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A B S T R A C T

One of the most common copy number variants, the 22q11.2 microdeletion, confers an increased risk for
schizophrenia. Since schizophrenia has been associated with an aberrant neural response to repeated stimuli
through both reduced adaptation and prediction, we here hypothesized that this may also be the case in non-
psychotic individuals with a 22q11.2 deletion.

We recorded high-density EEG from 19 individuals with 22q11.2 deletion syndrome (12–25 years), as well as
27 healthy volunteers with comparable age and sex distribution, while they listened to a sequence of sounds
arranged in a roving oddball paradigm. Using posterior probability maps and dynamic causal modelling we
tested three different models accounting for repetition dependent changes in cortical responses as well as in
effective connectivity; namely an adaptation model, a prediction model, and a model including both adaptation
and prediction.

Repetition-dependent changes were parametrically modulated by a combination of adaptation and prediction
and were apparent in both cortical responses and in the underlying effective connectivity. This effect was re-
duced in individuals with a 22q11.2 deletion and was negatively correlated with negative symptom severity.
Follow-up analysis showed that the reduced effect of the combined adaptation and prediction model seen in
individuals with 22q11.2 deletion was driven by reduced adaptation rather than prediction failure. Our findings
suggest that adaptation is reduced in individuals with a 22q11.2 deletion, which can be interpreted in light of the
framework of predictive coding as a failure to suppress prediction errors.
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1. Introduction

22q11.2 deletion syndrome (22q11.2DS) is caused by one the most
common copy number variants in humans with a prevalence of 1:2000
to 1:4000 (Goodship et al., 1998; Olsen et al., 2018; Oskarsdóttir et al.,
2004; Shprintzen, 2005). The 22q11.2DS is clinically presented with a
highly variable phenotype, including a range of somatic disorders,
learning problems, and cognitive deficits (Karayiorgou et al., 2010;
Robin and Shprintzen, 2005). 22q11.2DS is associated with a high
frequency of several neurodevelopmental disorders, including autism
spectrum disorder, attention deficit hyperactivity disorder and schizo-
phrenia (Bassett et al., 2008; Hoeffding et al., 2017; Karayiorgou et al.,
2010; Purcell et al., 2009; Schneider et al., 2014; Stefansson et al.,
2008).

The ability to adapt to the ever changing environment and react to
deviations within it, is something the healthy brain masters on a daily
basis. However, people with schizophrenia show reduced ability to
adapt to the environment expressed as a state of aberrant salience
(Kapur, 2003). A neurophysiological example of this phenomenon is the
typically reduced neural response to repeated stimuli, a process called
repetition suppression (RS), often depicted as a consequence of neural
fatigue (Grill-Spector et al., 2006). Recent theoretical formulations in-
spired on predictive coding (Auksztulewicz and Friston, 2016; Friston,
2005; Grotheer and Kovács, 2016) propose that altered RS in schizo-
phrenia may be caused by inaccurate sensory predictions (Baldeweg,
2007; Summerfield et al., 2008; Todorovic and de Lange, 2012;
Todorovic et al., 2011). According to this perspective, RS is a con-
sequence of prediction error minimization afforded by adaptation to the
environment through learning about incoming sensory input. Neuro-
biological, repetition-dependent changes in responses to repeated sti-
muli have previously been explained by experience-dependent changes
in effective connectivity (Garrido et al., 2009). These changes in ef-
fective connectivity were evident both in extrinsic connections, (be-
tween brain areas) as well as in intrinsic connections (within brain
area). Extrinsic connections are believed to encode prediction while
intrinsic connections are believed to encode prediction precision. Most
event-related potential (ERP) studies have focused on the first repeti-
tion relative to the initial presentation (Andrade et al., 2015; Henson
et al., 2004; Mayer et al., 2009; Stefanics et al., 2018). Very recent,
Stefanics et al. (2018) showed that RS was best explained by an ex-
ponential model indicating that repetition effects are observable for
trials beyond the first repetition, highlighting the necessity to in-
vestigate brain responses beyond the first repetition in order to un-
derstand the underlying processes of RS.

