framework of the concerted transition 

theory [199], which are described by the following functions: 
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where, ,  and  denote the normalized concentrations of S1, P1 and P2, divided respectively, by the 

Michaelis constants of E1 (Km1) and by the dissociation constant of P1 for E1 (K P1) and of P2 for E2 

(KP2); L1 and L2 are the allosteric constants of E1 and E2. 

Once the different elements of the equations are normalized, the time-evolution of the metabolic 

subsystem is described in any instant by the following three differential equations:  


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ζ1 and ζ2 correspond to the normalized maximum activity of the enzymes E1, E2, (they are divided by 

the constants Km1, Km2, the Michaelis constants of the enzymes E1 and E2, respectively);  

q1 = Km1/Kp1, q2 = Kp1/Kp2 and d = Kp1/Km2. 

Once the values for the parameters are specified and given initial values for the dependent variables 

(see [198] for more details), the equation can be solved numerically on a computer by means of any 

integration program of ordinary differential equations (ODE).  

In the analysis, the ks value (the removal kinetic constant for the product P2) was fixed as the control 

parameter of the multienzymatic instability-generating reactive system. 

After the numerical integration, a wide range of different types of dynamic patterns can be 

evidenced as a function of the control parameter value. At very small ks values, the system (1) admits a 

single steady-state solution and when ks is increased, the steady state become unstable, leading to the 

emergence of a periodic pattern (Figure 1a). In this case, since the enzymatic sets exhibit a rhythmic 

behavior, all the metabolic intermediaries (S1, P1 and P2) oscillate with the same frequency but 

different amplitudes. 

In the interval 0.792 < kS ≤ 2.034 0.the metabolic subsystem exhibits the most interesting dynamical 

behaviors.  

For instance, one can observe how for 0.792 < kS ≤ 1.584 hard excitation emerges in the functional 

enzymatic association and two kinds of integral solutions coexist under the same control parameter 

value: a stable steady state and a stable periodic oscillation (bistability). The metabolic subsystem starts 

from a stable steady state but evolves to a stable periodic regime when the initial concentrations of S1, 

P1 and P2, exceed a determinate threshold value (Figure 1b). 

At further increases in ks (1.584 < kS ≤ 1.82) the metabolic subsystem undergoes a reorganization of 

its dynamics and spontaneously presents a temporal structure characterized by the coexistence of two 

stable periodic behaviors under the same control parameter value (bistability). The integral solutions 

now settle on two regular oscillatory regimens depending on the initial conditions (the concentrations 

of S1, P1 and P2). 
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Figure 1. Diversity dynamic behaviors emerge in the simple dissipative metabolic 

subsystem. (a) Periodic pattern. (b) Hard excitation, the integral solutions depending on the 

initial conditions settle on two regimens: a stable steady state and a stable periodic 

oscillation. (c) Chaotic oscillations. (d) Complex periodic behaviors. The substrate 

concentration  is represented as a function of the time in seconds. Reproduced with 

permission from PNAS [198]. 

 

Between 1.82 < kS ≤ 1.974 the biochemical system exhibits one simple periodic pattern (oscillation 

of period-1 with one maximum and one minimum per oscillation) and when the control parameter 

increases (1.99 < kS ≤ 2.034) the numerical solutions of the biochemical oscillator display a classical 

period-doubling cascade preceding chaos, i.e., when ks reaches a threshold, the oscillation of period-1 

becomes unstable, which leads to the establishment of a new regular oscillation of period-2 (two 

maximums and two minimums per oscillation); when kS increases, a new instability provokes the 

emergence of regular oscillations of period-4; next a new bifurcation of period-8 appears, etc.; this 

cascade of bifurcations of period doubling continues successively ending in a chaotic response (this 

process is called Feigenbaum route). 

In chaotic conditions, all the metabolic intermediaries (S1, P1 and P2) present infinite transitions, 

modifying uninterruptedly their activity so that they never repeat themselves for arbitrarily long time 

periods (Figure 1c).  

Lastly, as ks increases beyond 2.034, complex periodic oscillations emerge in the multienzymatic 

subsystem (Figure 1d). 
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The quantitative numerical analysis of the system (1) allows showing how metabolite concentrations 

of the biochemical oscillator, formed by only two irreversible enzymes, vary second by second 

following a notable diversity of dynamic patterns as a function of the control parameter values (and the 

initial conditions when two dynamic behaviors coexist).  

In the numerical analyses, the feedback processes are the main sources of nonlinearity that favor the 

occurrence of instabilities which provoke the emergence of different dynamical patterns. 

In the course of time, open enzymatic systems that exchange matter and energy with their 

environment exhibit a stable steady state. This stationary non-equilibrium state is more ordered that the 

equilibrium state of the same energy. Once the enzymatic subsystem operates sufficiently far-from-

equilibrium due to the nonlinear nature of its kinetics, the steady state may become unstable leading to 

the establishment of other dynamical behavior. New instabilities may originate the emergence of 

different biochemical temporal behaviors. 

All these dynamic patterns (including chaos) correspond to ordered motions in the system 

representing examples of non-equilibrium self-organizations and can therefore be considered as 

temporal dissipative structures. 

The emergence of quantitative behaviors belonging to different metabolic subsystems has been 

investigated in extensive studies, mainly carried out by means of systems of differential equations, e.g., 

in the Krebs cycle [200], amino acid biosynthetic pathways [201], oxidative phosphorylation 

[202,203], glycolytic subsystem [204], transduction in G-protein enzyme cascade [205], gene 

expression [206], cell cycle [207], RNA silencing pathway [208], signal transduction [209],  

Wnt-pathway [210], fatty acid metabolism [211], DNA base excision repair [212], interferon-β induced 

signaling pathway [213], NF-kB metabolic subsystem [214], sphingolipid metabolism [215] and 

oxide/cGMP pathway [216]. These studies also show how each metabolic subsystem forms a unique, 

absolutely well-defined, deterministic, dynamical system. 

4. Metabolic Self-Organization and the Cell-Cycle 

Cell-cycle in eukaryotic cells is governed by a complex network of metabolic reactions controlling 

the activities of M-phase-promoting factors. These metabolic reactions belonging to a set of enzymes 

functionally associates can be self-organized in far-from-equilibrium conditions, exhibiting periodic 

oscillations which govern the cell-cycle.  

The network forms a metabolic subsystem that mainly involves enzymes of covalent regulation and 

protein kinases (Cdk) whose activities depend on binding to cyclins. More concretely, mitosis-

promoting factor (MPF) has been identified as a dimmer of two distinct protein molecules: a cyclin 

subunit and a cyclin-dependent protein kinase (Cdc2), which is periodically activated and inactivated 

during the cell cycle. MPF activity is regulated by synthesis and degradation of cyclin subunit and by 

phosphorylation and desphosphorylation of the protein kinase Cdc2 at an activatory threonine (Thr) 

residue and an inhibitory tyrosine (Tyr) residue. When the active form of MPF is phosphorylated on 

Thr161, then M-phase begins by phosphorylating a suit of target proteins involved in the main events 

of mitosis [217].  

In 1991, John J. Tyson and colleagues constructed a dynamic mathematical model for cell-cycle 

regulation in Xenopus oocytes [217–219] and the predictions were subsequently confirmed in a series 
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of recent experimental works [220–222]. The main molecular elements of the model for M-phase 

control can be seen in Figure 2 [218]. 

