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ABSTRACT

We have developed a novel multiplex quantitative
DNA-based target amplification method suitable
for sensitive, specific and quantitative detection
on microarray. This new method named NASBA
Implemented Microarray Analysis (NAIMA) was
applied to GMO detection in food and feed, but
its application can be extended to all fields of
biology requiring simultaneous detection of low
copy number DNA targets. In a first step, the use
of tailed primers allows the multiplex synthesis
of template DNAs in a primer extension reaction.
A second step of the procedure consists of transcrip-
tion-based amplification using universal primers.
The cRNA product is further on directly ligated to
fluorescent dyes labelled 3DNA dendrimers allowing
signal amplification and hybridized without fur-
ther purification on an oligonucleotide probe-based
microarray for multiplex detection. Two triplex
systems have been applied to test maize samples
containing several transgenic lines, and NAIMA has
shown to be sensitive down to two target copies and
to provide quantitative data on the transgenic con-
tents in a range of 0.1–25%. Performances of NAIMA
are comparable to singleplex quantitative real-time
PCR. In addition, NAIMA amplification is faster since
20 min are sufficient to achieve full amplification.

INTRODUCTION

In 2007, after 12 years of commercialization of genetically
modified (GM) crops, the total accumulated land areas
sown with GM plants have exceeded 690 millions hect-
ares (1). Consequently, regulations concerning biotech
products have been adopted by many countries, and
these require traceability of GM products on the market.
Additionally, in some countries, compulsory labelling
of products containing genetically modified organisms
(GMOs) above a certain threshold has been introduced (2).

Currently, methods based on PCR technology are
implemented in GMO detection laboratories, which
allow for specific identification and quantification of
single GM organisms (3,4). Not only the increasing pres-
ence of GMOs on the market but also their growing taxo-
nomic (diverse taxon host plants) and biotechnological
(diverse genetic constructs) diversity will render the cur-
rent GMO testing strategies unmanageable both in terms
of time and associated testing costs. Consequently, it is
necessary to introduce new analytical technologies for
high throughput GMO diagnostics. At the moment, the
use of microarrays is the method of choice for multiplex-
ing approaches in many fields of research and has already
been applied to GMO diagnostics (5–12). However, for
the purpose of GMO detection and quantification, direct
hybridization of the samples onto microarrays is not pos-
sible due to the high sensitivity of GMO target DNA
copies needed. Therefore, an amplification step of the
DNA targets is applied prior to hybridization on micro-
arrays. PCR technology has thus far, generally, been used
for this purpose (5–10,12). However, high-throughput
analysis using microarray hybridization may suffer from
lack of a true multiplexing solutions for PCR technology
due to the number of competitive amplification reactions
with different efficiencies (3,13,14). To proceed to the
microarray-based analysis, one still needs to use a set-up
of multiple PCR reactions; one for each of the PCR assays
targeting only a few particular genetic elements (6,8,9,12).
As a consequence to such a set-up, the cost and time
associated with GMO analyses increase. Furthermore,
the accuracy of end-point PCR technology has its limits
due to the exponential nature of amplification. This expo-
nential nature limits the quantitative aspects of micro-
array-based GMO detection systems and therefore, most
of these systems are being applied for qualitative analysis.
Only one study has reported semiquantitative microarray-
based detection (6).
Within the European Integrated Project Co-Extra,

several multiplexing amplification methods in combina-
tion with microarray hybridization are under investiga-
tion (http://www.coextra.eu/library/deliverables.html). We
have investigated the potential of NASBA to be used for
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multiplex target amplification prior to microarray detec-
tion in GMO diagnostics to alleviate the lack of multi-
plexing and quantitative performance associated with
end-point PCR technology (15). NASBA is a method
that mimics retroviral replication and uses a combination
of three enzymes: the avian myeloblastosis virus’s reverse
transcriptase/DNA polymerase, T7 RNA polymerase and
RNase H, along with a T7 promoter-labelled target-
specific primer (16). NASBA has been most widely used
for clinical diagnosis of human bacterial and viral path-
ogens, as well as for the detection and quantification
of microbes in food and environmental samples (15),
using commercial NASBA kits for RNA amplification
(bioMérieux SA is the patent holder for NASBA technol-
ogy). Additionally, it has recently been shown that NASBA
is appropriate for human DNA-target amplification (17).
We have developed a novel multiplex quantitative

DNA-based target amplification method suitable for
use in combination with microarray detection. This
new method named NASBA Implemented Microarray
Analysis (NAIMA) was applied to the field of GMO
detection. This fast and simple integrated method allows
sensitive, specific and fully quantitative on-chip GMO
detection in a multiplex format. The NAIMA method
combined with microarray detection provides a suitable
analytical tool for high throughput GMO diagnostics
that will be required in the near future.

MATERIALS AND METHODS

Test materials

Mon863 maize flour (9.9% w/w) certified reference mate-
rial (CRM) was prepared and purchased from the EU
Joint Research Centre, IRMM (Institute for Reference
Materials and Measurements, Geel, Belgium). Mon810
(100% w/w) maize leaves were obtained from plants
grown from seeds (Campero cultivar) kindly provided by
CSIC, Barcelona, Spain.
For the specificity assays, CRM RoundupReady�

Soya (5% w/w) and CRM EH592-527-1 Potato (100%
w/w) were purchased from the EU Joint Research
Centre, IRMM (Institute for Reference Materials and
Measurements, Geel, Belgium). Feed samples containing
RoundupReady� Soya and wild-type maize, feed samples
containing wild-type oilseed rape and wild-type maize
seeds previously assayed by qPCR for routine diagnostics
in our laboratory were also used in these specificity assess-
ment experiments.
For quantitative analyses, samples containing Mon863

and Mon810 transgenic lines were prepared by mixing the
Mon810 and Mon863 DNA reference material with DNA
from feed samples identified as non-GM in our labora-
tory, to obtain the appropriate transgenic contents.