RS in schizophrenia has mostly been studied through sensory gating
where suppression of P50 is seen to be reduced (Adler et al., 1982;
Rentzsch et al., 2015). Haenschel et al. (2005) found a repetition-de-
pendent enhancement of a slow positive wave in responses to repeated
sounds in a roving oddball paradigm (healthy colunteers), called re-
petition positivity. In another study Baldeweg et al. (2004) showed that
individuals with schizophrenia do not show this repetition positivity,
suggesting that adaptive cortical processes are impaired in schizo-
phrenia. The MMN slope (across repetitions) was directly correlated
with short- and long-term memory as well as disease severity. However,
RS has also been shown to be intact in schizophrenia (Coffman et al.,
2017; Rosburg, 2018) manifest in comparable ERPs to repeated audi-
tory tones (Potter et al., 2005). RS is sparsely studied in 22q11.2DS
with again opposing results where sensory gating as indexed by P50 has
been shown to be sometimes intact (Rihs et al., 2013; Vorstman et al.,
2009) and other times impaired (Larsen et al., 2018a; Zarchi et al.,
2013). Given that the underlying mechanism of RS in 22q11.2DS is still
poorly understood, we investigated the brain mechanism underpinning
RS in 22q11.2DS and how these mechanisms might potentially deviate
from what is seen in healthy controls. We formalized three theoretical
models to explain RS: the adaptation model, the prediction model and
finally the combined model, in the following referred to adaptation&

prediction. These three models were tested both at the scalp level using
Bayesian mapping for M/EEG (Garrido et al., 2018; Harris et al., 2018;
Rosa et al., 2010) and at the connectivity level using dynamical causal
modelling (DCM) (David et al., 2006). Firstly, we hypothesized that
responses to repeated stimuli would show a parametric modulation
with an overall decrease in connectivity within the tested network for
the first repetitions, followed by an increase reflecting the prediction of
new stimuli, in agreement with the combined adaptation&prediction
model. Next, we investigated group differences in 22q11.2DS and
healthy controls at the scalp level and connectivity level within the
model that best described RS. This unique way of modelling RS allowed
us to pinpoint the origin of potential deficits in 22q11.2DS, namely the
adaptive and predictive processes underpinning RS.

2. Materials and methods

This paper is a follow up study of (Larsen et al., 2018b), where we
report on mismatch negativity (MMN) responses in 22q11.2DS. Parti-
cipants' demographics and stimuli administered is described in Larsen
et al. (2018b) and a summary can be found below for clarity.

2.1. Participants

This study is part of a larger Danish nationwide initiative (Schmock
et al., 2015). A group of 19 non-psychotic individuals with a verified
deletion of 3Mbs at chromosome 22q11.2 with no current or previous
diagnosis were included. 27 healthy individuals without 22q11.2DS
was included as a control group with comparable age distribution
(controls age range: 12–25 years; mean age: 15.96, standard deviation
(SD)=2.71 years; 22q11.2DS mean age: 15.47, SD 2.41 years,
t44=−0.63 p= .53) and sex ratio (male/female controls: 18/9, cases:
13/6, χ2=0.02, p= .90). The following exclusion criteria were ap-
plied to controls: presence of a) schizophrenia, schizotypal and delu-
sional disorders (ICD10 DF20–29); b) bipolar disorder (ICD10
DF30–31); c) depression (ICD DF32–33) except for a past episode of
mild or moderate depression (ICD10 DF 32.0 or 32.1); d) substance
abuse; or e) a first degree relative with a psychotic illness. The regional
Ethical Committee of Copenhagen (project id: H-3-2012-136) and the
Danish Data protection Agency (project id: 2007-58-0015) approved
the study. All participants underwent a verbal and written informed
consent process. Participants under the age of 18 provided a verbal
assent while their parent's completed written consent.

2.2. Diagnosis and symptoms

The International Classification of Diseases (ICD-10) system was
used to evaluate the presence of current psychiatric disorders.
Intellectual functioning was assessed using Reynolds Intellectual
Screening Test (RIST) (Reynolds and Kamphaus, 2011). We used the
Mini International Neuropsychiatric Interview (Sheehan et al., 1998) or
the Mini International Neuropsychiatric Interview for Children and
Adolescents (Sheehan et al., 2013) to diagnose anxiety, affective dis-
order and disturbance of activity and attention/attention deficit dis-
order without hyperactivity. To indicate presence of autism spectrum
disorders we used the Social Communication Questionnaire lifetime
with a clinical cut-off of 15 (Rutter et al., 2005; Rutter et al., 2003).
Screening for current psychosis and rating the severity of schizo-
phrenia-related symptoms was done using the Structured Interview for
Prodromal Syndromes (SIPS) (McGlashan et al., 2012; Miller et al.,
2003). The schizophrenia-related symptoms were assessed within the
four domains: positive (i.e. delusional ideas, persecutory ideas,
grandiosity, hallucinations, and disorganized communication), negative
(anhedonia or withdrawal, avolition, decreased expression of emotions,
decreased experience of emotion or self, impoverished thinking, and
deterioration of role functioning), disorganized (odd behavior and ap-
pearance, bizarre thinking, trouble with focus and attention, and
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personal hygiene), and general symptoms (sleep disturbance, dysphoric
mood, motor disturbances, impaired tolerance to normal stress). Two
experienced and certified clinicians conducted all clinical interviews.

