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Abstract: Antibiotics have been used as essential therapeutics for nearly 100 years and, increasingly,
as a preventive agent in the agricultural and animal industry. Continuous use and misuse of antibiotics
have provoked the development of antibiotic resistant bacteria that progressively increased mortality
from multidrug-resistant bacterial infections, thereby posing a tremendous threat to public health.
The goal of our review is to advance the understanding of mechanisms of dissemination and the
development of antibiotic resistance genes in the context of nutrition and related clinical, agricultural,
veterinary, and environmental settings. We conclude with an overview of alternative strategies,
including probiotics, essential oils, vaccines, and antibodies, as primary or adjunct preventive
antimicrobial measures or therapies against multidrug-resistant bacterial infections. The solution for
antibiotic resistance will require comprehensive and incessant efforts of policymakers in agriculture
along with the development of alternative therapeutics by experts in diverse fields of microbiology,
biochemistry, clinical research, genetic, and computational engineering.
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1. Introduction and Background

In 1928 Alexander Fleming serendipitously discovered penicillin [1] (Figure 1). Its utility as
medicine became clear following the extraction of a small amount of penicillin from a fungus
Penicillium chrysogenum, by Howard Florey and Ernst Chain in 1941, at the Radcliffe Infirmary.
This extract was initially used for treating a policeman in Oxford, England who contracted a likely
infection of Staphylococcus aureus with an admixture of various Streptococci. The condition of the
policeman was initially improved; however, the amount and quality of penicillin synthesis were
inadequate at the time. Eventually, sepsis relapsed and the policeman died. Presently, penicillin and
other antibiotics are produced in copious amounts. The term antibiotic is defined as a natural or
synthetic chemical inhibiting both the growth and survival of microorganisms. Among these antibiotics,
methicillin is considered to be one of the most effective. However, studies revealed that sepsis cases
increased from 621,000 to 1,141,000 between the years of 2000 and 2008 [2]. The death toll from sepsis rose
from 154,000 to 207,000 cases. The extent of this rise is attributed to the emergence of methicillin resistant
S. aureus (MRSA). MRSA marks the beginning of the development of antibiotic–resistant microbes
(also called ESKAPE pathogens, standing for Enterococcus faecium, S. aureus, Klebsiella pneumoniae,
Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae) [3]. It is reported that in the
United States, India, Thailand, and European Union, antibiotic resistance causes more than 23,000,
58,000, 38,000 and 25,000 deaths per year, respectively [4–7]. The predicted deaths from drug-resistant
microbial pathogens could rise from approximately 700,000 per year to 10 million deaths per year by
2050 and threaten global health [8].
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Figure 1. Timeline of antibiotic discovery and its onset of resistance. The antibiotic paradigm emerges 
out of the followed discovery of penicillin. Between the 1960s and the 1980s there was a surge in the 
discovery of antibiotics, but this development declined between the 1980s and the 1990s. The 
identification of new antibiotic classes by pharmaceutical companies has stagnated since 1987 and 
coincided with progressively increased antibiotic resistance and mortality related to antibiotic-
resistant infections. 

Microorganisms are able to develop antibiotic-resistant genes to enhance their survival, thus 
minimizing the treatment options for microbial infections and increasing mortality in human 
populations. Antibiotic resistance is classified into three categories based on the threat: urgent, 
serious, and concerning (Table 1). The global threat of resistance to imipenem antibiotics in A. 
baumannii infections has been reported in both Organization for Economic Co-operation and 
Development (OECD) and non-OECD countries across the globe [9]. Several reasons are responsible 
for the development of antibiotic resistance globally and in developing countries, such as India 
[10,11]. Poor public health conditions and health care systems, availability of antibiotics over the 
counter, lack of public knowledge of appropriate dosage of antibiotics and their haphazard use, as 
well as a high incidence of infectious diseases have been proposed as the major factors augmenting 
the problem. This continuum of antibiotic resistance concept was proposed to describe the 
progressive interconnecting influence of human, industrial, agricultural, and wild environments [12]. 
The crude mortality due to infectious diseases in India is 416.75 per 100,000 persons, which is twice 
the rate in the United States (roughly 200 per 100,000 persons) [13]. The problem is aggravated further 
by the void in the development of new classes of antibiotics since 1990 (Figure 1) [14–17]. 

Table 1. Classification of antibiotic resistance threats. 

Urgent Serious Concerning 

1. A. baumannii, P. aeruginosa, 
carbapenem-resistant 
2.Clostridium difficile (CDIFF) 
3. N. gonorrhoeae-3rd generation 
cephalosporin-resistant, 
fluoroquinolone-resistant 
4. Carbapenem- and 3rd 
generation cephalosporin 
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susceptible  
2. Haemophilus influenzae, ampicillin-resistant 
3. Shigella spp., fluoroquinolone-resistant 
4. Enterococcus spp., vancomycin resistant 
5. Multidrug-resistant Acinetobacter  
6. Drug resistant Campylobacter 
7.Extended-spectrum β-lactamase producing 
Enterobacteriae (ESBLs) 
8. Multidrug-resistant P. aeruginosa 
9. Drug-resistant non-typhoidal Salmonella  
10. Drug-resistant Salmonella serotype Typhi 
11. Drug resistant M. tuberculosis  
12. Methicillin-resistant S. aureus (MRSA) 

1. Group B 
Streptococcus 
(GBS), 
clindamycin 
resistant 
2. Group A 
Streptococcus 
(GAS), 
erythromycin 
resistant 
3. S. aureus, 
vancomycin 
resistant 

The advances in social and medical fields, including cancer therapy and organ transplantation, 
would not have been possible without effective antibiotic treatment to control bacterial infections. 