DNA purification

Samples were purified using the DNeasy plant mini kit
(Qiagen, Valencia, CA) as described by the manufacturer
with the incubation time of the sample in the lysis buffer
extended to 10min.

Primer and microarray probes design

Primer design. Oligonucleotide primers used in the
NAIMA procedure were designed based on published
DNA sequences using the Beacon Designer software
(Premier Biosoft International Inc., Palo Alto, CA) and
their secondary structure was analysed using the
DINAMelt Server (http://frontend.bioinfo.rpi.edu/appli-
cations/hybrid/) (18). We have focused the design on the
region targeted by singleplex qPCR methods used in rou-
tine GMO detection (19–22). Primers designed for the
NAIMA procedure are listed in Table 1.

For the multiplex template synthesis reaction, one tailed
primer was constructed of a 30 region specific to the target
sequence and of a 50 region harbouring the sequence
promoter for the SP6 RNA polymerase. The second
tailed primer was constructed of a 30 region specific to
the target sequence, a 50 region harbouring the sequence
promoter for the T7 RNA polymerase and a central
region harbouring an abiotic sequence. The T7 promoter
sequence was designed as recommended in literature (23)
using an extra purine residue sequence. The abiotic
sequence does not show similarities with known biotic
sequences. Tailed primers were designed for specific ampli-
fication of the maize plant species (invertase, IVR), the
CaMV 35S promoter (P35S), the nopaline synthetase ter-
minator (tNOS) and the 50 maize plant DNA-Mon810
insert junction (MON810).

Criteria for the selection of primers to be used in the
first step of the procedure (multiplex template synthesis)
were the following: (1) avoiding folding, homodimeriza-
tion and heterodimerization with other primers in the
reaction mix at 558C; (2) the melting temperature (Tm)
of the target-specific regions must be compatible with
the annealing temperature at 558C; (3) possessing the
lowest possible difference in Tm between each of the
primer pairs; (4) primers were selected so that they could
be used for the analysis of degraded genomic DNA as
present in highly processed products (each amplicon
spans 100–200 bases).

In the second step of NAIMA (universal NASBA),
a single pair of universal-primers is used to amplify all
templates created during the first step of the procedure.
The T7-universal primer is identical to the 50 sequence of
the tailed primer, harbouring the T7 promoter sequence in
the first step of NAIMA: it is composed of the T7 RNA
polymerase promoter sequence fused with the ‘cap’ abiotic
sequence. The SP6-universal primer sequence differs from
this SP6 RNA polymerase sequence in such a way that
it lacks the first four nucleotides contained in the latter
sequence.

Primers were synthesized and HPLC-purified by MWG
Biotech AG (Eurofins MWG GmbH, Ebersberg,
Germany).

Microarray probe design. The microarrays used in the
described experiments were based on the technology devel-
oped by Eppendorf Array technologies, S.A. (EAT,
Namur, Belgium) (24). The probes are covalently bound
by their 50 ends to glass slides (25). The capture probes were
suitably designed for sensitive and specific hybridization
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of the product to be detected. Capture probes contained
20–30-nt long sequences complementary to their specific
target for the specific detection of the maize invertase
(NAIMA IVR product), the CaMV 35S promoter
(NAIMA P35S product), the nopaline synthetase termi-
nator (NAIMA tNOS product) and the 50 maize plant
DNA–Mon810 insert junction (NAIMA MON810
product) (Table 1). The capture probes were spotted
in triplicate. Anti-sense probes corresponding to the
reverse-complement sequence of the probes, described
above, were also added to the microarray as controls
(Table 1). Additional control probes were spotted onto
the microarray including (i) positive detection controls
consisting of capture probes labelled with Cy3 or Cy5,
(ii) negative hybridization controls (non-specific probes)
and (iii) negative detection controls (spotting buffer with-
out DNA) (Figure 1). Capture probes were designed to
minimize secondary structures, hetero- and self-dimeriza-
tions and to have melting temperature values ranging
between 77 and 828C, as described earlier (9).

Specificity of the sequences. A search using the BLASTN
tool (http://www.ncbi.nlm.nih.gov/blast/Blast.cgi) has
shown no similarity between the non-target sequences
used in the primers (T7 promoter, SP6 promoter and
abiotic sequences) and any plant genomes or known
transgenic sequences introduced in commercial crops.
The BLASTN tool was also used to check specificity of
the target sequences in the NAIMA primers and of the
probes on the microarray in silico.

NAIMA reaction setup

All experiments (specificity, sensitivity, linearity and quan-
tification) were performed in duplicate, and for each of
these experiments, measurements at two different dilutions
were taken.

First step: multiplex template synthesis. This first step con-
sisted of a multiplexed template synthesis reaction during
which several pairs of tailed primers were extended to pro-
duce templates bound to the universal regions (Figure 2).