Figure 2. Molecular processes for M-phase control in eukaryotic cells. (a) Cdc2 protein 

kinase monomers combine with cyclin subunits to form dimers. Subunits of kinase Cdc2 

can be phosphorylated and desphosphorylated at an activatory threonine (Thr) residue 

or/and an inhibitory tyrosine (Tyr) residue. All cyclin subunits can be degraded by an 

ubiquitin pathway. (b) Active MPF stimulates its own production, which is positive 

feedback. (c) But active MPF also stimulates the destruction of cyclin, which is negative 

feedback. Reproduced with permission from the Company of Biologistd Ltd. [218]. 

 

First, cyclin subunits synthesized from amino acids (step 1 of the Figure 2A), combine with free 

Cdc2 protein kinase monomers to form Cdc2-cyclin dimers (step 3). The cyclin subunits (free or 

bound) can be degraded by an ubiquitin pathway (step 2). 
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The activity of dimers can be regulated by altering the phosphorylation state by means of two 

kinase-phosphatase pairs: Wee1/Cdc25, which acts at Tyr15 (Y), and CAK/INH, which acts at Thr161 

(T). As a consequence, the dimers can exist in four different phosphorylation states (Figure 2B). 

The molecular model shows two experimentally recognized feedback loops [2]. Active MPF 

stimulates its own production, which is positive feedback that allows activating Cdc25 and inhibiting 

Wee1 (Figure 2B) but, on the other hand, active MPF stimulates the destruction of cyclin, which is 

negative feedback (Figure 2C). 

Each molecular process represented in Figure 2 is converted to a differential equation describing its 

rates of synthesis and degradation as follows:  
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The explicit equation for these processes is 

dt

d
[total cyclin] = 21 k]AA[k  [total cyclin] –  2Cdc ]cyclin[k3  

A similar procedure continues until reaching a complete set of 10 equations that describe how the 

molecular element of the metabolic model changes with time.  
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The rate constants k25, kwee and k2 are defined as: 

      P25cdc*VP25cdccdc25 totalVk 252525   
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The first six differential equations follow mass-action kinetics and the next four follow  

Michaelis-Menten kinetics.  

Once the values for the 31 parameters (Michaelis constants, total enzyme levels, etc.) are specified 

and given initial values for all time-dependent variables (see [218] for more details), the equations can 

be solved numerically. 

The quantitative analysis shows a main relevant behavior; stable regular oscillations emerge in the 

dynamic system and all the metabolic intermediaries of the metabolic subsystem oscillate with the 

same frequency but different amplitudes. Figure 3 shows the dynamic behaviors belonging to the 

concentration of total cyclin, the active form of MPF and tyrosine-phosphorylated dimers (YP) at any 

given instant of time. The cascade of phosphorylation and dephosphorylation involving cyclin and 

Cdc2 kinase is functionally self-organized in time and produces higher ordered activity patterns. 

In Figure 4, the dynamic solutions of the system are projected onto the phase plane (the x-axis is the 

concentration of active MPF and the y-axis is the concentration of total cyclin) and the temporal 

development of the molecular network can be envisaged as the movement of the ―state point‖ through 

the phase space. The closed orbit is an attractor of type limit cycle which governs the sustained 

oscillations in [active MPF] and [total cyclin] with a period of 80 minutes. 

The cell cycle seems to be controlled by this dynamic structure (attractor) which represents the set 

of all the possible asymptotic behaviors and corresponds to the ordered motions in the metabolic 

subsystem. 

The catalytic elements implicated in the cell-cycle regulation represent a group of functionally 

associated and dissipatively structured enzymes that form a catalytic entity as a whole. The catalytic 

activity of the metabolic subsystem is autonomous with respect to the other enzymatic associations 

which operate within far-from-equilibrium conditions and as a consequence molecular periodic 

oscillations spontaneously emerge. This set of dissipatively structured enzymatic associations is an 

absolutely well-defined, deterministic, dynamical system responsible for the control of the activities of 

M-phase-promoting factors. 
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Figure 3. Quantitative analysis of the M-phase control system showing spontaneous 

periodic oscillations in the metabolic intermediaries. The total cyclin concentrations (blue), 

active form of MPF (red), tyrosine-phosphorylated dimers, YP, (green) and total 

phosphorylated cdc2 monomers (orange) are represented as a function of the time in 

minute. The bar graphs indicate the periods during which the active forms exceed 50% of 

the total amount. Reproduced with permission from the Company of Biologists Ltd. [218]. 

 

Figure 4. A limit cycle attractor governs the cell cycle. The cell cycle is controlled by a 

dynamical structure called ―limit cycle‖ which is a closed orbit corresponding to the 

oscillations with a period of 80 minutes. The numbers along the limit cycle represent time 

in minutes after exit from mitosis. Reproduced with permission from the Company of 

Biologists Ltd. [218]. 

 

 

The catalytic elements implicated in the cell-cycle regulation represent a group of functionally 

associated and dissipatively structured enzymes that form a catalytic entity as a whole. The catalytic 

activity of the metabolic subsystem is autonomous with respect to the other enzymatic associations 
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which operate within far-from-equilibrium conditions and as a consequence molecular periodic 

oscillations spontaneously emerge. This set of dissipatively structured enzymatic associations is an 

absolutely well-defined, deterministic, dynamical system responsible for the control of the activities of 

M-phase-promoting factors. 

For almost two decades, the initial model of Tyson has been developed with new molecular and 

dynamic factors as for example, bistability [223], hysteresis [224], intrinsic noise caused by molecular 

fluctuations [225] and the activities of hundreds of ‗executor‘ proteins (EPs) [226]. 

5. Quantitative Analysis in Metabolic Networks 

During the past two decades, different mathematical models have allowed for an intensive study of 

metabolic processes formed by large groups of enzymes including global metabolic systems.  

Traditional models have focused on the kinetics of multi-enzyme systems by solving systems of 

differential equations and algebraic equations [227]. Petri‘s net theory, among other methodologies 

[228], has been applied to modeling metabolic pathways [229], decomposition of large metabolic 

networks into smaller subnetworks [230] and topological analysis of enzymatic groups [231]. Large 

networks present many connections between the nodes, and their degree distributions follow a power 

law, so they can be considered as scale-free [232,233]. The presence of ―small-world‖ features [234] in 

scale-free networks has been studied [235,236]. Constraint-based modeling approaches, such as  

flux-balance analysis, have been applied in several metabolic networks [160,237]. Other mathematical 

models have been proposed to organize the networks both in their modular and hierarchical  

structure [238–241]. 

Until recently, metabolic networks formed by enzymes and pathways have been studied 

individually. However, at present, mathematical models based on experimental data are aiming to 

integrate cellular metabolism as a whole [160–165]. Likewise, a considerable number of global 

genome-scale reconstructions of metabolic systems have been published in recent years [242–247]. 

Among the different mathematical models focused on enzymatic networks, Flux Balance Analysis 

(FBA) has emerged as an effective means to analzse metabolic networks in a quantitative manner 

demonstrating reasonable agreement with experimental data [248,249]. This method has been proved 

highly successful to calculate the relative flux values of metabolic reactions, as well as analyze the 

global cellular metabolism [160,161]. 