Figure 1. Timeline of antibiotic discovery and its onset of resistance. The antibiotic paradigm emerges out
of the followed discovery of penicillin. Between the 1960s and the 1980s there was a surge in the discovery
of antibiotics, but this development declined between the 1980s and the 1990s. The identification
of new antibiotic classes by pharmaceutical companies has stagnated since 1987 and coincided with
progressively increased antibiotic resistance and mortality related to antibiotic-resistant infections.

Microorganisms are able to develop antibiotic-resistant genes to enhance their survival,
thus minimizing the treatment options for microbial infections and increasing mortality in human
populations. Antibiotic resistance is classified into three categories based on the threat: urgent, serious,
and concerning (Table 1). The global threat of resistance to imipenem antibiotics in A. baumannii
infections has been reported in both Organization for Economic Co-operation and Development (OECD)
and non-OECD countries across the globe [9]. Several reasons are responsible for the development of
antibiotic resistance globally and in developing countries, such as India [10,11]. Poor public health
conditions and health care systems, availability of antibiotics over the counter, lack of public knowledge
of appropriate dosage of antibiotics and their haphazard use, as well as a high incidence of infectious
diseases have been proposed as the major factors augmenting the problem. This continuum of antibiotic
resistance concept was proposed to describe the progressive interconnecting influence of human,
industrial, agricultural, and wild environments [12]. The crude mortality due to infectious diseases
in India is 416.75 per 100,000 persons, which is twice the rate in the United States (roughly 200 per
100,000 persons) [13]. The problem is aggravated further by the void in the development of new classes
of antibiotics since 1990 (Figure 1) [14–17].

Table 1. Classification of antibiotic resistance threats.

Urgent Serious Concerning

1. A. baumannii, P. aeruginosa,
carbapenem-resistant
2. Clostridium difficile (CDIFF)
3. N. gonorrhoeae-3rd generation
cephalosporin-resistant,
fluoroquinolone-resistant
4. Carbapenem- and 3rd
generation cephalosporin
resistant Enterobacteriaceae:
K. pneumonia, E. coli,
Enterobacter spp., Serratia spp.,
Proteus spp. and Providencia spp.,
Morganella spp.

1. Streptococcus pneumonia, penicillin-non-susceptible
2. Haemophilus influenzae, ampicillin-resistant
3. Shigella spp., fluoroquinolone-resistant
4. Enterococcus spp., vancomycin resistant
5. Multidrug-resistant Acinetobacter
6. Drug resistant Campylobacter
7.Extended-spectrum β-lactamase producing
Enterobacteriae (ESBLs)
8. Multidrug-resistant P. aeruginosa
9. Drug-resistant non-typhoidal Salmonella
10. Drug-resistant Salmonella serotype Typhi
11. Drug resistant M. tuberculosis
12. Methicillin-resistant S. aureus (MRSA)

1. Group B
Streptococcus (GBS),
clindamycin resistant
2. Group A
Streptococcus (GAS),
erythromycin resistant
3. S. aureus,
vancomycin resistant

The advances in social and medical fields, including cancer therapy and organ transplantation,
would not have been possible without effective antibiotic treatment to control bacterial infections.
However, global antibiotic resistance is on the rise. In this review, we thoroughly apprise comprehensive
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evidence of various factors leading to the development of antibiotic resistance, followed by route
of entry of drug-resistant pathogens into the food chain, and a plethora of alternative strategies to
mitigate the menace of antibiotic resistance for a healthier future.

2. Drug Resistance Continuum

Microorganisms are evolving rapidly to endure and proliferate in unfavourable environments.
Although antibiotic resistance appeared soon after clinical use of antibiotics, initially the problem
was of low concern and was condoned (Figure 1) [18]. Sulphonamide-resistant Streptococcus pyogenes
appeared in the human clinical settings in early 1930s, while penicillin-resistant S. pyogenes was noted
in the 1940s. The problem of multidrug-resistant enteric bacteria became noticeable in the 1950s [19].
Antibiotic resistance develops as a result of vertical or horizontal evolution (Figure 2). Advantageous
mutations cause antibiotic tolerance, which is transmitted to offspring (vertical evolution) or to another
bacteria via conjugation, transduction, or transformation mode (horizontal evolution), that are then
passed down to progeny (vertical evolution). The comprehensive genomic insights into human
pathogens have shown that horizontal gene transfer is an important mechanism of antibiotic resistance
gene (ARG) acquisition among microorganisms along with the vertical transfer [20]. A decade ago,
an ARG, the New Delhi metallo-β-lactamase 1 (NDM-1) was identified in single isolates of K. pneumonia
and Escherichia coli. Both were isolated from a patient first admitted to a hospital in New Delhi,
India, and then repatriated to Sweden [21]. This was followed by the spread of antibiotic resistance
in every geographical region [22,23]. NDM-1 has no detectable sequence homology with other
classes of these genes, thus indicating their archaic origin [24,25]. Bacteria carrying extended spectrum
β-lactamases (ESBL) impart resistance to penicillin and cephalosporins, extensively drug-resistant (XDR)
Mycobacterium tuberculosis, and multi-drug resistant A. baumanni, Enterobacteriaceae, Neisseria gonorrhoea,
and P. aeruginosa [26,27].
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Figure 2. Mechanisms of horizontal and vertical transmission in bacteria for the development of
antibiotic resistance. The left panel shows the horizontal transmission of an antibiotic resistant gene
(ARG, red line indicated by a red arrow) by the three main mechanisms: conjugation, transformation,
and transduction. Conjugation involves transfer of the ARG from a donor bacterium to a recipient by
direct contact and plays a crucial role in dissemination of antibiotic resistance. Transformation involves
uptake of the free DNA with the ARG from the environment. Transduction is a virus-mediated gene
transfer by bacteriophages. The right panel shows the vertical evolution carried out by replication of
bacteria containing the ARG.
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3. The Detrimental Effects of Antibiotics Misuse