Table 1. Primers and probes used in NAIMA, qPCR and microarrays

Target Orientation Name Sequence (50–30) References

Primers used for NAIMAa

Mon810 Antisense T7-Mon810a T7-AATAAAGTGACAGATAGCTGGGCA this work
Sense SP6-Mon810b SP6-TGTGCTGATGAAGGTATGTCC

P35S Antisense T7-P35Sa T7-AAGGGTCTTGCGAAGGATAG this work
Sense SP6-P35Sb SP6-TCATTGCGATAAAGGAAAGG

IVR Antisense T7- IVRa T7-ACAGCCTAGCTAAGAAATGC this work
Sense SP6-IVRb SP6-CGTTCGGCCTTCTCGTGCTG

tNOS Antisense T7-tNOSa T7-GCGATAATTTATCCTAGTTTGC this work
Sense SP6-tNOSb SP6-GTCTTGCGATGATTATCATATAATTTCT

T7-sequence T7-universalc AATTCTAATACGACTCACTATAGGGAGATCCAATAG
AATCACATCGCTTACAAGGCAAT

this work

SP6-sequence SP6-universald CATACGATTTAGGTGACACTATAGAA

Primers used for TaqMan� qPCR
IVR Antisense ivr1-TM2-R AAAGTTTGGAGGCTGCCG (19)

Sense ivr1-TM1-F TGGCGGACGACGACTTGT
Probe ivr1-pro VIC-CGAGCAGACCGCCGTGTACTTCTACC-TAMRA

Mon810 Antisense Mon810R1311 CCTTCATAACCTTCGCCCG (20)
Sense Mon810F1311 AATAAAGTGACAGATAGCTGGGCA
Probe Mon810pro1311 FAM-ACGAAGGACTCTAACGTTTAACATCCTTTGCCA-TAMRA

tNOS Antisense tNOSR CGCTATATTTTGTTTTCTATCGCGT (21)
Sense tNOSF GTCTTGCGATGATTATCATATAATTTCTG
Probe tNOSpro FAM-AGATGGGTTTTTATGATTAGAGTCCCGCAA-TAMRA

P35S Antisense TM-35S-R AAGACGTGGTTGGAACGTCTTC (22)
Sense TM-35S-F GCCTCTGCCGACAGTGGT
Probe TM-35S-pro FAM-CAAAGATGGACCCCCACCCACG-TAMRA

Capture probes present on the microarray
Mon810 cRNA MON spec AACATCCTTTGCCATTGCCCAGC this work

ss cDNA MON spec_B GCTGGGCAATGGCAAAGGATGTT
P35S cRNA 35S ATATCTCCACTGACGTAAGGGATGACGC this work

ss cDNA 35S_B GTCATCCCTTACGTCAGTGGAGATAT
IVR cRNA IVR GTGCTGGCGGACGACGACTTGT this work

ss cDNA IVR_B ACAAGTCGTCGTCCGCCAGCAC
tNOS cRNA tNOS GAGATGGGTTTTTATGATTAGAGTCC this work

ss cDNA tNOS_B GCGGGACTCTAATCATAAAAACCCATCTC

aAll antisense primers used in NAIMA harbour the T7-cap sequence which is designed so that the T7 segment is bound to the 50-end in addition to
the given sequence.
bAll sense primers used in NAIMA harbour the SP6 sequence which is designed so that the SP6 is bound to the 50-end in addition to the given
sequence.
cThe T7-cap extension primer is composed of the T7-RNA polymerase promoter sequence (50-end) and an abiotic cap sequence (30-end, in italic).
dThe SP6-extension primer differs from the SP6 sequence used in sense primers in such a way that it lacks the first four nucleotides (in bold)
contained in the latter sequence.
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For this, we used 5 pmol of each of the SP6- and T7-specific
tailed primers (i.e. three pairs of tailed primers for triplex
NAIMA), 5� colorless Go Taq� Flexi buffer (Promega,
Madison, WI), 1mM dNTP (Promega, Madison, WI),
1.25 units of Go Taq� Flexi DNA polymerase (Promega,
Madison, WI), 2.5mM MgCl2 (Promega, Madison, WI)
and 5 ml of purified DNA in a final reaction volume of
10 ml. Thermal cycling for template synthesis was carried
out as follows: 958C for 2min 30 s, 558C for 30 s and 728C
for 7min 30 s.

Second step: universal NASBA amplification. DNA tem-
plates from the first step were used directly in the NASBA
step (Figure 2). For this, 2.5 ml of template DNA from
the first step were added to 5 ml of the NASBA pre-mix
including the NucliSens� Basic Kit (bioMérieux,
The Netherlands) and the pair of universal primers
(T7-universal primer and SP6-universal primer). The opti-
mized protocol was set for final NASBA reaction concen-
trations of 85mM Tris–HCl (pH 8.5), 12mM MgCl2,
70mM KCl, 15% v/v DMSO, 1mM for each dNTP,
2mM for each NTP, 2 mM T7-universal primer and
2 mM SP6-universal primer. This mixture was pre-
incubated at 958C for 15min and then incubated at
418C for 2min 30 s. Afterwards, 2.5ml of the enzyme
mixture (0.08U/ml RNase H, 32U/ml T7 RNA polymer-
ase, 6.4U/ml AMV reverse-transcriptase per reaction)

was added. Reactions were incubated at 418C for 25min
or 60min in a Gene Amp� PCR system 9700 (PE Applied
Biosystems, CA, USA).

Labelling of NAIMA products

The quality and quantity of NAIMA products was
assessed with the NanoDrop� ND-1000 UV–Vis Spectro-
photometer (NanoDrop Technologies, Wilmington, DE,
USA) and the Agilent 2100 Bioanalyzer (Agilent Technol-
ogies, Palo Alto, CA, USA) according to the manufac-
turer’s instructions. Two microlitres of NAIMA products
(1/5 of the NAIMA reaction volume) was ligated directly
to 3DNA dendrimers harbouring 15 fluorescent dyes
(Oyster-550 dye) per molecule of dendrimer. Ligation
was performed with the FlashTagTM RNA Labelling Kit
(Genisphere Inc., Hatfield, PA) following recommenda-
tions from the manufacturer.