The FBA method allows finding optimal steady state flux distributions in a metabolic network 

subject to additional constraints on the rates of the reaction steps. FBA is based on the assumption that 

the dynamic mass balance of the metabolic system can be described using a stoichiometric matrix, and 

relating the flux rates of enzymatic reactions to the time derivatives of metabolite concentrations in the 

following form: 

Sv
dt

dX
  

where X is an m dimensional column vector defining the quantity of the metabolites of a network, v is 

the column vector of n metabolic fluxes and S is the m × n stoichiometric matrix [250]. 
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The FBA method is based on the assumption that the concentration of all cellular metabolites must 

satisfy the steady-state constraint and therefore the dynamic mass balance of the metabolic system must 

equal zero: 

0Sv
dt

dX
  

The main element of the FBM is the stoichiometric matrix, S, which describes all the biochemical 

transformations in a network in a self-consistent and chemically accurate matrix format. The rows of S 

correspond to various network components, while the columns of S delineate the reactions, or the way 

in which these components interact with one another [251,252], see an example hereinafter. Much 

progress has been made in the metabolic reconstruction process and a growing number of published 

stoichiometric matrices are now available [253–257]. 

Because most metabolic systems are underdetermined i.e., there exist more unknown fluxes than 

equations, an objective function is used to obtain a solution by using linear programming or other 

optimization methods. In fact, a central challenge in FBA is to define, for a given enzymatic system, an 

objective function for which that system optimizes. Several linear programming strategies have been 

proposed to generate flux distributions that are optimized toward a particular objective function, 

subject to a set of governing constraints [258–260]. 

Typically, the maximization of the growth flux is used as the objective function [261–263], where 

the growth flux can be defined in terms of the biosynthetic requirements. Other examples of objective 

functions used in the literature include: maximizing or minimizing the rate of production of a particular 

metabolic product [264–267], maximizing or minimizing the rate of nutrient uptake [268], and 

maximizing or minimizing ATP production [269]. 

The development of a flux balance analysis requires the definition of all the metabolic reactions and 

metabolites. For example, let us consider a simple metabolic network (diagram < 2>) formed by two 

enzymes and comprising three metabolites (A, B and C) with two internal enzymatic processes 

including one reversible reaction (the fluxes R1, R2 and R3) and three exchange fluxes with one 

reversible reaction (R4, R5, R6 and R7) [250]: 

 Diagram <2a> 

Mass balance equations for all reactions and transport processes are written by 

Sv
dt

dX
  

Reactions can be represented as an S stoichiometric matrix form with 

S = 
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At steady-state, Sv = 0, a set of algebraic constraints on the reactions rates can be assumed: the 

objective function is max Z = v5 (for example), and then the constraints are 

10v,,v0               0

v

 

v
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Once the problem of optimization is formulated, techniques of operation research can be used to 

obtain a solution. In this case, the optimal value of v5 was found to be 10.0 (see [250] for more details) 

with a vector of fluxes of v = [6.67 3.33 6.67 6.67 10.0 3.33 6.67]
T
. 

The optimal distribution of all fluxes is:  

 Diagram <2b> 

Although classical FBA assumes steady-state conditions, several extensions have been proposed in 

recent years to improve the predictive ability of this method, e.g., gene regulatory constraints were 

incorporated into metabolic models leading to a modification of FBA called regulatory flux balance 

analysis (rFBA) in which Boolean rules are considered on an existing stoichiometric model of gene 

expression metabolism [270–272]; in the study of complex metabolic networks, an extension called 

energy balance analysis (EBA) incorporates the general principles of thermodynamics [273]; more 

recently, a regulatory matrix, called R, was developed for the representation of transcriptional 

regulatory networks (TRNs) (the matrix R is similar to S in that its rows and columns correspond to 

network components and interactions, respectively) [274]; a variant of FBA called dynamic flux 

balance analysis (DFBA) provides a framework for assessing the transience of metabolism due to 

metabolic reprogramming; this DFBA method was implemented in a dynamic optimization approach 

that required solving a nonlinear programming (NLP) and a static optimization approach that required 

using linear programming strategies [275]; finally, a recent extension of DFBA called integrated 

dynamic flux balance analysis (idFBA) enables the dynamic analysis of integrated biochemical 

networks [276]. 

As pointed out in the introduction section, several studies performed using metabolic networks have 

shown that enzymes can present a self-organized global functional structure characterized by a set of 

enzymes which are always in an active state (metabolic core), while the rest of the molecular catalytic 

reactions exhibit on-off changing states [160–162]. 

The existence of the global metabolic structure was verified for E. coli, H. pylori, and S. cerevisiae 

implementing flux balance analysis [160–162]. By means of constraint-based studies applied to 

metabolic networks, E. Almaas, A.L. Barabási and their group of researchers, have also shown that 

most current antibiotics may interfere with the metabolic core [161] and they suggest that this global 

organization of the cellular metabolism ―probably represents a universal feature of metabolic activity in 

all cells, with potential implications for metabolic engineering." This global cellular metabolic 

structure seems to be an intrinsic characteristic of metabolism, common to all living cellular  

organisms [159–165]. 
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6. Effect of the Delays on Temporal Self-Organizations 

Many of the metabolic dynamic analyses have ignored the impact of time delays on enzymatic 

oscillators, which are due to different biochemical processes such as oscillatory phase-shifts, transport, 

translation, translocation, and transcription. 

What most of these non-linear dynamic studies in metabolic systems have in common is that have 

been performed through ordinary differential equations (ODE). According to this modeling, self-

organized dynamic behaviors are considered to depend on the different values achieved by the 

parameters linked to the dependent variables. Moreover, the initial conditions are always constant 

values (never initial functions) and when determining the particular solutions, only a small number of 

freedom degrees are available, as a result of the restrictions of the ODE systems. 

Within the framework of dynamical systems theory delay processes can be approximated accurately 

by augmenting the original variables with other auxiliary functional variables. By means of these 

systems of functional differential equations with delay it is possible to take into account initial 

functions (instead of the constant initial values of ODE systems) and to analyze the consequences that 

the variations in the parametric values linked to the independent variable (time) have upon the integral 

solutions of the system. 

A typical ODE system is the following: 
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and a dynamic model governed by a delayed functional differential equations system, can take the 

following particular form: 
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where the dependent variable is a n-dimensional vector of the form y = (y1,...,yn), t being the 

independent variable, and the zi variables appear delayed, that is zi(t) = hi(yi(t – i)) where i are the 

corresponding delays and hi are given functions. Hereafter, the zi will be named functional variables. 

In system (3), the derivatives of y1,...,yn, evaluated in t are related to the variables y1,...,yr evaluated 

in t – i, and related to the variables yr+1,...,yn evaluated in t. 

As )(,),(1 tyty n
   depends of the values of y1,...,yn in times before t, the initial conditions cannot be 

simply the values of y1,...,yn in a unique time, but in an interval [t0–δ,t0] with δ = max {1,…, r}, 

which involves the consideration, in the solution of the system, of the functions f0:[t0–δ,t0]R
n
 called 

initial functions. It can be observed therefore that infinite degrees of freedom exist in the determination 

of the particular solutions. 

In the system described by (3), it is possible to take the initial function f0 equal to any y(t), which, in 

particular, can be a periodic solution of the system for 1 = … = r = 0 and t ≤ t0. 