The dogma that antibiotics are safe for humans has been dominant for many decades, and only
recently has it started to be challenged. Antibiotics are recommended to humans based on rigorous
clinical trials, examining antibiotics use against microorganisms, and their efficacy and safety.
However, antibiotics can have serious side effects in human cells. The effects of antibiotics on pathways
in humans are listed in Table 2 [28]. Some medical professionals and some regulatory agencies continue
to underestimate the debilitating effects of antibiotics in humans. For instance, fluoroquinolones
are routinely prescribed by medical doctors worldwide, even though they cause several side effects,
encompassing damage to muscles, tendons, neuropsychiatric disorders, and mitochondrial toxicity.
Given the repeated incidences of fluoroquinolone-associated disability (FQAD) and the lack of effective
FQAD treatment, the drug should be used exclusively for serious infections [29]. The overwhelming
potential side effects of antibiotics have triggered many scientific professionals and agencies to reassess
the uses of antibiotics.

Table 2. Mechanism of action of antibiotics.

Mechanism of Action Name of Antibiotic Families

Inhibition of protein synthesis Tetracyclines, aminoglycosides, streptogramins,
ketolides, macrolides, lincosamides, daptomycin

Inhibition of DNA synthesis Fluoroquinolones, daptomycin

Inhibition of RNA synthesis Rifampin and other metronidazoles, daptomycin

Inhibition of cell wall synthesis Penicillins, cephalosporins, carbapenems, monobactams,
glycopeptides

Disrupt functions of bacterial outer membrane Daptomycin, polymyxin B, colistin, and lipopetides

Competitive inhibition of folic acid synthesis Sulfonamides, trimethoprim

4. Livestock as a Major Contributor of Antibiotic Resistance

Animal livestock is an integral component of the global economy as a major contributor of food
and materials, as well as draft power for transportation and agriculture operations in developing
countries. To promote growth and weight gain, entire herds or flocks of farm animals are routinely fed
with low dosages of antibiotics in their food or water. This practice is implemented to stave off disease
in animals living in often crowded and unsanitary spaces. This activity leads to massive accumulation
of antibiotics in the environment, and acquisition of antibiotic resistance in microorganisms coming
in contact with an antibiotic [30] (Figure 3). Antibiotic consumption in the livestock sector is the
highest in China (23%), the US (13%), Brazil (9%), and India (3%), accounting for the majority of
worldwide sale of antibiotics [31–33]. The spread of antibiotic-resistant microorganisms to humans
is carried through the consumption of contaminated food and drinks, direct contact with animals,
or by environmental exposure, for example, through consumption of contaminated water (Figure 3).
Both animal and human pathogens serve as donors of ARG to pathogens that infect humans. Table 3
summarizes major bacteria classes originating from animal species [34]. The use of fluoroquinolones
(e.g., enrofloxacin) in food-producing animals has contributed to the spread of ciprofloxacin-resistant
Salmonella, Campylobacter and E. coli, which are resistant to most therapies. A global trade with animal
products contaminated with ARG affects the food supply in new regions. For instance, the use of a
glycopeptide (avoparcin) as an antibiotic and a growth promoter in animals in Europe resulted in
the expansion of vancomycin-resistant enterococci (VRE) in commensal microorganisms in livestock,
on meat from these animals, and in the commensal flora of healthy humans worldwide [35].
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Figure 3. Schematics of the major route of antibiotic resistance genes (ARG, a red inserted line)
dissemination in environment. The diagram indicates the contribution of human communities to the
production of antibiotics and their uses in hospitals, farms, and households. Generated antibiotic
waste is released onto sewage, hence contaminating water, soil, and environment. Bacteria develop
ARG mutations as a result of such exposure to antibiotics in the environment, and in human and
animal hosts. ARG-containing bacteria spread in humans and animals through direct infections, food,
or environment. The arrows indicate the putative transmission paths of entry of antibiotics and ARG.

To decrease global antibiotic-resistant bacterial infections, some measures have been implemented
with respect to the use of antibiotics for non-therapeutic purposes, such as antibiotic use in animals
intended for food production [36]. The imposed ban on the use of avoparcin in animal feed in the
European Union has reduced the incidences of VRE in animals and its occurrences in the general
population [37]. The efficacy of these measures suggests that animal-derived ARG could be one
of the major sources for development of antibiotic resistance. Substantial attention is focused on
the understanding of molecular mechanisms involved in the human acquisition of ARG from the
animals. The transfer of antibiotic resistance determinants from animal to human through horizontal
gene transfer is extremely difficult to detect and quantify. It is thought to drive the evolution of
metallo-β-lactamase, e.g., NDM-1, and perhaps the use of antibiotics in agriculture accelerated this
process [24,25,38]. The ARG phenomenon greatly hinders the progress of agriculture.
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Table 3. ARG in animal production settings.

Sl. No. Bacterial Species Infection Antibiotic
Resistance Pattern

Sources of Human
Infection Genes

1 Campylobacter spp.

Gastrointestinal
sequelae:
Guillain-Barré
syndrome

Fluoroquinolones,
erythromycin

Food-producing animals
(poultry) tetO, gyrA [39,40]

2 Enterococcus spp. Sepsis, urinary
tract

Aminoglycosides
ampicillin
vancomycin

Food-producing animals
(poultry); People
exposed to hospital care,
food animals

Tuf , VanC-1,
VanC-2-VanC-3,
pbp5 [41–45]

3 E. coli
Gastrointestinal,
urinary tract,
diarrhoea

Quinolones
sulphonamides
trimethoprim

Childcare facilities Bla, qnrS, frdD
[46–48]

4 Salmonella spp.
(non-typhoidal)

Gastrointestinal,
diarrhoea

Cephalosporins
quinolones
tetracyclines

Food-producing animals
(pigs, cows, poultry) IntI1, qnrA [49–52]