To test for group differences in SIPS scores we used Wilcoxon rank
sum test. A two sample t-test was used to test for differences in IQ levels
between individuals with 22q11.2DS and controls.

Of the 19 individuals with a 22q11.2 deletion, 1 was diagnosed with
affective disorder, 2 with disturbance of activity/attention deficit dis-
order without hyperactivity, 7 with anxiety or phobia and 1 with both
autism spectrum disorder and anxiety or phobia. Only one individual
with 22q11.2DS took medication acting on the central nervous system
at the time of examination (20mg retalin). None of the participants had
psychosis but the 22q11.2DS group had significantly elevated SIPS
scores for all four SIPS symptom domains; negative (W=497.5,
p < .001), positive (W=376, p= .004), disorganized (W=416.5,
p < .001) and generalized (W=324.5, p= .037) symptoms, relative
to the control group. The raw sum of negative symptoms in individuals
with 22q11.2DS ranged from 1 to 16 (mean=6.7, SD=3.7), from 0 to
12 for positive symptoms (mean=2.7, SD=3.1), from 0 to 6 for
disorganized symptoms (mean=1.7, SD=1.8), and from 0 to 7 for
generalized symptoms (mean=0.9, SD=1.9).

The 22q11.2DS group had an IQ (median=82.0, 90th percen-
tile= 94.4, 10th percentile= 63.8) below the control group (median
108.0, 90th percentile= 127.0, 10th percentile= 95.2, t44=−7.01,
p < .001). See Table 1 for a summary of demographics and clinical
scores.

2.3. Stimuli

The roving paradigm was adapted from (Garrido et al., 2008) and
comprised of roving sequences of sounds ranging from 1 to 9 drawn
from a discrete uniform distribution, Fig. 1A. Each tone in the roving
paradigm was a pure sinusoidal tone with frequency 1000 Hz or
1200 Hz and had a duration of 50ms with a 5ms rise and fall time.
Tones were delivered binaurally via insert-earphones (E-A-RTONE 3A
Indianapolis, US), at 85 dB SPL, generated with the Cogent toolbox
running in Matlab (http://www.vislab.ucl.ac.uk/cogent_2000.php).
With this paradigm it is possible to study the responses to repeated
stimulation and thereby the parametric effect of repetition. Participants
sat in a comfortable chair and watched a silent movie displaying un-
derwater scenery free of any sudden or salient visual events during the
15min of recording. Participants were instructed to ignore the sounds.

Audiometric testing was performed prior to the experiment, (20 dB
random test Oscilla USB-310 Tablet screening audiometer, Aarhus,
Denmark). At 1000 Hz the observed threshold levels were
(mean= 20.1, SD=0.5) for controls and (mean= 23.4, SD=4.0) for
22q11.2DS.

2.4. Data acquisition and pre-processing

EEG data were recorded using a 128 channel ActiveTwo Biosemi
System (BioSemi, Amsterdam, Netherlands), with a sampling frequency
of 4096 Hz. Pre-processing included; band pass filtering between 0.5 Hz
- 40 Hz using a second order Butterworth filter, downsampling to
500 Hz and finally epoching with a peristimulus window of -100ms to
400ms. The preprocessing was carried out using EEGLAB (Delorme and
Makeig, 2004). Baseline correction was applied using the average over
the time window −100ms to −10ms. Re-referencing to the average
reference, artefact removal, scalp analysis, and the DCM analysis were
performed using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/). Epochs
were rejected if their values exceeded±100 μV. One of the participants
(belonging to the 22q11.2DS group) was discarded because the ma-
jority of epochs were rejected with this approach (above 80%).

The three models accounting for repetition dependent effects
Since we were interested in the repetition dependent changes in

ERPs and effective connectivity, we explored three different models,
given below for tone r=1, …,9.