The initial function will be y
δ
(t):(t0–δ,t0) R

n
, with y

δ
(t) = y(t),  00 t,tt  .  
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In the particular case when 1 > 0, 2 = ... = r = 0, the first component of the initial function will 

be   Rttty  001 ,:)(  ; to each 1 corresponds a )t(y 101
  , which is the value of the first 

component of y in t0 – 1; the parameter 1 determines the initial function domain and, given that the 

solution is periodic, for each different domain of the initial function exists an ordinate value in the 

origin  101
ty    and a corresponding phase-shift. It is observed that  101

ty    is the value of the 

function  11
ty    evaluated in t0, where h is the initial function with a phase shift of 1. 

With this type of systems, it is possible to take into account dynamic behaviors related to parametric 

variations linked to the independent variable. The parametric variations 1 affect the independent 

variable which represent time delays and can be related to the phase shifts and the domains of the 

initial functions. Let us see an example next. 

The glycolysis continues to be the best known example of temporal self-organization in metabolic 

processes, and more than four decades ago the existence of variations in the phase shift values of 

different metabolites during the glycolytic oscillations was experimentally observed [277,278]. 

In order to study the repercussion on the dynamic system of phase-shifts, it is suitable to utilize the 

systems described by differential equations with delay. For example, we can consider a particular 

ODE-solution to be equal to a periodic solution y(t) of the system (3) for 1 = … = r = 0. And we can 

take this solution as the general initial function f0. 

As we have seen, each delay time reflects a domain and a phase shift of the initial function. 

Different domains and phase shifts of the initial functions can be considered in system (3) for each 

value of the parameter  linked to the independent variable; and so, particular phase shifted ODE-

solutions can be made to correspond to phase-shifted initial functions     n
00 Rt,t:ty  . 

In the integration of the delayed functional differential equations system, certain values can be 

considered for the dependent variables evaluated in t – , which correspond to a phase-shifted 

oscillation of the past. Therefore, it is possible to study if phase-shifted initial functions can be 

followed (after the corresponding numerical integration) by a mere final phase shift or by a variation in 

the dynamic behavior of the system. 

In this sense, several studies on phase shifts have been carried out in the yeast glycolytic subsystem 

by means of a delayed differential equations system [279–283] and one of these will be summarized 

next [281]. 

In diagram <3>, the main enzymatic processes of yeast glycolysis are represented with the enzymes 

arranged in series. 

 Diagram <3> 

In the multienzymatic instability-generating reactive system, it is shown how the metabolite S 

(glucose), brought into the system at constant speed, is transformed by the first enzyme E1 
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(hexokinase) into the product P1 (glucose-6-phosphate). The enzymes E2 (phosphofructokinase) and E3 

(pyruvatekinase) are allosteric, and transform the substrates P'1 (fructose 6-phosphate) and P'2 

(phosphoenolpyruvate) in the products P2 (fructose 1-6-bisphosphate) and P3 (pyruvate), respectively. 

The step P2 P'2 represents a particular catalytic activity, reflected in the dynamic system by means of 

a functional variable '. 

It is supposed that a part of P1 does not continue in the multienzymatic instability-generating 

reactive system, q1 being the first-order rate constant for the removal of P1; likewise q2 is the rate 

constant for the sink of the product P3 (which is related with the activity of pyruvate dehydrogenase 

complex). 

In the determination of the enzymatic kinetics of the enzyme E1 (hexokinase) the generic equation 

of the reaction speed dependent on Glu and MgATP has been used [284]. The speed function of the 

allosteric enzyme E2 (phosphofructokinase) [285,286] was developed in the framework of the 

concerted transition theory [199]. The reaction speed of the enzyme E3, pyruvatekinase, (dependent on 

ATP, Pyr-P and Fru 1,6-P2) was also constructed on the allosteric model of concerted transition [287]. 

The main instability-generating mechanism in the glycolytic subsystem is based on the self-catalytic 

regulation of the enzyme E2 (phosphofructokinase), specifically, the positive feed-back exerted by the 

reaction products, the ADP and fructose-1,6-bisphosphate [60,286,288].  

The enzyme E2 (Pyruvatekinase) is inhibited by the ATP reaction product [289] and in the first 

enzyme the influence of the ATP from the final activity of the reactive sequence is considered (the 

ATP is consumed by E1 and recycled by E3).  

For a spatially homogeneous system, the time-evolution of ,  and  which denote the normalized 

concentrations of P1, P2 and P3, respectively, is described by the following three delay differential 

equations:  

(4)     
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To simplify the model, we did not consider the intermediate part of glycolysis formed by the 

reversible enzymatic processes. In this way, the functions f and h are supposed to be the identity 

function: 
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The initial functions present a simple harmonic oscillation in the following form: 
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1, 2 and 3 correspond to the maximum activity of the enzymes E1, E2 and E3 divided by the 

constants Km1, Km2 and Km3, respectively, (the Michaelis constants of the enzymes E1, E2 and E3);  

Z1 = Km1/Km2 , Z2 = Km2/Km3 and Z3 = Km3/KD3; L1 and L2 are the allosteric constant of E2 and E3;  

d1 = Km3/KD2, d2 = Km3/KD3 and d3 = KD3/KD4 (KD3 and KD4 are the dissociation constant of P2 by E3 

and the dissociation constant of MgATP, respectively,); ' and , reflect the normalized concentrations 

of P'2 (Pyr-P) and ATP, respectively; c is the non-exclusive binding coefficient of the substrate; ,  

and  are normalized dividing them by Km2, Km3 and KD3. The values of the different parameters are 

shown in [281]. 

Experimental observations, by monitoring the fluorescence of NADH in glycolyzing baker‘s yeast 

under periodic glucose input flux, have shown that the existence of quasiperiodic time patterns is 

common at low amplitudes of the input flux and chaos emerges at high amplitudes of the input  

flux [290–292]. 

In order to simulate these experiments closely, the system can be considered under periodic input 

flux with a sinusoidal source of substrate S = S +́ A sin (t) where S  ́is the mean input flux rate. The 

amplitude A and the frequency  may vary between different simulations. 

Assuming the experimental input substrate value of 6 mM/h [287], the normalized mean input flux 

S‘ = 0.033 s
-1

 is obtained after dividing by Km2 = 5 × 10
-5

 M, the Michaelis constant of 

phosphofructokinase for fructose 6-phosphate [293]. 

Once the values for the parameters are specified and the initial functions are given (see [281,283] 

for more details), the equations can by solved numerically on a computer.  

The numerical results show that in the instability-generating multienzymatic system under a 

sinusoidal source of substrate quasiperiodic patterns are the most common dynamical behaviors (at low 

amplitudes of the input flux) and quasiperiodicity routes to chaos can emerge in the biochemical 

oscillator when the input amplitude is increased. These results are similar to experimental  

observations [281].  
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Figure 5 displays an example of these transitions to chaos for the following conditions:  = 2,  

 = 0.5, q = 0.069 and S‘ = 0.033. So, for A < 0.021, quasiperiodic behaviors emerge in the phase 

space and two frequencies are present in the oscillations (in Figure 5a, A = 0.01; in Figure 5b,  

A = 0.017). If both fundamental frequencies have some rational relationship, the system does not 

explore the whole surface area of the torus but just describes a one-dimensional line corresponding to a 

periodic or ―mode-locked‖ response (A = 0.016, and A = 0.018). For A = 0.021 (Figure 5c), complex 

substructures, which show the torus break up being replaced by strange attractors (A/S  ́= 0.76) can be 

observed in the Poincare section and in the power spectra. This route to chaos is also called the Ruelle-

Takens-Newhouse route [294,296]. 