Microarray hybridization

The following steps of hybridization were performed
in the dark. The procedure used was derived from
the Genisphere (Genisphere Inc., Hatfield, PA) recom-
mended procedure for hybridization of FlashTagTM

ligated products on microarrays. Shortly, a hybridization
mix was prepared containing the FlashTagTM ligation
product, 1� enhanced hybridization buffer (heated to
808C for 10min) and 0.8% BSA. The hybridization mix
was heated to 658C for 10min. Thirty microlitres of the
hybridization mix was applied to the microarray, which
was covered with a 22� 25-mm2 glass lifterslip (Erie scien-
tific company, Porthsmouth, NH). The microarrays were
then incubated in a GeneMachines� HybChamberTM

(Genomic Solutions� Inc., Ann Arbor, MI) for 20 h in
the dark at 488C. Following this incubation, the micro-
arrays were washed for 5min in 458C 2� SSC/0.2%
SDS, then for 5min in 2� SSC at room temperature
and for 5min in 0.2� SSC at room temperature. After
washing, the microarrays were centrifuged for 2min
at 3,000g and stored in the dark, at room temperature
until scanning.

Microarray signal detection and image analysis

The microarrays were scanned using a LS200 scanner
(Tecan Trading AG, Switzerland) with the following
parameters: laser excitation wavelength �=543 nm and
filter at �=590 nm. Care has been taken that signal mea-
surements have not reached saturation. Image analysis of
the scanned microarrays was done using the ArrayPro
Analyser� software, version 4.5.1 (Media Cybernetics�

Inc., Bethesda, MD). The average local background
signal for every probe was calculated. Net signal inten-
sity for each probe with a positive signal was calculated
by background subtraction and averaged. A probe signal
was considered positive when the net intensity value
was higher than the local background value plus one stan-
dard deviation.

Figure 1. Microarray used in this study and its specificity. Schematic
representation of the probes spotted onto the microarray. negative hyb
ctl, capture probe having a non-specific sequence; negative det Ctl,
spotting buffer without DNA; det Ctl Cy3, positive detection control
consisting of a probe labelled with a Cy3 dye (similar excitation and
emission spectrum as the Oyster 550 dye); det Ctl Cy5, positive detec-
tion control consisting of probes labelled with a Cy5 dye (similar exci-
tation and emission spectrum as the Oyster 650 dye); P35S, capture
probes specific to the Cauliflower mosaic virus-derived promoter
NAIMA amplicon; IVR, capture probes specific to the invertase
NAIMA amplicon; tNOS, capture probes specific to the nopaline
synthase terminator NAIMA amplicon; MON810 spec, capture
probes specific to the MON810 event-specific NAIMA amplicon. ‘‘B’’
capture probes are reverse complements of the capture probes that can
detect cDNA, secondary products of NAIMA.
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Quantitative real-time PCR

Quantitative PCR was used to calibrate DNA copy
number analysed in samples, to assess NAIMA amplifica-
tion and to analyse transgenic contents of DNA samples.

qPCR set-up. The primers and probe for detection of the
invertase gene (IVR) were used as described (19). Primers
and probes specific for the p35S promoter (P35S) (22) and
tNOS terminator (tNOS) (21) were used to target common
promoter and terminator sequences as previously
described. The event-specific primers and probe for the
genetically modified maize MON810 (MON810) were
used as previously described (20). Sequences of primers
and probes used are listed in Table 1 and their position
on the target DNA is indicated on Figure 3. qPCR reac-
tions were performed as previously described (26) using
2 ml of DNA samples or reverse-transcribed NAIMA prod-
ucts. For each sample quantified, dilution controls were
included to monitor the possible influence of effectors on
qPCR reaction efficiency for each amplicon assayed, as

previously recommended (26). Each dilution was assayed
in duplicate. Results were analysed using SDS 2.1 software
(Applied Biosystems, Foster City, CA) after an automatic
adjustment of the baseline and manual adjustment of the
fluorescence threshold. After being exported, further data
analysis was performed in a basic Excel spreadsheet.

Determination of target copy number in the samples. The
genome copy number of DNA samples was determined by
the qPCR TaqMan� invertase assay, using a known copy
number of 5% Mon810 certified reference material for the
construction of the standard curve. The 5% Mon810 stan-
dard reference material was diluted to contain approxi-
mately 100, 33, 11, 3.7, 1.2, 0.4 and 0.1 ng of DNA,
which corresponds to approximately 18 000, 6100, 2000,
680, 230, 70 and 23 maize genome copies per reaction,
respectively, on the basis of maize genome size (1C) (27)
and the measured DNA concentration. Genome copy
number in the sample prior to amplification was calcu-
lated by the interpolation of Ct values generated onto a
standard regression curve.

Figure 2. Schematic representation of the NAIMA method. Template synthesis step of NAIMA: after denaturation of the target DNA, tailed
primers with a sequence complementary to the target DNA and 50-end sequences necessary for the multiplex amplification bind to the target DNA
and are extended by Taq polymerase (1) to produce the DNA template used in the amplification step. The pair of 50-end sequences is identical to all
the different targets. Multiplex amplification step: the DNA template synthesized in the first step is flanked by a recognition site for DNA dependent
T7 RNA polymerase (2). This dsDNA is further transcribed by the T7 RNA polymerase into numerous copies of antisense RNA molecules (3),
which are later reverse-transcribed into single-stranded sense DNA (ssDNA) (4 and 5) to form an RNA–DNA duplex. This RNA–DNA duplex is
degraded by RNAse H activity (6). The ssDNA is then used as a template by the reverse transcriptase after T7-cap-extension primer annealing (7) to
synthesize a second DNA strand (8). This dsDNA can be used as a template for several cycles of amplification. The final product of NAIMA is anti-
sense cRNA. Only one pair of primers is needed in this amplification step for all the targets to be amplified.