= −r rAdaptation model:x ( ) exp( )1

=x r rPrediction model: ( ) exp( )2 (1)

= +r r rCombined adaptation&prediction model: x ( ) x ( ) x ( )3 1 2

We chose the exponential function, given that responses are typically
seen heavily reduced in the first repetition, whereas responses seem to
become similar thereafter, which is in line with recent findings
(Stefanics et al., 2018), see Fig. 1B. The adaptation model postulates
that responses decrease with the number of repetitions. Conversely, the
prediction model postulates that responses will increase with repeti-
tions, reflecting formation of an expectation that a new event will
occur. Finally the adaptation&prediction model is a combination of the
adaptation and prediction model in that the initial exponential decay
will capture changes due to habituation or adaptation and the growing
exponential towards the end will capture formation of an expectation,
or prediction.

Table 1
Summary of group data for demographical and clinical data. The content of the table replicates the content of the table in Larsen et al. (2018b).

Measures Control group 22q11.2 group Group statistics

Age Mean 15.96 SD=2.71 Mean 15.47 SD=2.41 t44=−0.63, p=.53
Sex 18 males/9 females 13 males/6 females Χ2= 0.02, p=.90
IQ Median=108.0 Median= 82.0 t44=−7.01, p < .001

90th percentile= 127.0 90th percentile= 94.4
10th percentile= 95.2 10th percentile= 63.8
Mean 109.0 SD=12.5 Mean 77.7 SD=16.06

SIPS – subscales
Negative Mean 0.59 SD=1.04 Mean 6.68 SD=3.67 W=477, p≤ .001

Range 0–4 Range 1–16
Positive Mean 0.81 SD=1.49 Mean 2.74 SD=3.07 W=305.5, p= .008

Range 0–6 Range 0–12
Disorganized Mean 0.11 SD=0.42 Mean 1.68 SD=1.83 W=404, p < .001

Range 0–2 Range 0–6
Generalized Mean 0.15 SD=0.46 Mean 0.95 SD=1.90 W=312.5, p= .027

Range 0–7Range 0–2

Diagnosis
MD N=0 N=1
ADHD/ADD N=0 N=2
Anxiety or phobia N=0 N=8
ASD N=0 N=1
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2.5. Posterior probability maps

To compare the adaptation, prediction, and adaptation&prediction
models for ERPs, we used posterior probability maps (Garrido et al.,
2018; Harris et al., 2018; Rosa et al., 2010). Epoched data were con-
verted into scalp-map images of dimension 64×64 obtained using
interpolation. After the conversion to scalp-map images smoothing
using a Gaussian kernel specified by a FWHM of 8mm2 in the spatial
dimension and 10ms in the temporal dimension was performed.

Individual participant voxel-wise whole brain log-evidences were

calculated using regressors describing the hypothesized relationship
amongst the tone repetitions i.e. the equations in (1). The log-evidence
for each model were estimated using the variational Bayes first-level
model specification (Penny et al., 2005). Group level (pooled across
controls and 22q11.2DS) posterior probability maps were calculated
using the random effects approach (RFX) for each model. These prob-
ability maps can then be used to compare between the three different
models for each voxel and time point.

Fig. 1. Experimental design of the roving paradigm and the three different repetition effects models. A: The tone repetition, RN, varies randomly between 0 and 8
(maximum of 9 tones). The sequences of tones vary by having a frequency of either 1000 Hz or 1200 Hz. Stimulus onset asynchrony is fixed at 500ms. B: The three
parametric models for repetition-specific effects: the adaptation model, the prediction model and the adaptation&prediction model. C: Model space for DCM models.
Each family consisted of the same DCMs, but deviates in the parametric modulation between conditions, that is, the effect that repetitions of tones has on ERPs.
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2.6. Dynamic causal model specification

To investigate the underlying connectivity network of RS, we used
DCM which is a hypothesis driven method for estimating effective
connectivity between brain areas (David et al., 2006; Friston et al.,
2003). We have previously used the same paradigm to study MMN
responses in 22q11.2DS (Larsen et al., 2018b) where we formulated a
set of models motivated by previous studies on MMN generators
(Doeller et al., 2003; Grau et al., 2007; Opitz et al., 2002; Rinne et al.,
2000) as well as previous model comparisons of MMN generation (Boly
et al., 2011; Garrido et al., 2008). This network includes bilateral
sources in the primary auditory cortex (A1), superior temporal gyrus
(STG) and inferior frontal gyrus (IFG), with the IFG usually being most
consistent in the right side. The bilateral sources in A1 receive the
input. RS in a roving MMN paradigm has been previously studied using
DCM (Garrido et al., 2009) with bilateral A1 and STG sources being
included. We defined 16 models starting with the right and left A1 and
building up the remaining models by adding hierarchical levels until we
had a full network comprising the six sources: bilateral A1, STG and
IFG, Fig. 1B. Each of the parametric DCM models were estimated for
each participant individually with all nine tones in the same model. We
defined each of these parametric forms as families that only deviate in
the specific condition-specific parametric effect.