5 S. pneumoniae

Otitis media,
pneumonia,
sinusitis,
meningitis

Penicillin,
macrolides,
cephalosporins,
tetracyclines

Childcare facilities,
paediatric populations erm(B), mef [53–56]

6 S. pyogenes Pharyngitis,
impetigo, cellulitis

Macrolides,
tetracyclines

Childcare facilities,
paediatric Populations,
schools

ermB, ermA and
mefA [57]

7 S. aureus

Community-
associated

Skin, soft tissue,
pneumonia, sepsis

Methicillin,
cephalosporins,
macrolides

Childcare facilities,
injections, drug users

erm(A), erm(C), tetK,
tetM, aacA-aphD,
vat(A), vat(B) and
vat(C) [58,59]

Healthcare-
associated

Endocarditis,
pneumonia, sepsis

Methicillin,
cephalosporins,
quinolones,
aminoglycosides,
macrolides

People exposed to
healthcare facilities such
as nursing homes,
dialysis, recent surgery
or hospitalization

8 N. gonorrhoeae
Urethritis, pelvic
inflammatory
disease

Penicillin,
cephalosporins,
quinolones

Commercial sex workers penA, penB, NorM
[60,61]

5. Scale of Antibiotic Use in Animals and Humans

Global use of antimicrobial substances in animal production for food (milk, eggs, and meat) was
estimated at 63,151 ± 1560 tons (100%) in 2010, with a projected increase to 105,596 ± 3605 tons (167%)
by 2030. The additional 34% rise will depend on the implementation of intensive farming systems by
2030. A recent study provides a projection of antibiotic use for livestock in India, where quinolones are
expected to increase up to 243% by 2030, compared to their use in 2015, while the use of ampicillin and
co-trimoxazole has declined [62]. It is envisaged that by 2030, the consumption of antimicrobials in Asia
could reach roughly 51,851 tons; representing 182% of the current global consumption of antimicrobials
in animal food in 2010. An overall 176% increase in antibiotic use was observed during the decade
2000–2010 in Brazil, Russia, India, China, and South Africa (BRICS) [63]. Animal consumption of
antimicrobials in BRICS countries is expected to increase up to 199% by 2030 compared to current
use. In human populations its expected growth will be around 113% during the same period [64].
India’s consumption of 12.9 × 109 units of antibiotics (10.7 units/person) made it the largest consumer,
followed by China, which used 10.0 × 109 units (7.5 units/person) in 2010. The United States used
6.8 × 109 units (22.0 units/person) of antibiotics during this time [32]. BRICS countries are five major
rising national economies. From 2000 to 2010, antibiotic sales in the health care sector in India and China
increased to 123% and 157% respectively [63]. This intensified antibiotics production significantly
pollutes the environment.
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6. Anthropogenic Contamination of Environment with Antibiotics and ARGs

Antibiotics can enter the environment through different routes (Figure 3). Antibiotics produced
by industry as well as their metabolites are released from plants, hospitals, farms, and households
with biological wastes (urine, faeces, sputum, placenta, tissues and organs) or by means of abandoned
animals (e.g., cattle in India), stray animals (dogs, pigs, and birds) and open human defecation in slum
areas. From the sewage, waste water treatment plants (WWTPs), and surface run off the antibiotics
and/or ARG contaminate water and can be dispersed on fields that directly or indirectly enter humans’
and animals’ food chain systems [23,65,66]. The resistant bacteria follow similar routes to invade
human systems [67]. These routes result in an environment where antibiotics, ARGs, antibiotic resistant
bacteria, and the environmental bacterial flora can interact. These types of environments become likely a
hotspots for the development of new ARGs by horizontal gene transfer that cross-contaminate different
animal species. Humans come in contact with resistant microorganisms through numerous routes
including consumption of contaminated foods, interactions with animals, and within contaminated
environments. Infected human hosts spread ARGs to microflora inhabiting the hosts [23] and within
communities (Figure 3). For instance, the β-lactamase cblA present in Bacteroides is one of the most
abundant ARGs in the microbiota of both healthy persons and patients [68,69]. The progress and
challenges in the understanding of ARG in the microbiota have been described in numerous excellent
reviews [70–74].

Metagenomics is a diagnostic tool for detection of pathogens outbreaks in the faecal samples and
tracking ARG in individual patients, which is known as resistome profiling [71,75,76]. Future advances
in genome sequencing technologies are likely to facilitate high-throughput characterization of the
resistome by metagenomic sequencing of microbiome in patients and assessing the possibility for
horizontal gene transfer.

7. Alternative Strategies to Combat Antibiotic Resistance

Alternative strategies are imperative to combat infectious pathogens containing ARG [14,77].
The emerging therapies, including bacteriophage therapy [78], predatory bacteria, immunotherapeutics,
haemofiltration devices, quorum sensing inhibitors, antimicrobial adjuvants, faecal microbiota
transplantation (FMT), nano-antibiotics and nitric oxide (NO)-releasing nanoparticles, antimicrobial
peptides (AMPs) or bacteriocins [15,79,80], essential oils, as well as competitive exclusion of pathogens
through genetically modified probiotics and postbiotics, RNA therapy, and use of vaccines, are the
prospective strategies discussed below.