PAGE 5 OF 11 Nucleic Acids Research, 2008, Vol. 36, No. 18 e118



Determination of NAIMA performance. The main final
product of NAIMA is cRNA. To estimate the amplifica-
tion rate of multiplex NASBA with quantitative real-time
PCR (qPCR), a reverse transcription was performed on
the multiplex NASBA products to get double-stranded
cDNA. For this, 50 pmol of SP6-universal primer and
25 mmol of dNTP (Promega, Madison, WI) were added
to the 10 ml volume of the NASBA reaction products.
The mixture was incubated at 658C for 5min and then
put immediately on ice for 5min. Subsequently, 50 pmol
of T7-universal primer were added and the mixture was
incubated for 2min at 428C. Finally, 0.045U of RNAseH
(50 pmol SP6-universal primer) and 60U of superscriptTM

II reverse transcriptase were added for a final volume of
13.6 ml and the reaction solution was incubated for 2 h at
428C followed by 5min of denaturation at 658C.
After qPCR, Ct values of the NAIMA products were

compared to the Ct values of control samples. The control
sample in our experiments was DNA used for NAIMA,
which had been diluted in the same proportion as was
the amplified DNA in the NAIMA reaction and reverse
transcription. The difference in Ct values between the
NAIMA products and control indicated the amplification
rate of the NAIMA reaction. From this, Ct values of
NAIMA products were converted into copy numbers as
described above.
To determine the quantitative performance of the

NAIMA amplification, the 100% Mon810 and the 9.9%

Mon863 standard reference materials were used for pre-
paring the standard curve. Reference materials were
diluted as described above (determination of target copy
number in the samples), NAIMA-amplified and run on
qPCR in duplicate. Target copy number in the sample
prior to NAIMA amplification was calculated by the
interpolation of Ct values generated onto the standard
regression curve.

To determine the transgenic contents of the maize DNA
samples, the ratio between the invertase and transgene
(P35S, tNOS, Mon8101) copy numbers was calculated
and expressed as a percentage. Standard deviations and
coefficients of variation were evaluated for replicate mea-
surements. For each series of measurements, the coeffi-
cient of variation that would be attributed to the final
GMO percent calculation was estimated from the follow-
ing formula: CV=ˇ(CVinvertase

2+CVtransgene
2). Data

were analysed by basic spreadsheet software.
Measurements with CV values above 50% were excluded
from further calculations. For comparison between
NAIMA and qPCR performances, the coefficient of var-
iation was estimated using the standard deviation of the
GMO content assessed by NAIMA (SDNAIMA) and the
GMO content assessed by qPCR considered as the true
value (GMOqPCR) as follows: CV=SDNAIMA/GMOqPCR.

RESULTS AND DISCUSSION

We present a new target amplification approach called
NAIMA developed to detect and quantify the presence
of DNA targets in a multiplex fashion. Moreover, we
have shown the possibility of using this new procedure
for the quantification of DNA targets on a microarray
format. The amplification method is based on a two-step
procedure. In the first step, the use of multiple tailed prim-
ers allows the synthesis of a template DNA in a single
extension reaction. The second step of the procedure con-
sists of a NASBA amplification reaction using a single pair
of universal primers to anneal to the universal sequences
created by the tailed primers. After amplification, the
cRNA are ligated directly with 3DNA dendrimers labelled
with fluorescent dyes. The cRNA–dendrimer complexes
are then hybridized without further purification onto an
oligonucleotide microarray harbouring specific probes
complementary to internal segments of the NAIMA prod-
ucts. The procedure was tested for two separate triplex
systems.

NAIMA design

Several obstacles needed to be circumvented in the course
of NAIMA development. These included the strong pre-
ference of NASBA amplification for RNA templates (23),
and the low multiplexing capabilities. Also, multiplex
amplification, in general, faces the complexity of primer
pair combinations and the problem of unspecific back-
ground amplification (13). In the context of multiplex
PCR, the use of bipartite primers harbouring a universal
region on the 50 end and target-specific sequences on the
30 end has been shown to improve multiplexing capacities
of amplification (6). Also, the addition of primers identical

Figure 3. Description of the GMOs used in this study and approximate
position of the regions targeted by NAIMA primers, qPCR primers
and probes and microarray probes. P35S, sequence derived from the
cauliflower mosaic virus promoter, HSP70, sequence containing the first
intron of the 70 kDa heat-shock protein of maize; IVS2, intron from
maize alcohol dehydrogenase; CRYA(b), synthetic delta endotoxin gene
derived from Bacillus thuringiensis; NPTII, neomycin phosphotransferase
II gene from the Escherichia coli transposon Tn5; T-NOS, transcription
terminator from the Agrobacter tumefaciens nopaline synthase gene;
PR-ACT, 50 region of the rice actin 1 gene containing the promoter
and first intron; OTP, optimized transit peptide sequence; M-EPSPS, a
modified form of wild-type 5-enolpyruvyl-3-phosphoshikimate synthase
gene from Zea mays; P-GBSS, promoter of the gbss gene involved in
starch synthesis from Solanum tuberosum; antigene fragment III, anti-
sense fragment of the gbss gene; GBSS fragment, genomic gbss frag-
ment inverted to sense orientation; CTP, DNA sequences from
chloroplast transit peptides from A. thaliana; CP4-EPSPS, 5-enolpyru-
vylshikimate-3-phosphate synthase gene, isolated from Agrobacterium
sp. (strain CP4); �fragment of CP4-EPSPS gene; ��rearranged sequence
after integration without known homology. Targeted regions are shown
by bold lines above the transgenic region.
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to the universal region of the bipartite primers gave more
uniform amplification results of the different targets (6).