2.7. Bayesian model selection

RFX Bayesian model selection was used for the pooled group to test
which of the repetition dependent models best described the data
overall both at the scalp level (posterior probability maps) and con-
nectivity (DCM). This model comparison is based on the free energy

that accounts for both model evidence and model complexity (Rosa
et al., 2010). Posterior and exceedance probabilities were used to
compare the models.

2.8. Assessing group differences at the scalp level and connectivity level

2.8.1. Spatiotemporal analysis
In order to test for group differences within the winning model at

the scalp level, spatio-temporal analysis was performed over the whole
sensor-space (i.e. all electrodes) and time (0ms to 400ms) using a full
factorial 2× 9 design with factors group (controls and 22q11.2DS) and
condition (repetitions) and age and sex included as covariates. Weights
under the winning model, given by Eq. (1) were entered as contrast
allowing to asses group differences in the parametric effect present i.e.,
how much of the winning model is present in controls compared to
22q11.2DS. All p values reported are thresholded using p < .05 FWE
corrected at cluster level. To enable the investigation as to whether
scalp data activity was correlated with the clinical symptoms in the
22q11.2DS group, we extracted activity from single-participant contrast
images associated with the parametric effect. The activity was extracted
from a square region with a size of 10mm×10mm around the peak
difference between controls and patients with respect to the winning
model at the scalp level. Correlation with negative symptoms were
performed using Pearson correlation. We did not pursue correlations
with positive, disorganized and generalized symptoms as this in our
opinion would not be meaningful. All individuals with a 22q11.2 de-
letion scored low and below clinically significant thresholds. Further-
more, the variation in symptoms scores was low and extremely right
(positive) skewed with five (38%) of the individuals with a 22q11.2
deletion having a score of zero.

Fig. 2. Grand average difference responses for controls and 22q11.2DS from channel Fz. Left: responses to each tone repetition for controls. Right: Corresponding
responses for individuals with 22q11.2DS. First row represent the mean of the responses whereas the second row represents the mean with the shaded area
representing one standard deviation from the mean.
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2.8.2. Connectivity parameters
Bayesian model averaging (BMA) was carried out within the family

with highest exceedance probability, to allow for group comparison of
the connectivity parameters (B-parameters) (Penny et al., 2010). A one-
way ANCOVA with group as a factor (controls and 22q11.2DS) and age
and sex as covariates was performed for each of the parameters. Results
are reported both uncorrected as well as corrected for multiple com-
parison using Bonferroni.

3. Results

Repetition dependent changes can be explained by a combination of
adaptation and prediction both in cortical responses and in effective
connectivity

We have previously confirmed the presence of repetition dependent
responses in this paradigm in the form of a detectable MMN response
(Larsen et al., 2018b). Fig. 2 shows difference waves for each repetition
of the tones for controls and individuals with 22q11.2DS. Visually it can
be seen that controls (left column) show a rapid decay from first to
second repetition (in blue) compared to the rest of the repetitions
whereas there seems to be no clear pattern between responses to the
tone repetitions in the 22q11.2DS group (right column).

At the scalp level the posterior probability maps showed that the
combined adaptation&prediction model outperformed the adaptation
and prediction models throughout all time points, see Fig. 3A and B,
where probabilities are shown summed across space and pooled across
the two groups (controls and 22q11.2DS). However, the model's out-
performance was most pronounced in the middle of the epoch, from
50ms to 350ms. Summing across both time and space, (Fig. 3C), the

model probability for the combined model outperforms the two other
models. It is observed that the model probabilities in the baseline
period (Fig. 3E) is close to equal meaning that the bias towards a
winning model is very small. The exceedance probability of the DCMs
for the combined model is 1 (Fig. 3D), meaning that at the connectivity
level, this model is a clear winner as well. Together, these results show
that repetition-dependent changes in ERPs and in effective connectivity
are best explained by adaptation and prediction formation. The spatial
distribution of the probabilities in Fig. 3F, thresholded at posterior
probability p= .83, shows that the spatial distribution of the combined
adaptation&prediction model involves electrodes throughout the
fronto-central area.