7.1. Phage or Bacteriophage Therapies

Bacteriophages are viruses using bacteria as a host. They are extensively investigated as a
replacement for antibiotics against drug-resistant pathogens despite numerous challenges [81–83].
Phage therapy was introduced in the early 1920s and in Georgia, Eastern Europe [84]. The technique
is gaining popularity because phages are ubiquitous, harmless, and could be administered orally
with food [84], topically on open wounds or surface infections [85], or intravenously during systemic
infections (Table 4). The recent innovations in the gene therapies have created novel opportunities
too for phage therapy to disrupt antibiotic resistance genes by Clustered Regularly Interspaced Short
Palindromic Repeat (CRISPR) interaction with CRISPR-associated (Cas) (CRISPR/Cas) gene editing
tool [86] or deliver antimicrobial proteins in recombinant phages [85]. However, the fine specificity of
phage towards host bacterium species precludes their applications as an empiric therapy for acute
infections. The phage libraries need a continuous update to ensure their efficacy against antibiotic
resistant bacteria. Developing and establishing a complete library of phages for every plausible
infectious bacterium is challenging [85].
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7.2. Predatory Bacteria

Obligate predatory bacteria, including Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus,
populate soils and water globally [87]. Epibiotic or endobiotic predatory bacteria are attached to the
membrane of the Gram-negative bacteria to consume prey contents and divide outside or inside their
prey [88–90]. Several studies have demonstrated that B. bacteriovorus can kill more than 100 human
bacterial pathogens acting as “living antibiotic” [91]. Predatory bacteria are free-living, are not
pathogenic to humans, and have low immunogenicity. The use of B. bacteriovorus is being investigated
as the novel therapeutic approach against antibiotic resistant and/or unidentified microbial infections.
However, further research is required to understand the mechanism of predator–host interactions.

Table 4. Phage therapy in humans and in animal models.

Causative Agent Model/Route Condition Type of Phage Result

Shigella dysenteriae Human/Oral Dysentery Cholera Bacteriophage Recovered after 24 h [92]

P. aeruginosa Murine/Oral Sepsis Phage strain KPP10 66.7% mortality reduction
[93]

Vancomycin-resistant
E. faecium

Murine/Intraperitoneal
injection (i.p.) Bacteremia Phage strain C33 &

ENB6
100% mortality reduction
[94]

C. difficile Hamster/Oral Lleocecitis Phage strain 135I Prevented infection [95]

Vibrio cholera Human/Oral Cholera Cholera Bacteriophage
93% survival in treated
group vs. 37% in control
group [92]

Imipenem-resistant
P. aeruginosa Murine/I. p. injection Bacteremia Phage strain Ø9882 100% mortality reduction

[96]

B-lactamase producing
E. coli Murine/I. p. injection Bacteremia Phage strain Ø9882 100% mortality reduction

[96]

S. aureus Rabbit/Subcutaneous
injection Wound Infection Phage LS2a Prevented infection [97]

Salmonella Typhi Human/Oral Typhoid

Pyophage,
Intestiphage,

Staphylococcal
bacteriophage,
PhageBioDerm

5 fold decrease in typhoid
incidence compared to
placebo [98]

MDR S. aureus Human/Tropical Diabetic foot ulcer Staphylococcal Phage
Sb-1 100% recovery [99]

Antibiotic-resistant
P. aeruginosa Human/Oral Chronic otitis Biophage-PA

Improved symptoms in
double-blind,
placebo-controlled phase I/II
trial [85]

E. coli Murine/I. p. or
subcutaneous injection

Meningitis and
sepsis Lytic Phage EC200PP

100% and 50% mortality
reduction meningitis and
sepsis, respectively [100]

7.3. Immunotherapeutics

Immunotherapeutics are biomolecules that improve immune responses in the host against
infectious agents. A large number of immune adjuvants such as cytokines interleukin-2 (IL-2),
IFN-gamma, IL-7, IL-12, as well as granulocyte macrophage colony stimulating factor (GM-CSF)
and programmed cell death ligand-1 antibody are under clinical investigation to improve hosts’
immune defence in subjects with antibiotic resistance or immunocompromised patients [101,102].
For instance, G-CSF stimulates neutrophil production in patients with low neutrophil counts caused
by chemotherapeutics. Pegfilgrastim is most widely used synthetic immunostimulant of G-CSF
production [103]. In agriculture, a bovine G-CSF or its inducer pegbovigrastim are administered to
cattle prior to parturition to boost the immune system and decrease the incidence of mastitis [104–106].
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Monoclonal and polyclonal antibodies provide passive immunity against bacterial pathogens.
The antibodies mAb F598, recognizing the major component of bacterial Gram-positive and
Gram-negative cell wall poly N-acetylglucosamine (PNAG), are in a phase I clinical trial [107].
The two neutralizing, human monoclonal antibodies against C. difficile toxins A (CDA1) and
B (CDB1) reduced the recurrence of C. difficile infection in double-blind placebo randomized controlled
studies [91,108]. Recently, human monoclonal antibody bezlotoxumab was approved by US Food and
Drug Administration (FDA) for prevention of recurrent C. difficile infection [109]. The advantageous
immune response against infections requires precise timing for intervention with immunotherapeutics
that could limit its applications.

7.4. Haemofiltration Devices

Extracorporeal pathogen removal filters such as mannose binding lectins [110] or bound
heparin [111] are being studied. These therapies can bind and remove an array of blood stream
pathogens. These haemofilters will cause reduction in the bacterial load which allows the host to
develop innate and adaptive immune responses against residual antibiotic-resistant pathogens.

7.5. Quorum-Sensing Inhibitors

Bacteria behave as single organisms at low densities in a favourable environment.
However, they acquire multicellular type of communication at high density or in adverse, antimicrobial
environments by signalling termed quorum sensing (QS). Bacterial QS molecules include:

(1) Oligopeptides (5–10 amino acid cyclic thiolactone), such as N-acyl homoserine lactones used by
Gram-negative bacteria [112,113],

(2) Furanosyl borate (Autoinducer-2, AI-2),
(3) N-acyl homoserine lactones (AHLs),
(4) Methyl-dodecanoic acid, and
(5) Hydroxyl-palmitic acid methylester [114,115].