With this in mind, we chose to develop a two-step pro-
cedure: template synthesis and NASBA amplification.
Prior to the amplification procedure, the DNA sample
was treated with RNAse A to alleviate the bias caused
by RNA amplification in the NASBA step. The first step
of NAIMA consists of the synthesis of a DNA template
suitable for NASBA amplification, which takes place in
the second step. We have designed two types of tailed
primers for this first step: bipartite primers and tripartite
primers. The bipartite primer is composed of a 50 region
corresponding to the promoter sequence of the SP6 RNA
polymerase, and a 30 region harbouring a target-specific
sequence. The SP6 promoter sequence is a non-specific
sequence that can be used as universal target in the
second step. The tripartite primer is composed of a 50

region corresponding to the promoter sequence of the
T7 RNA polymerase on which NASBA amplification
relies, and a 30 region harbouring a target-specific
sequence. The central region of the tripartite primer is
composed of an abiotic sequence used to create a non-
specific sequence that is used as the universal target in
the second step thus enabling reconstruction of functional
T7 promoter (step 8 in Figure 2). This sequence was
designed to differ from any plant genome or known
sequences inserted in GMOs. The resulting product is a
short double-stranded DNA product harbouring the
target sequence to be amplified, adjoined to the T7 pro-
moter and abiotic sequences on one side, and the SP6-
promotor sequence on the other. Such a template has
the added advantages of being able to be used as a tem-
plate by the T7 RNA polymerase, and allowing the use of
only one pair of universal primers for all analysed targets
during the NASBA amplification. Sequences of all primers
designed in this study are available on Table 1.

NAIMA performances

The performance of NAIMA as a DNA target amplifica-
tion method was tested using two triplex platforms on
GMO testing-related targets. One triplex (screening tri-
plex) was designed for the screening of transgenic maize
lines authorized in the EU: it targets the endogene maize
gene invertase (IVR) and the two main screening elements
found in transgenic maize lines authorized in the EU, the
cauliflower mosaic virus 35S promoter (P35S) and the
terminator of the nopalin synthase (tNOS). The second
triplex platform (MON810 triplex) was designed for the
detection of the Mon810 transgenic maize lines and targets
the IVR endogene and the P35S element, as well as the
event-specific 50-end junction between the plant DNA and
the Mon810 transgene (MON810). To comply with GMO
testing regulations, the amplification method needs to be
specific to the target DNA, sensitive enough to detect
low numbers of target copies, allow linear amplification
of target sequences over a broad range of target copy
numbers (linear range of amplification) and should allow
the identification of samples containing GMOs exceeding
a set labelling threshold. In this study, we have set the

threshold of GMO contents at 0.9%, which is the lowest
legal labelling threshold currently in use worldwide (2).
The performance characteristics of NAIMA amplifica-

tion described in this section were evaluated using qPCR
to quantify target copies after amplification.

Kinetics of amplification. We have followed the kinetics of
NAIMA amplification in time-course studies using both
triplex platforms. After approximately 5min, NAIMA
product accumulation generated a typical sigmoid curve.
A semi-logarithmic plot of the increase in the early phase
of the reaction (5–20min) revealed an initial first-order
reaction. Following the log-linear phase, the reaction
slowed, entering a transitional phase (20–30min) even-
tually reaching a plateau (Figure 4). Regarding the perfor-
mance, NAIMA amplification shows very fast kinetics that
are comparable with the fastest qPCR systems currently
available, as the duration of a qPCR amplification run
varies from 30min to 2 h (28). NAIMA is also generally
a faster amplification method when compared to other
multiplex amplification methods combined with microar-
ray detection applied to GMO diagnostics (6-10,12,29).
Most of the qPCR methods validated by the CRL for
GMO detection include cycles of 75 s, for which a maxi-
mum of 7�1010-fold amplification rate (for 36 cycles) is
possible in 45min at 100% reaction efficiency (http://
gmo-crl.jrc.it/statusofdoss.htm). The amplification rate of
the NAIMA system was determined for both triplex plat-
forms on a series of dilutions of target DNA, and on DNA
samples containing different relative amounts of targets.
For both triplexes, the amplification rate after 45min
varied from over 105-fold to 108-fold of the starting DNA
target copy number, depending on the amplicon. Thus,
the maximum amplification rate observed for NAIMA in
45min is comparable with general qPCR performance.

Figure 4. Kinetics of NAIMA amplification. Example of the kinetics of
invertase (IVR) during NAIMA amplification of the screening triplex
platform on Mon863 (10%) reference material. Copy numbers of
amplification products were detected by qPCR. Data-points were
plotted on a semi-log scale. After a very short period of time, the
amplification enters a log-linear reaction. A trendline was drawn for
this phase of the amplification. Following this phase, the reaction
entered a transitional phase (20–30min), eventually reaching a plateau.
The curve is the average of two independent measurements performed
on the same reference material. The log-linear amplification stage of the
reaction is shown in the inner graph.
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We have analysed the influence of the tailed primer’s
presence during the first step of NAIMA on the total
amplification rate. For this purpose, the universal primers
were substituted with water during the second step of
NAIMA. In the absence of universal primers, all ampli-
cons were amplified but weak amplification was obtained,
ranging from 0.4 to 4.8% of the normal amplification rate.
Therefore, the tailed primers only have a minor contribu-
tion to the overall NAIMA amplification and hence do
not need to be removed by purification or enzymatic diges-
tion prior to the NASBA step. On the other hand, in
classical two-step multiplex PCR, the second step multi-
plex amplification failed if the tailed primers from the first
step were not removed (6).