Figure 5. Numerical oscillatory responses of glycolysis under periodic substrate input flux 

showing a transition sequence to chaos through quasiperiodicity. In the first column are 

represented the corresponding attractors (projections in two dimensions for the  

concentration, x-axis, and the  concentrations, y-axis), power spectra in the second 

column and Poincaré sections in the ,  plane (third column). Reproduced with 

permission from Elsevier [283]. 

 

 

The quasiperiodic route to chaos under periodic substrate input flux is within the range of 

experimental values [281] and these numerical integrations allow observing some essential aspects of 

the chaotic behavior emergence in a dissipative biochemical system. 

Results of the calculations also show a quasiperiodicity route to chaos for a constant input flux 

(Figure 6). In these new conditions (S = 0.002,  = 7, and  = 130), the biochemical system exhibits a 

stable steady state when the control parameter is q = 0.11. For q = 0.103, a first Hopf bifurcation 

introduces a fundamental frequency ω and a limit cycle appears in the phase space (Figure 6a). For  

q = 0.099, a second Hopf bifurcation generates a new fundamental frequency w causing quasiperiodic 
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behavior (Figure 6b). Above q = 0.095, complex substructures appears in the torus (Figure 6c,d), and 

the dynamical behavior originated after the third Hopf bifurcation is not particularly stable and can be 

perturbed quite easily producing a strange attractor for q = 0.093 (Figure 6d) [281,283]. 

Figure 6. Quasiperiodicity route to chaos under constant substrate input flux. Evolution of 

(a) periodic oscillation, (b–c) quasiperiodic motion, (d) complex quasiperiodic oscillations 

and (e) chaotic responses. (The  concentrations are represented as a function of time). 

Also shown are the corresponding power spectra (second column) and Poincaré sections 

(,  plane). Reproduced with permission from ScienceDirect [281]. 

 

Under constant and periodic input flux conditions time delay acts as a source of instability (next to 

the feedback loops) leading to complex oscillations and transient dynamics in the biochemical system. 

Likewise, the numerical study of the glycolytic model formed by a system of three delay-differential 

equations (4) reveals a notable richness of temporal structures as the three main routes to chaos (the 

Feigenbaum [283], Intermitency [280] and Quasiperiodicity routes [281,283]) and a multiplicity of 

stable coexisting states (birhythmicity, trirhythmicity and hard excitation [282,283]). 

Stable coexisting states means that under the same parametric conditions the system can exhibit two 

o more dynamical patterns and any initial metabolite concentrations will eventually lead the system 

into one of these self-organized behaviors. This dynamical behavior is an important characteristic of 

the metabolic systems, which has been studied extensively through experiments and numerical 

simulations [297–301]. 



Int. J. Mol. Sci. 2010, 11             

 

 

3566 

Biological examples of metabolic systems with stable coexisting states include genetic  

switch [302–308], the lactose operon repressor system [309–311], the cell-cycle control [312] and the 

cellular signal transduction pathways [313–316]. 

All these dynamical processes (chaos, multiplicity of coexisting states, periodic patterns, bursting 

oscillations, steady state transitions, etc.) show the richness and variety of self-organized phenomena 

under far-from-thermodynamic equilibrium. 

A growing number of works on delayed differential equation systems in biochemical processes are 

being carried out [317] e.g., it has been studied how delayed repression can induce transient increase 

and heterogeneity in gene expression [318], the role of delays in the generation of bursting oscillations 

in neuronal networks [319], the effect of time delays on the robustness of oscillator models [320], and 

the importance of time delay in biological functions [321]. 

7. Self-Organizations in Stochastic Processes: Genetic Expression 

Many metabolic subsystems involve small numbers of molecules causing biochemical processes to 

be accompanied by fluctuations around the dynamic states predicted by the deterministic evolution of 

the system. These fluctuations reflect intrinsic molecular noise which may play a very important role in 

the switching of metabolic dynamics.  

Recently, a considerable number of studies in different biochemical processes such as: expression of 

single genes, gene networks and multi-step regulated pathways allow illustrating the stochastic nature 

of many metabolic self-organized activities [322–335]. 

The importance of molecular noise makes us stress that living cells may be also considered 

stochastic biochemical reactors.  

Let us see an example next on the effect of molecular noise on circadian oscillations.  

Circadian rhythms govern a wide variety of metabolic and physiological processes in all kinds of 

cells from prokaryotes to mammals [126,127], and the molecular mechanism of these kinds of 

metabolic rhythms relies on the negative self-regulatory feedback on gene expression [336–339]. 

The presence of small amounts of mRNA or proteins in the molecular mechanism of circadian 

rhythms originates a molecular noise which may become significant and may compromise the 

emergence of coherent oscillatory patterns [340]. 

The first model predicting oscillations due to negative feedback on gene expression was proposed 

by Goodwin [341], at a time when the part played by such a regulatory mechanism in the origin of 

circadian rhythms was not yet known. 

Here is shown a molecular model proposed by A. Golbeter and colleagues for circadian rhythms in 

Drosophila based on negative self-regulatory feedback which has shown robust oscillations in the 

presence of molecular noise [342]. 

The core molecular model is schematized in a general form in Figure 7, which is based on the 

negative feedback exerted by a protein (called clock protein) on the expression of its gene. The 

nucleocytoplasmic nature of the circadian oscillator implies: gene transcription into Per mRNA (MP), 

transport of per mRNA into the cytosol where it is translated into the clock protein (P0) and the mRNA 

degradation. The synthesis of the (P0) PER protein exhibits a rate proportional to the Per mRNA (MP) 

level, and the clock protein can be reversibly phosphorylated from the form P0 into the forms P1 and P2. 
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The phosphorylated form P2 can be degraded or transported into the nucleus (PN) where it represses the 

transcription of the gene exerting a negative feedback of cooperative nature. 

In the model, the gene presents a maximum rate of transcription vS, and the mRNA (MP) is degraded 

by an enzyme with a maximum rate vm and a Michaelis constant Km The kinase and phosphatase 

involved in the reversible phosphorylation of P0 into P1, and P1 into P2, have a maximum rate vi and 

Michaelis constant Ki (i = 1,. . .,4). The P2 form is degraded by an enzyme with a maximum rate vd and 

Michaelis constant Kd, and transported into the nucleus at a rate with an apparent first-order rate 

constant k1. The nuclear form PN is transported into the cytosol with an apparent first-order rate 

constant k2. The negative feedback exerted by PN on gene transcription is described by an equation of 

the Hill type, in which n denotes the degree of cooperativity, and KI is the threshold constant  

for repression. 

Figure 7. Molecular model for circadian oscillations during genetic expression based on 

negative self-regulation of the PER gene by its protein product PER. The model 

incorporates gene transcription into PER mRNA, transport of PER mRNA (MP) into the 

cytosol as well as mRNA degradation, synthesis of the PER protein at a rate proportional to 

the PER mRNA level, reversible phosphorylation and degradation of PER (P0, P1 and P2), 

as well as transport of PER into the nucleus (PN) where it represses the transcription of the 

PER gene. Reproduced with permission from PNAS [342]. 

 

The time evolution of the concentrations of mRNA (MP) and the various forms of clock protein, 

cytosolic (P0, P1 and P2) or nuclear (PN), is governed by the following system of kinetic differential 

equations: 
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In cellular conditions, the small amounts of mRNA and proteins provoke an effect of molecular 

noise on the dynamic behaviors of the system. To perform stochastic simulations of the circadian clock 

mechanism due to this intrinsic noise, metabolic processes must be decomposed fully into elementary 

steps (where enzyme-substrate complexes are considered explicitly) and each step is associated with a 

transition probability proportional both to the numbers of molecules involved and to the biochemical 

rate constants (the procedure was introduced by Gillespie [343]). 