In response to QS molecules, bacteria express numerous genes mediating bioluminescence,
virulence, biofilm formation, sporulation, and other processes. Two widely studied QS molecules
are AHL and peptides used by Gram-positive bacteria. The substances which inhibit the signal
transduction and virulence activities of bacteria [116–118] are termed QS inhibitors, quorum quenchers,
or antipathogenic signal interference. A recent study has identified 4-aminoquinolone as QS inhibitor in
S. marcescens and P. auroginosa [119]. Recent studies have identified the range of new QS inhibitors derived
from different sources, such as ajoene, iberin, sulforaphane, phenolics, O-glycosylated flavanones,
polyphenols, urolithins, limonoids, caffeine, Chamaemelum nobile flower extract, leaves extract from
Kalanchoe (Bryophyllum pinnatum), phytols, avellanin C, pigments (melanin, melanoid, pheomelanin),
cyclic dipeptides, quercetin, engineered variant of hyper-thermostable lactonase SsoPox, thermostable
lactonase, and colostrum hexasaccharide. These QS inhibitors have been used against human pathogens
such as P. aeruginosa, Yersinia enterocolitica, Aeromonas hydrophila, S. aureus, Chromobacterum violaceum,
A. baumannii, and E. coli [120]. QS inhibitor gallium effectively controls a biofilm formation via
inhibition of iron metabolism [119,121–124]. The application of QS inhibitors for disruption of biofilms
is being investigated for applications improving outcomes in systemic infections [125,126].

7.6. Antimicrobial Adjuvants (AA)

AA modify the efficacy of existing antibiotics without changing theirintrinsic antimicrobial activity.
AA reverse the bacterial mechanisms of antimicrobial resistance [127–129]. The antibiotic efficacy is
modified by any of the following mechanisms [130–138].
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(a) Biofilm disruption.
(b) Augmenting the uptake of antimicrobial in the target cell.
(c) Enhancing the oxidative stress in bacteria.
(d) Supressing the ARG.
(e) Inhibition of bacterial efflux pumps.

Different antimicrobial adjuvants classes such as efflux pump inhibitors (e.g., quinolines,),
β-lactamase inhibitors (e.g., clavulanic acid), membrane permeabilizers (e.g., aminoglycosides),
antivirulence compounds (e.g., OASS-inhibitors, SAT-inhibitors, Cys-inhibitors) have been used against
Gram-negative and Gram-positive bacteria. The oral pharmaceutical Augmentin contains β-lactamase
inhibitors clavulanic acid and amoxicillin. It effectively treats a wide range of bacterial infections,
including bronchitis and Lyme disease [139]. Recent study has demonstrated that efflux pump
inhibitors, including N-acetylcysteine, Tris-EDTA, and disodium EDTA have intrinsic antimicrobial
activity and overcome antibiotic resistance. These AA could be used to enhance the efficacy of existing
antibiotics against Gram-negative and multidrug-resistant bacteria [140,141]. Thus, AA provide
an economical alternative to time-consuming and costly development of new antibiotics targeting
antibiotic resistance.

7.7. Faecal Microbiota Transplantation (FMT)

FMT is also known as faecal bacteriotherapy, faecal transfusion, faecal transplant, faecal enema,
human probiotic infusion (HPI) and stool transplant. FMT is the process of transplantation of bacterial
solution from faecal matter of a healthy individual donor into a recipient’s intestinal tract for total
restoration of gut microbial flora using various methods including enema, nasogastric, nasoduodenal
and colonoscopic routes (Figure 4) [142,143]. In veterinary medicine, it is known as “transfaunation”
treatment for ruminate animals [144]. FMT was first introduced by Ben Eiseman and colleagues
in 1958 for the treatment of four patients with pseudomembranous colitis [145], although the use
of faecal enema therapy was described by Ge Hong in fourth-century China [146]. Few studies
have shown that FMT is an effective treatment for people with C. difficile infection along with other
gastrointestinal diseases, such as irritable bowel syndrome (IBS), colitis, constipation, diarrhoea,
several neurological conditions such as Parkinson’s and multiple sclerosis [147]. FMT is successfully
used in clinical practice for treatment of recurrent C. difficile infection that cannot be cured with
antibiotics. Currently, different microbiota-based products for other diseases are under development
and/or in clinical trials [148]. Ethical issues appear to be another hindrance despite FMT safety and
efficacy. Further research is needed to advocate for efficacy of FMT therapy against global antibiotic
resistance menace.
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Figure 4. Schematic illustration of faecal microbiota transplantation (FMT) procedure. The left panel of
the above figure depicts sample preparation where stool is harvested from healthy donors, processed
via different stages such filtration, slurry preparation followed by cold storage in stool bank. The right
panel illustrates the FMT procedure, where processed faecal microbiota of healthy donor stored in stool
bank is either delivered via rectal route or oral route to the diseased patients (recipient) to provide a
healthy microbiome community.

7.8. Nanoantibiotics

Although bacteria develop resistance to ‘free’ antibiotics, such as amphotericin B,
oxacillin, cloxacillin, amoxicillin, cephalexin, cefotaxime, ceftazidime, vancomycin, streptomycin,
and erythromycin, the coating of antibiotics on metal nanoparticles show enhanced antibacterial,
antiviral, and anticancer efficacy (Table 5). Various research groups have demonstrated antimicrobial
efficacy of silver (Ag) [149], copper (Cu) [150], gold (Au) [151], titanium (Ti) [152] and metal
oxide-based nanoparticles such as titanium dioxide (TiO2) [153], copper oxide (CuO) [154], zinc oxide
(ZnO) [155], manganese oxide (MnO2), aluminium oxide (Al2O3) [156] with and without antibiotics.
Nanoantibiotics are regarded as promising therapeutic candidates for future applications to combat
antibiotic resistance in biomedical sciences (Figure 5) [157,158].