Specificity of amplification. To evaluate the specificity of
the system, we performed both NAIMA triplexes using
several DNA samples in which at least one of the three
targets was absent: RoundupReady� Soya CRM, EH592-
527-1 potato CRM, Mon810 maize CRM, a feed sample
containing RoundupReady� Soya and wild-type maize,
and a feed sample containing wild-type oilseed rape,
wild-type maize seed, GA21 maize flour with traces of
P35S contamination (Figure 3). In all samples, only the
expected targets were amplified by NAIMA and qualita-
tive results were identical to direct qPCR analysis of the
same samples. Using this approach, one can consider that
our triplexes do not non-specifically amplify transgenic
elements inserted in analysed GM lines. Additionally, we
have shown that the system does not amplify neither soy-
bean, oilseed rape nor potato genome DNA, the other
crops available on the GMO market for food and feed.

Sensitivity of amplification. The sensitivity of the triplex
platforms to the template concentration was assayed using
a dilution series of Mon863 (9.9%, w/w) and Mon810
(100% w/w) DNA. For the screening triplex, IVR was
detectable in the range between 5400 and 6 copies, while
the P35S amplicon was detectable from 530 to 4 copies.
For tNOS, a signal was obtained from 265 to 2 copies.
With the MON810 triplex platform, IVR was detectable in
the range of 5500 to 7 copies of the endogene. The P35S
amplicon was detectable from 2750 to 3 copies, while a
signal for the Mon810 event-specific amplicon was detect-
able from 2750 to 7 copies. These results show that the
sensitivity of the newly developed method is comparable
to qPCR method, where best assays allow detection of one
to ten molecules (4,30).

Linearity of amplification. We investigated the influence
of target copy number on the linearity of the NAIMA
amplification to assess the linear range of amplification.
For this, both triplex platforms were assayed using a
series of Mon863 (9.9%, w/w) and Mon810 (100% w/w)
DNA samples. Using Mon863 (9.9% w/w) DNA samples,
a linear response to copy number was obtained with the
IVR amplicon from 5380 copies to 11 copies (with a
squared regression coefficient of 0.9145). For the P35S
amplicon, amplification was quantitative from 530 to 4
copies (with a squared regression coefficient of 0.8980).
With the tNOS amplicon, linear amplification was

obtained from 265 to 4 copies (with a squared regression
coefficient of 0.9336) (Figure 5). Using Mon810 (100%
w/w) DNA samples, linear amplification of the IVR ampli-
con was obtained from 5500 to 11 copies (the squared
regression coefficient being 0.8621). For the P35S ampli-
con, amplification was linear between 2750 and 21 copies
(with a squared regression coefficient of 0.9077), while for
the Mon810 amplicon this ranged from 2750 to 21 copies
(the squared regression coefficient of which was 0.9798).
The linearity of amplification was sufficient to allow
broad range of quantitative analysis on the samples.

Figure 5. Linearity of NAIMA amplification. Example of the amplifi-
cation using the screening triplex. A dilution series of template DNA
was amplified with NAIMA. Copy number of template DNA was
estimated by qPCR before NAIMA amplification (control DNA,
plotted with circles) and compared to the copy number of the same
sample amplified by NAIMA (NAIMA products, plotted with trian-
gles) estimated by qPCR. As for the plots from the non-amplified
control DNA, plots obtained from NAIMA-amplified DNA are
linear showing the linearity of the NAIMA amplification method.
Linearity of amplification was assessed for all three amplicon IVR
(A), P35S (B) and tNOS (C).
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Quantification trueness. Both triplex platforms were eval-
uated for trueness of quantification based on a series of
maize samples containing different ratios of P35S,
Mon810 and tNOS targets copies in maize DNA from
Mon810 and Mon863 GM maize background. Quanti-
fication results were compared on the same samples with
those of singleplex qPCR analysis that is a golden
standard in GMO detection (Table 2). The amount of
GMO present was calculated as a ratio of transgene and
endogene DNA copy numbers.

For samples with GM contents between 0.1 and 25%,
analyses results were in agreement with qPCR quantifica-
tion with a correlation of variation (CV) between results
of both methods ranging from 2.3 to 33.0% for the screen-
ing triplex, and from 0.2 to 45.7% for the Mon810 triplex
(Table 2). Also, comparable standard deviation values of
calculated results were observed for qPCR and NAIMA
quantification (Table 2). Thus, one can consider that
NAIMA behaves similarly to singleplex qPCR for these
samples in quantitative analyses.

NAIMA as a target amplification method for on-chip
GMO detection

NAIMA product is a single-stranded RNA allowing direct
hybridization to probes on microarrays without a prior
denaturation step. To additionally increase sensitivity of
the system, we have included signal amplification, as fluo-
rescent tagged dendrimers were used for labelling. The
capture probes present on the microarray allowed specific
recognition of the maize plant species (IVR gene), the
CaMV 35S promoter (35S), the nos terminator (tNOS)
and the event-specific Mon810 sequence (50 junction
between the maize host plant DNA and the transgenic
Mon810 construct).