According to this method, the deterministic model schematized in Figure 7 can be decomposed into 

a detailed reaction system consisting of 30 elementary steps, which occur randomly, with a frequency 

measured by their probability of occurrence. 

The decomposition of the deterministic model into elementary steps, the method of stochastic 

simulation, and parameter values are listed in Appendix of [342]. 

As an example of the decomposition, steps 1-8, which pertain to the formation and dissociation of 

the various complexes between the gene promoter and nuclear protein (PN), are next shown: 
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The second column lists the sequence of reaction steps, and the probability of each reaction is given 

in the third column. G denotes the unliganded promoter of the gene, and GPN, GPN2, GPN3 and GPN4 

are the complexes formed by the gene promoter with 1, 2, 3, or 4 PN molecules, respectively.  

The kinetic constants aj and dj = (1,...,4) related to bimolecular reactions are scaled by  parameter, 

which allows modifying the number of molecules present in the system [343,344]. 

For appropriate parameter values (see appendices in [342]), the numerical integration reveals that 

the temporal structure of the metabolic system presents sustained circadian oscillations. 

In Figure 8A, are shown deterministic metabolic rhythms (without noise) of mRNA (MP), nuclear 

(PN) and total (Pt) clock protein under conditions of continuous darkness. The circadian oscillations 

correspond to the evolution toward a limit cycle, which is shown as a projection of the dynamic 

behaviors onto the (MP,PN) phase plane (Figure 8A, right). 

Corresponding results from stochastic simulations generated by the model in the presence of noise, 

for  = 500 and n = 4 are shown in Figure 8B. The number of mRNA molecules varies in the range of 

0–1,000, whereas the numbers of nuclear and total clock protein molecules oscillate in the range of 

200–4,000 and 800–8,000, respectively. It can be observed how the molecular noise induces variability 
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in the maxima of the oscillations and, consequently, the trajectory in the phase space shows a thick 

cloud of points covering the deterministic limit cycle (Figure 8B, right). 

The analysis of the molecular model schematized in Figure 7 (see other numerical studies of this 

system in [342]) allows showing how robust circadian oscillations based on negative self-regulation of 

gene expression and strengthened by cooperativity can occur even at reduced numbers of mRNA and 

clock protein molecules of the order of tens and hundreds, respectively. 

Figure 8. Effect of molecular noise on circadian oscillations during genetic expression.  

(a) Periodic behaviors obtained by numerical integration of the deterministic model in 

absence of noise. (Left) The oscillatory patterns correspond to mRNA (MP), nuclear protein 

(PN) and total clock protein (Pt). (Right) Limit cycle obtained as a projection onto the  

PN – MP phase plane. (b) Robust circadian oscillations with a period of 24.4 h produced by 

the metabolic model in presence of noise. (Left) The number of mRNA molecules 

oscillates between a few and 1,000, whereas nuclear and total clock proteins oscillate in the 

ranges of 200–4,000 and 800–8,000, respectively. (Right) Stochastic simulations of the 

model yield oscillations that correspond, in the phase plane (PN – MP) to the evolution of a 

noisy limit cycle. Reproduced with permission from PNAS [342]. 

 

 

The analysis of the molecular model schematized in Figure 7 (see other numerical studies of this 

system in [342]) allows showing how robust circadian oscillations based on negative self-regulation of 

gene expression and strengthened by cooperativity can occur even at reduced numbers of mRNA and 

clock protein molecules of the order of tens and hundreds, respectively. 

Besides assessing the robustness of circadian oscillations with respect to molecular noise, the 

analysis of the stochastic model also shows that the persistence of dynamic circadian behaviors is 

enhanced by the cooperative nature of the gene repression. The role of cooperativity in the circadian 
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metabolic subsystem is supported by the formation of complexes between various clock proteins and 

this has been observed in several kinds of cells such as Drosophila, Neurospora and  

mammals [345–348]. 

The model represents a prototype for the emergence of self-organized circadian patterns based on 

negative autoregulatory feedback of gene expression and the numerical results validate the use of 

deterministic models to study the metabolic mechanism of circadian rhythms and explains why such 

model provide a reliable picture of the working of circadian clocks in a variety of cells. 

Other similar results on circadian clocks with more complex metabolic mechanisms involving a 

larger number of interacting enzymes can be seen in [349–354]. 

8. Metabolic Attractors 

In mathematical studies of metabolic dissipative patterns, self-organization is related to the 

appearance of attractors in the phase space, which corresponds to ordered motions of the involved 

biochemical elements.  

Phase space is a mathematical object in which all possible states of a system are represented (in 

form of attractors) and the coordinates correspond to the variables that are required to describe the system. 

Attractors in dynamical systems theory provide a way of describing the typical asymptotic orbits. 

These dynamical trajectories end up and remain in one of the possible attractor states which represent 

the set of all the possible asymptotic behaviors of the system. 

Formally, if for example y(t) is an output activity of a metabolic subsystem, a set A is called an 

attractor for this subsystem in the following three conditions: 

(1) It is impossible to go out; in other words, if y(t0) is in A for some time t0, later y(t) remains in A.  

(2) There exists a neighbourhood of itself B (basin of attraction) such that for any initial condition 

in B, the system approaches A indefinitely.  

(3)  A is a compact set; this means it is a closed and bounded set.  

Consequently, for a metabolic subsystem under fixed determinate conditions, an attractor is a 

mathematical dynamical structure that represents the set of all possible asymptotic catalytic behaviors. 

There is a great variety of qualitatively different attractors in metabolic subsystems showing the 

richness of self-organized phenomena under dissipative conditions. 

Many quantitative studies of metabolic processes are characterized by time series (numerical or 

experimental) and in certain conditions to investigate some dynamic properties of a biochemical 

system it is necessary to reconstruct the attractor from these time series.  

A method to reconstruct attractors is the time-delay embedding [355]; this technique allows us to 

establish a phase space representation for time series as a function of the current and of the previous 

values; for that it requires a delay and an embedding dimension.  

Given a time series x(t), t = 1,2,...,N, the m-dimensional return map is obtained by plotting the 

vector X(t) = [x(t),x(t–η),x(t–2η),···,x(t–(m–η))] where  is an integer delay.  

This converts the dimensional vector x(t), into the m-dimensional vector X(t). The dimension m is 

known as the embedding dimension, and if m is great enough, the trajectory of X(t) converges to an 

http://en.wikipedia.org/wiki/Space
http://en.wikipedia.org/wiki/System
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attractor in the m-dimensional Euclidian space, which is, up to a continuous change of variable, the 

attractor of the subunit dynamical system.  

The election of embedding dimension (m) and delay () is mostly a question of trial and error 

because although there are criteria, they are not clean-cut [356].  

For m election, the method of false nearest neighbors is appropriate. False neighbors are far points 

in the original phase space with near projections in lower dimensions (see Figure 5 of [357]). The idea 

is to enlarge m until the number of false neighbors falls to almost zero. 

For example, Samll says in [356]: "We can then choose as the embedding dimension m, the 

minimum value of n for which the proportion of points which satisfy the above condition is below 

some small threshold." 