Nitric oxide (NO) is a potent agent against a wide range of Gram-positive and Gram-negative
bacteria. NO is endogenously produced by oxidation of L-arginine to L-citrulline by NO synthase
enzymes in eukaryotic cells [159–161]. Administration of exogenous NO donors or NO-releasing
nanomaterial releases high concentrations of small gaseous molecules that permeate membranes
(Figure 5). In bacteria, NO leads to the production of harmful ROS and reactive nitrogen species (RNS),
such as peroxynitrite, dinitrogen trioxide (N2O3), and nitrogen dioxide (NO2), by mechanisms involving
inhibition of catalase activity [162]. Both ROS and RNS are also produced in host macrophages and
other immune cells pathways to destroy the microorganisms [163,164]. A study had reported that
NO-releasing nanomaterials decreased the biofilm-infected wounds that promoted wound closure [165].
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Thus, NO donor nanomaterial represents a new promising strategy to combat antibiotic resistance in
the future.
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Figure 5. Schematic principle of action by nano-antibiotic therapies including nitric oxide (NO)
releasing nanoparticles and nanoparticles in combination with antibiotics. The various nano-antibiotics
(nAbts, purple shape) and NO-releasing nanoparticles (green circles) act via two components: metal
ions (Ag+, Cu2+, Zn2+) (yellow particle in the centre) and a releasing component such as NO with
or without antibiotics. Both components increase production of reactive oxygen species (ROS) in the
bacterium as well as in the host immune cells (e.g., macrophages, neutrophils). Left panel, in the
bacterium, NO inhibits catalase activity, which leads to rise in levels of hydrogen peroxide. In the
presence of transition metals of nanoparticles catalyse conversions of hydrogen peroxide to a hydroxyl
radical (HO•). Hydroxyl radical is one of many ROS and RNS responsible for oxidative and nitrosative
stress and death of bacteria. ROS leads to disruption of cell membrane, interruption of transmembrane
electron transport, oxidation of cellular components, protein and DNA damage. These actions disrupt
structural and functional integrity of bacteria.
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Table 5. Effect of metal/metal oxide nanoparticles with or without antibiotics against various bacteria.

S.No. Metal Nanoparticles Used Action against Bacteria

1 Silver E. coli, M. tuberculosis, MRSA, S. aureus, S. pyogens,
K. pneumonia, [166–175].

2 Titanium K. pneumonia, S. aureus, A. baumannii, E. coli,
Morganella morganii [152]

3 Gold MRSA, E. coli, P. aeruginosa, S. aureus,
Enterococcus spp., B. subtilis [151,176,177]

S.No. Metal Oxide Nanoparticles Used Action against Bacteria

1 Zinc oxide MRSA, Streptococcus agalactiae [155]

2 Manganese oxide MRSA [178]

3 Manganese oxide E. coli [156]

S.No. Metal and Metal Oxide Nanoparticle
Composite Used Action against Bacteria

1 Zinc doped copper oxide nanocomposite MRSA, E. coli [154]

2 Copper doped zinc oxide nanocomposite E. coli, S. aureus [179]

S.No. Metal Oxide Nanoparticles in Combination
with Antibiotics Used Action against Bacteria

1 ZnO and Antibiotics (cefotaxime, ampicillin,
ceftriaxone, and cefepime)

E. coli, K. pneumoniae, Sphingomonas paucimobilis,
and P. aeruginosa, respectively [180]

2

TiO2 nanoparticles in combination with
antibiotics (β-lactams, cephalosporin,
glycopeptides, aminoglycosides,
flouroquinolones, azlides, macrolides,
lincosamides, and sulphonamides)

Showed improved antibacterial activity [181]

S.No. Metal Nanoparticles in Combination with
Antibiotics Action against Bacteria

1 Gold nanoparticles and Ampicillin MDR P. aeruginosa, E. aerogenes, and MRSA [182]

2 AgNPs with ciprofloxacin, imipenem,
gentamycin, trimethoprim, and vancomycin

MDR E. coli, P. aeruginosa, E. faecalis, S. aureus,
Micrococcus luteus, A. baumannii, K. pneumoniae,
and Bacillus spp. [183]

7.9. Plant-Derived Antimicrobials and Essential Oils

Historically, plant extracts have been used as an antibiotic in food preservatives. Plant-derived
antimicrobials such as nerolidol, apritone, and bisabolol exert antimicrobial action combating
Gram-positive and Gram-negative bacteria [184–186]. Moreover, no side effects and antimicrobial
resistance toward these plant-derived phytochemicals have been documented thus far, probably,
due to their multiple mechanisms of action. Essential oils are another type of secondary metabolites of
aromatic plants. Liquid and volatile essential oils have significant medicinal properties in infectious and
non-infectious diseases (Table 6) and have a low risk of antibiotic resistance [187,188]. Multiple studies,
reviewed in [189], have revealed potent activity of essential oils from Eucalyptus camaldulensis against
Gram-positive and Gram-negative bacteria. The complex composition of different essential oils and
their specificity against different types of bacteria are now subject of intense investigation [190].
Pharmaceutical development use antimicrobials produced in flora, fauna, and microorganisms living
in various ecological niches, including deep oceans, rain forests, and soils [191–194]. Potential use
of natural antimicrobial metabolites is a promising strategy for controlling antibiotic resistance
development in microorganisms in the future.
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7.10. Probiotics, Postbiotics and Synbiotics

Probiotics are the alive microorganisms or microbial feed supplements. They primarily comprise
two classes of lactic acid-producing microorganisms: the bifidobacteria, and lactic acid bacteria (LAB).
These microorganisms include species of Enterococus, Lactobacillus, Lactococcus, Pediococcus, Vogococcus,
Aerococcus, Carnobaterium, Streprotococcus and Weisella. Most LAB, due to their safe (GRAS) status,
and the abundance of some genera in the GI tract, mammary gland and female genitourinary tract,
are regarded as alternative health-promoting treatments [195]. Postbiotics are functional bioactive
compounds such as short-chain fatty acids, teichoic acid and other fermentation products. Identification
of novel animal origin probiotics, postbiotics, and the non-viable microbial probiotics or probiotic
metabolites that have biologic activities in host [196–199] may facilitate the development of alternative
therapeutic combinations. These adjuvants can improve dosing regimens of traditional antibiotics and
lessen the burden of enteric infections and side effects of antibiotic therapies.