Detection on microarray was tested with products of
both NAIMA triplexes. The screening triplex was tested
on Mon863 CRM material (9.9% w/w) and the Mon810
triplex was tested on Mon810 material (100% w/w). For
each of the expected capture probes, a statistically signifi-
cant positive signal was generated, while no signal was
observed for other capture probes showing high specificity
of the system (Figure 6).
Linearity and sensitivity of the detection method were

tested using a dilution series of CRMMon863 (9.9% w/w)
DNA. The detection on microarrays was proportional to
the starting copy number of the target (before NAIMA)
with coefficients of linear correlation ranging from 0.9961
to 0.9999 (Figure 6). The detection system appeared to be
very sensitive, since as few as 2 copies of tNOS could be
amplified and detected (4 copies for P35S and 42 copies for
IVR, this being the lowest concentration tested for inver-
tase). This corresponds to 60 pg of starting maize genomic
DNA (27). Considering the maize genome size, this means
that the NAIMA-microarray platform should reliably
identify the presence of transgenic events at 0.1% level.
In comparison to other array-based GMO detection

methods, the method presented in this study shows com-
parable performances in terms of specificity and relative
sensitivity; most other methods being able to detect as low
as 0.1% GM contents (6,9,29,31), and some being slightly
less sensitive (8,10). The absolute sensitivity of the
NAIMA amplification method combined with microarray
detection (�60 pg) is also favourable when compared to
the above-cited methods, since several methods require
starting amounts of DNA from 10 to 500 ng (8,10,31),
two methods requiring 60 pg (29) and 300 pg (6). The
microarray detection of NAIMA-amplified GM targets
overpowers other mentioned methods by being the only

Table 2. Trueness of GMO quantification: comparison between NAIMA and qPCR

Triplex platform 35S/IVR
NAIMA

35S/IVR
qPCR

Cv% between
NAIMA and qPCR

Mon810/IVR
NAIMA

Mon810/IVR
qPCR

Cv% between
NAIMA and qPCR

MON810
(IVR� 35S�Mon810)

20.0� 8.1 25.7� 8.0 15.5 11.5� 5.0 8.7� 1.0 23.1

8.4� 6.0 11.5� 3.2 19.2 5.0� 2.1 5.0� 0.4 0.2
7.4� 2.9 5.1� 0.6 32.6 2.6� 0.8 4.1� 0.4 25.2
1.5� 0.7 3.9� 1.1 44.1 1.4� 0.6 1.2� 0.5 16.0
0.9� 0.6 2.6� 0.8 45.7 0.3� 0.2 0.7� 0.3 37.4
0.3� 0.2 0.6� 0.2 35.6 0.14� 0.11 0.13� 0.04 1.5

Triplex platform 35S/IVR
NAIMA

35S/IVR
qPCR

Cv% between
NAIMA and qPCR

tNOS/IVR
NAIMA

tNOS/IVR
qPCR

Cv% between
NAIMA and qPCR

screening
(IVR � 35S � tNOS)s

17.1� 5.9 13.4� 4.3 20.0 10.9� 5.9 9.2� 3.4 12.9

12.6� 4.7 10.1� 1.7 17.7 9.6� 2.9 9.9� 1.0 2.3
4.0� 1.8 6.2� 1.9 24.4 3.5� 0.6 3.4� 0.8 3.7
0.9� 0.5 1.0� 0.4 6.1 0.6� 0.2 0.6� 0.2 2.4
0.5� 0.2 0.4� 0.1 21.0 0.13� 0.13 0.3� 0.1 33.0
ND 0.04� ND 0.00� 0.02� ND

Both triplex platforms were evaluated for trueness of quantification on a series of maize samples containing different ratio of P35S, Mon810 and
tNOS target copies in maize DNA from Mon810 and Mon863 GM maize background. Results of quantification were compared with those of
singleplex qPCR analysis on the same samples.
Results are expressed as percentage of the transgenic element copy number (35S, tNOS or Mon810) in haploid genome (estimated by the IVR
copy number).
�one of the amplifications has failed.
ND, not determined.
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method enabling quantitative detection on microarrays
reported so far. Only the MQDA method combined
with macroarray detection can also result in semi-quanti-
tative data on analysed samples (6).

CONCLUSION

The aim of our work was to develop a system allowing the
detection and quantification of GMO presence in a multi-
plex fashion. Thus, we have adapted the NASBA ampli-
fication strategy for multiplex DNA amplification and
used it in combination with microarray technology. The
NAIMA method was shown to be equivalent in sensitiv-
ity and specificity to the qPCR method, allowing similar
qualitative and quantitative performance for GMO diag-
nostics. Linearity of the NAIMA method shows quantifi-
cation of GMO DNA targets in the range of 0.1–25%.
This allows reliable detection and quantification of GM
content in samples (food, feed and seeds) according to
the requirements of most countries’ regulations where
thresholds are established for the labelling of GMOs.
This method is a proof of concept for developing high
multiplexing amplification and detection systems. This
approach is a proof of concept, and the results show
great potential for the NAIMA method to be quantitative
also at a higher multiplexing level, since the first step tem-
plate synthesis primers do not contribute or interfere with
the overall amplification. Along with the described perfor-
mance characteristics, the advantages of the NAIMA
method lie also in its applicability, the short time of ampli-
fication and its modularity suitable with the future needs
in GMO testing. NAIMA has been successfully combined
with microarray-based detection, the most advanced

currently existing method for multiplex target detection.
The use of dendrimers in signal amplification additionally
increases sensitivity of the method without trade-off in
linearity. The NAIMA approach combined with microar-
ray hybridization, as described here, is a general approach
for specific and sensitive multiplex DNA target identifica-
tion and quantification and could similarly be applied to
other domains where diagnostics rely on DNA-based
sequence detection such as clinical diagnosis of human
bacterial pathogens, as well as for the detection of
microbes in food and environmental samples.
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