What small threshold? Kodba suggests enlarging m until "the fraction of false nearest neighbors 

convincingly drops to zero [358]". 

How small is "convincingly"? For , there is an easy test based on the autocorrelation [359] where 

the optimal  would be determined by the time the autocorrelation function first decreases below zero 

or decays to 1/e. 

Alternatively, we can take  as the first minimum of the mutual information function [356,358]. 

This criterion is "better" but harder. 

A third and easier method is the approximate period: A quarter of the length of the  

pseudo-period [356]. 

Time-delay embedding method can be directly applied to a time series by means of software 

developed with MATLAB. 

9. Stability in Dynamical Behaviors: The Maximal Lyapunov Exponent 

The concept of Lyapunov exponents has been mainly used as a nonparametric diagnosis for stability 

analysis and for to determine chaotic behaviors, where at least one Lyapunov exponent is  

positive [360–365]. 

A positive Lyapunov exponent indicates sensitivity to initial conditions, a hallmark of chaos [366]. 

By contrast, the leading Lyapunov exponent would be zero for quasiperiodic evolution or when the 

system is in some sort of steady state mode. A negative Lyapunov exponent is characteristic of a stable 

fixed point or a stable periodic orbit in the phase space and the dynamical system is insensitive to 

initial conditions. 

The maximal Lyapunov exponent is very useful in testing the existence of chaos and the Wolf 

algorithm can be used for it [367]. The idea is simple: in mathematics this exponent is a quantity that 

characterizes the rate of separation of infinitesimally close trajectories belonging to a dynamical 

system. For example, let us consider a reconstructed attractor (for example, by means of the time-delay 

embedding method) and define an arbitrary starting point x0 lying on it. One should find another 

point 0x  which is close in space but is distant in time to min0000 xx:x    and 

    min00 TxTxT  . Then trace system dynamics using initial points x0 and 0x . Then a distance 0   

between two trajectories will exceed some value εmax. Stop and fix the time of tracing T0 and the ratio 

00 /  . After that one should find another starting point 1x   which is close to x1 and shifted in the 

http://en.wikipedia.org/wiki/Mathematic
http://en.wikipedia.org/wiki/Trajectory
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direction of the vector 11 xx  . Let 111 xx  . Trace the dynamics of the system using x1 and 1x   as 

initial points. Then a distance 1   between two trajectories will exceed εmax. Stop and fix the time of 

tracing T1 and the ratio 11 /  , etc. 

The Maximal Lyapunov exponent is estimated as  












N

0k

k

N

0k

kk

T

/ln 

 

where N is the iteration number. 

To calculate the maximal Lyapunov exponent, the software developed with MATLAB can be used. 

10. Long-Term Correlations in Metabolic Activities 

In order to study the presence of long-term correlations in metabolic chaotic data, first it is necessary 

to determinate whether the series is a fractional Gaussian noise (fGn) or a fractional Brownian  

motion (fBm).  

FGn is a stationary stochastic process with the property that the n-th autocorrelation coefficient is 

given by  

   (1)  121 5.0
222 HHH

n nnn   

where H is the Hurst coefficient. On the contrary, fBm is a non-stationary, self-similar process, whose 

first differences form a fGn, that is, taking differences between points sampled at equal intervals a fGn 

is obtained [368]. 

Taking into account these concepts and equation (1), fBm is a continuous parameter stochastic 

process that depends upon a parameter given by the Hurst coefficient H. Thus, it can be denoted the 

corresponding process by BH(t) with 0 ≤ t ≤ ∞; when the independent variable t is sampled at equally 

spaced times obtaining a discrete fractional Brownian motion. Therefore, fBm is a generalization of 

Brownian motion in which the increments are normally distributed but they are no longer independent 

and consequently the process is correlated in time. 

FGn and fBm can be distinguished by calculating the slope of the power spectral density plot. 

The signal is said to exhibit power law scaling if the relationship between its Fourier spectrum and the 

frequency is approximated asymptotically by S(f) ≈ S(f0)/f
β
 for adequate constants S(f0) and . If  

–1 <  < 1, then the signal corresponds to an fGn. If 1 <  < 3, then the signal corresponds to a  

fBm [369]. 

The regression line can be estimated for the pairs (log S(f), log f), where f is the frequency and S(f) 

the absolute value of the Fourier transform. The  constant is taken to be the opposite of the coefficient 

of x in that regression line. 

Most of the physiological time series are fBm, and a number of tools are available for estimating the 

long-term correlations of an fBm series. The scaled windowed variance analysis is one of the most 

reliable methods that have been thoroughly tested on fBm signals [370]. In particular, the bridge 
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detrended scaled windowed variance analysis (bdSWV) is usually useful for the analysis of fBm 

temporal sequences of metabolic activities [371]. 

This method generates an estimation of the Hurst exponent (H) for each series. In short, for a 

random process with independent increments, the expected value of H is 0.5. When H differs from 0.5, 

it indicates the existence of long-term correlations, that is to say, dependence among the values of the 

process. If H >0.5, it is produced by a biased random process which exhibits persistent behavior. In 

this case, for several previous transitions, an increment on the phase-shift average value implies an 

increasing trend in the future. Conversely, a previously decreasing trend for a sequence of transitions 

usually implies a decrease for a similar sequence. Antipersistent behavior is obtained for 0 < H < 0.5, a 

previously decreasing trend implies a probable increasing trend in the future and an increase is usually 

followed by decreases [370,371]. 

According to bdSWV method, if the signal is of the form xt, where t = 1,…,N, then the following 

steps are carried out for each one of the window sizes n = 2,4,…,N/2,N (if N is not a power of 2, then n 

takes the values 2,4,…,2
k
, where k is the integer part of log2N): 

(1) Partition of the data points in 
n

N
 adjacent non-overlapping windows 









n

NWW ,...,1  of size n, 

where   innii xxW ,...,11  . If N is not a power of 2 and N is not divisible by n, then the last 

remaining points are ignored for this value of n. For instance, if N = 31 and n = 4, the first 28 

points are partitioned into seven windows. 

(2) Subtraction of the line between the first and last points for the points in the n-th window. 

(3) For each 
n

N
,...,1i  , calculation of the standard deviation SDi of the points in each window, by 

using the formula:  

 

 








in

1n1it

2
it

i
1n

xx
SD  (5) 

where ix  is the average in the window Wi. 

(4) Evaluation of the average SD  of the 
n

N
 standard deviations corresponding to Equation (5). 

(5) Observation of the range of the window sizes n over which the regression line of  SDlog  versus  

log (n) gives a good fit (usually some initial and end pairs are excluded). 

(6) In this range, the slope of the regression line gives the estimation of the Hurst coefficient H. 

The empirical range of windows corresponding to step 5) which should be in accordance with the 

guidelines appearing in [370], and consequently the first two and last three points should be excluded.  

The program bdSWV is available on the web of the Fractal Analysis Programs of the National 

Simulation [372]. 

Long-term correlations have also been observed in different experimental studies, e.g., the 

physiological time series [373,374], quantification of DNA patchiness [375], NADPH series [376], 

DNA sequences [377–379], K
+
 channel activity [380], neural electrical activity [381] and 

mitochondrial processes [90]. 
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11. Measure of Complexity. Kolmogorv-Sinai Entropy 

The entropy theory of dynamical systems can be found in many textbooks [382,383]. Roughly 

speaking, in a biochemical system, the entropy will be highest when all transition states have the same 

number of possible emergency, and the maximum entropy occurs when any transition pattern could be 

found with equal probability, therefore the entropy will be lowest and information highest when one 

pattern or a few patterns are dominant (small number of states with high probabilities).  