Table 6. Effect of essential oils against bacteria.

S.No. Essential Oils (Components) Active against Bacteria

1

Mentha (menthol, isomenthone, limonene,
iso-menthanol, menthol acetate, carvone,
β-pinene, α-pinene, 1,8-cineole, α-terpineol,
isopulegol, pulegone, piperiton, piperitone oxide,
and β-phellandrene.)

S. aureus, Staphylococcus epidermidis, B. cereus,
and E. coli, S. pyogenes, P. aeruginosa,
Pseudomonas fluorescens, C. albicans, and V.
cholerae, [200–202]

2

Basil (Linalool, epi-α-cadinol, α-bergamotene,
γ-cadinene, germacrene D, camphor.
methylchavikol, methylcinnamat, linolen,
eugenol, cis-geraniol, 1,8-cineole, α-bergamotene,
β-caryophyllene, viridiflorol.)

S. aureus and B. subtilis, Staphylococcus,
Pseudomonas, and Enterococcus genera, L.
monocytogenes and B. cereus Vibrio spp. and
Aerobacter hydrophila [203–205]

3 Oregano (thymol, carvacrol, ρ-cymene,
thymoquinone, and γ-terpinene.)

Sarcina lutea, S. aureus, C. albicans, E. faecalis,
and B. cereus [206,207]

4 Rosemary (α-pinene, myrcene, 1,8-cineole,
camphor, camphene, α-terpineol, and borneol.)

S. epidermidis, S. aureus, B. subtilis, Proteus
vulgaris, P. aeruginosa, and E. coli. [208–211]

7.11. RNA Therapy

The bacterial small (50–500 nucleotides) regulatory RNAs (sRNAs) participate in many events
such as growth, virulence onset, biofilm formation, stress response and antibiotic resistance.
Modulation of bacterial sRNAs function by specific drugs could enhance the efficacy of antibiotics [91].
Acquired bacterial immunity based on CRISPR/Cas interaction has been used to target extended
spectrum beta-lactams, carbapenems, or colistin resistance genes without changes in the host
microbiota [212].

These RNA-based therapies, such as sRNAs and RNA-guided CRISPR/Cas technologies holds
promise for successful delivery of highly effective RNA elements into the bacteria to fight against
antibiotic resistance.

7.12. Development and Use of Vaccines

Vaccines provide possible solutions for the emerging antimicrobial resistance (AMR) crisis.
Vaccines continue to be one of the most effective interventions against primary and secondary
antibiotic resistant bacterial infections. Several candidate vaccines against the most common bacteria,
e.g., C. difficile (Phase III), M. tuberculosis (Phase II), Group B Streptococcus (Phase II), S. aureus (Phase II),
are in mid-stage clinical development by major pharma companies [213].
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8. Mitigation Steps to Curb the Menace of Antibiotic Resistance

Tackling antibiotic resistance with preventive protective measures and policies in combination with
effective medicines is a high priority to ensure prevention and treatment of infectious diseases [214,215].
The following measures have been proposed:

• Strengthening of surveillance data.
• Improving awareness of antibiotic resistance.
• Improving the practices of antibiotic prescription.
• Improvement of poor sanitation, malnutrition, and endemic infections.
• Optimizing the use of antimicrobial medicines and restricting over the counter sale of antibiotics.
• Improving the public awareness and government commitment.
• Reducing the incidence of infection by various means.
• Reducing clinical trial risk.
• Boosting market value for not feeding animals antibiotics.
• Strengthening the regulation of farm feeding of antibiotics.
• Ensuring the quality of generic antibiotics.
• Early sharing of data.
• Organizing world antibiotic awareness week.
• Implementation of the global antimicrobial resistance surveillance system (GLASS).
• Establishing the global antibiotic research and development partnership (GARDP).
• Establishing the interagency coordination group on antimicrobial resistance (IACG).

9. Future Strategies, Challenges, and Outlooks

The biggest imminent threat caused by the spreading of antibiotic resistance is the rise of multi-drug
resistant bacteria such as MRSA, VRE, and ESBL. Bacteria develop resistance to drugs by various
resistance development routes, including the major spreading routes among bacteria by ‘Jumping
DNA’ termed transposons. Barabas’s group have proposed a therapeutic new target, a transposase
protein that blocks the transposon insertion mechanism between the bacteria and interrupts transfer
of ARG [216]. Another promising innovation is an early detection technique for antibiotic resistance
using a CeO2 nanoparticle biosensor. The search for better treatment strategies for antibiotic resistance
is continuing. Combined chemical and biological approaches would contribute to the development of
a new potent remedies to mitigate this immense threat.

The microbial infections posing threats to human and animal health with major antibiotic
resistant pathogens challenging agricultural food supply and the integrity of the environment.
While some examples of ARG dissemination between environmental and pathogenic bacteria are
evident, the intricate mechanisms were described in a scarce number of studies remain incomplete
Antibiotics became a part of modern medicine around seven decades ago, and their efficacy and
safety do not meet the demands of the intensifying animal production and growing population facing
global treat of infectious diseases. Experts from diverse fields such as clinical research, microbiology,
genetic and computational engineering, imaging and modelling should work jointly to evolve strategies
and develop novel therapeutics to address this problem.
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