 Entropy is also a useful concept in the study of attractors, which may allow estimating the degree of 

complexity and information contained in them. More concretely, Kolmogorov–Sinai entropy (K–S 

entropy) provides a measure of the information and the level of predictability in the attractor and the 

time series [384]. However, the K–S entropy cannot be computed directly, it can only be approximated. 

Problems arise when entropy rates have to be estimated from a finite number of observations 

containing a relatively high noise component. 

A practical solution to this problem has been put forward using a developed family of statistics 

named Approximate Entropy (ApEn) which is a good approximation of the Kolmogorov-Sinai  

entropy [385]. 

Formally, given N data points from a time series x(1), x(2),., x(N), two input parameters m and r 

must be fixed to compute ApEn, denoted precisely by ApEn(m, r, N). 

To estimate ApEn, first we form the m dimensional vector sequences X(1)….X(N – m + 1) such 

that X(i) = (x(i)…..x(I - m + 1)), which represent m consecutive values. Let us define the distance 

between X(i) and X(j) (d[X(i),X(j)]) as the maximum absolute difference between their respective 

scalar components and for each X(i) we count the number of j such that d[X(i),X(j)] < r, denoted as 

N
m

(i) and )1mN/()i(N)i(C mm
r  , which measure within a tolerance r the frequency of patterns 

similar to a given one of window length m.  

The average value of )i(Cm
r  is )r(m , which portrays the average frequency of the occurrence that 

all the m-point patterns in the sequence remain close to each other, and finally  

)()(),,( )1( rrNrmApEn mm    

The idea is that ApEn measures the logarithmic likelihood that runs of patterns that are close (within 

r) for m contiguous observations remain close on subsequent incremental comparisons.  

Some Approximate Entropy works can be found in [84,386–390]. 

ApEn can be calculated with software developed with MATLAB. 

12. Conclusions 

One of the most important goals of contemporary biology is to understand the elemental principles 

and quantitative laws governing the functional metabolic architecture of the cell. 

In this review, I mainly focused on some functional enzymatic structures which allow the temporal 

self-organization of their metabolic processes. 

My aim was to provide an overview of temporal metabolic behaviors, including new examples, 

some kinds of quantitative mathematical models and non-linear tools for the analysis of dissipative 

functional enzymatic associations (metabolic subsystems) where oscillatory behaviors may emerge.  
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From the first studies in 1957 of oscillatory phenomena in fluorescent studies of yeast [190], the 

number of examples of metabolic oscillatory behavior has grown notably. 

Oscillatory phenomena, apart from constituting a singular property that manifests itself at all levels 

of biological organization, present a great functional significance in enzymatic processes. As recalled 

in the previous sections, biochemical oscillations constitute in themselves a manifestation of the non-

lineal characteristics involved in the metabolic regulation activity. 

In the light of the research in course, the biological rhythms that emerge in self-organized bio-

molecular structures constitute one of the most genuine properties of cellular dynamics; and the 

rigorous knowledge of their nature and significance may be an essential element in the comprehension 

of the biological fact at its most basic and elementary levels. 

The transition from simple periodic behavior to complex oscillatory phenomena including chaos is 

often observed in metabolic behaviors. In this sense, the relationship between chaotic patterns and 

long-term correlations (information correlated in time [165]) is a striking property. 

As mentioned above, different studies have evidenced that global cellular enzymatic activities are 

able to self-organize spontaneously, forming a metabolic core of reactive processes that remain active 

under different growth conditions while the rest of the metabolic subsystems exhibit structural 

plasticity. This global and stable cellular metabolic structure (in which also emerge chaotic behaviors) 

appears to be an intrinsic characteristic common to all cellular organisms [163–165]. 

The existence of chaotic patterns and long-term correlation properties in the activity of the 

metabolic subsystems integrated in a stable global functional structure may constitute a biological 

advantage. 

Chaotic patterns exhibit sensitive dependence on initial conditions. Sensitivity means that a small 

change in the initial state will lead to large changes in posterior system states and the fluctuations of 

the chaotic patterns are conditioned by the degree of perturbation of the initial conditions. These 

changes in the system states present exponential divergence, provoking fast separations in the  

chaotic orbits.  

For ―slow dynamical systems‖ the typical time scale of the chaotic fluctuations is on the order of  

1 µs [391,392] and in ―very fast chaotic systems‖ the characteristic time scale is on the order of  

1 ns [391,393]. 

Furthermore, different studies have shown that chaos permits fast transmission of information and 

high efficiency [394]. 

The existence of chaos (which exhibits long-term correlations) in some functional structures may 

constitute a biological advantage by allowing fast and specific responses during the adaptation of the 

metabolic system to environmental perturbations.  

For example, calcium plays an important role in the regulation of cell metabolism, modulating many 

physiological processes [395]. In response to external cellular signals, the cytosolic calcium may 

exhibit chaotic transitions, which are conditioned by the intensity and type of the perturbation factor 

[396]. Since many enzymes are modulated by calcium, when intracellular calcium concentration 

presents chaotic patterns, they exhibit sensitivity to initial conditions and long-term memory properties, 

which may influence the dynamical activities of the metabolic subsystems, permitting fast and specific 

metabolic responses during the adaptation to external perturbations. 
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In this sense, numerous works have shown chaotic behaviors at cellular conditions e.g., in 

intracellular free amino acid pools [64], respiratory metabolism [79], photosynthetic reactions [94], 

glycolysis [397], Krebs cycle [398], peroxidase-oxidase reactions [93], membrane potential [399], 

nuclear translocation of the transcription factor [91], NAD(P)H concentration [400], cyclic AMP 

concentration [401], ATP concentration [78], intracellular calcium concentration [402]. 

Since a notable part of the biological temporary processes seem to be chaotic in cell conditions, it 

can be important to take into account these persistent phenomena in Systems Biology. 

A vast amount of new information on structural enzymatic organization and genome dynamics is 

currently being accumulated, and a great part of the network molecular interactions are perfectly 

established. Therefore, the real functional structure of the enzymatic associations and genome 

regulation is an open question to be elucidated through mathematical modeling and numerical analysis. 

Within the new area of Systems Biology, quantitative mathematical models, non-linear tools and 

computational approaches are particularly valuable for exploring dynamic phenomena associated with 

dissipative metabolic structures, and due to that, these methods will be crucial in making sense of the 

functional metabolic architecture of the cell. 

The comparison of experimental results with numerical analysis calls for more quantitative data on 

the self-organization of metabolic processes, and these methods will be able to provide an integrative 

knowledge of the organization of cooperating enzymes into macromolecular complexes and 

microcompartments with the emergence of temporal metabolic patterns. 

This new field fusions several concept and tools from many areas, including: computational 

intelligence, dynamical systems theory, stochastic processes, nonlinear dynamics and networks theory, 

among others. 

Day by day, Systems Biology is developed as a new methodology about metabolic dynamic 

processes, which allows explaining how higher-level properties of complex enzymatic processes arise 

from the interactions among their elemental molecular parts, forming complex spatial structures where 

singular temporal reactive behaviors emerge. 

System Biology will be crucial to the understanding of the functional architecture of the cell. 
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