Within the combined adaptation&prediction model the DCM model
selection of the models shown in Fig. 1C, did not reveal a clear winning
model, which is why we kept the model comparison at the family level.

3.1. 22q11.2DS show reduced adaptation but not prediction

Knowing that repetition dependent changes are explained by a
combination of adaptation and prediction processes manifested both in
the ERPs and in condition-dependent connectivity changes, we next
tested for group differences within this model. Analysis of the scalp
maps of the repeated stimuli for the contrast controls greater than
22q11.2DS for the combined adaptation&prediction model revealed an
effect peaking at 92ms, see Fig. 4A. Further, we observed an effect
around 172ms whereas the reversed contrast, 22q11.2DS greater than
controls revealed an effect at 74ms. However, the effect at 74ms was a
small set of points that fell in the interpolated area where no electrodes
were positioned. We therefore see this effect as spurious and have not

Fig. 3. Exceedance and posterior probabilities of the three models. A: posterior probability as a function of time, summed across space for the adaptation model
(turquoise), the prediction model (yellow) and the combined adaptation&prediction model (blue). B: Same as A, for exceedance probabilities. C: Posterior and
exceedance probability for the model comparison at the scalp level, summed across space and time. D: Posterior and exceedance probability for DCMs with
connectivity modulations according to the adaptation, prediction, and the adaptation&prediction family. E: Same as C, for the baseline period only. F: Spatial
distribution of the combined adaptation&prediction model thresholded at posterior probability p= .83. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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depicted it in Fig. 4. To delineate if the group difference at 92ms was
driven by the adaptation or the prediction processes, we looked at the
group effects for the adaptation model and prediction model Fig. 4B.
Our results indicate that the group difference was driven by the adap-
tation process, suggesting that the ability to adapt to the tones is im-
paired in individuals with 22q11.2DS.

We then investigated whether the degree to which repetition de-
pendent changes in cortical responses in 22q11.2DS were associated
with symptomatology. To do so, we restricted our search to a square
region round the peak difference in the controls greater than 22q11.2
contrast for both the adaptation&prediction model and the adaptation
model, where group differences were observed. The strength of the
parametric modulator extracted from this region for each individual
with 22q11.2DS was negatively correlated with the severity of negative
symptoms both for the adaptation&prediction model (Fig. 4C)
(ρ=−0.578, p= .012, unc., p= .024 corrected) and the adaptation
model (Fig. 4D) (ρ=−0.662, p= .003, unc., p= .006 corrected).
Hence, the more severe the negative symptoms, the less activity in the
areas associated with the adaptation&prediction and the adaptation
model, where the strongest correlation was seen for the adaptation
model.

Since 22q11.2DS is associated with hearing loss (Jiramongkolchai
et al., 2016) and lower IQ levels (Gothelf et al., 2007; Vorstman et al.,
2015) we did a post-hoc analysis to test whether these variables could
explain the observed effects in the spatio-temporal analysis. IQ showed

a positive effect at fronto-temporal channels at around 80ms and
160ms whereas a positive effect of hearing levels were found at central
electrodes around 156ms and 358ms as well as at 106ms over right
temporal channels, see Fig. 1 in supplementary material. All effects of
IQ and hearing were observed in areas and time points different from
the observed group effects. Group effects persisted even after adding
hearing levels and IQ as a covariate in the analysis, suggesting that even
though these showed effects on the EEG, they do not fully account for
the observed group effects.

3.2. Group differences in connectivity strength

Individuals with a 22q11.2 deletion showed a stronger modulation
than controls in the extrinsic connection from right IFG to right STG
(F1,41= 6.147, p= .017) in the B parameter associated with an adap-
tation effect. However, it did not survive correction for multiple com-
parisons using a conservative Bonferroni correction for 12 test, i.e.
connections (α=0.05/12= 0.004). There was no group difference
observed in the B parameters associated with the prediction effect.
There was no effect of the covariates sex and age. The group effect
persisted when adding hearing levels as covariate, but disappeared
when adding IQ as a covariate, suggesting that IQ was driving this ef-
fect.

Fig. 4. T-maps show that attenuated adaptation processes drive reduced repetition suppression in individuals with 22q11.2DS. A: Group effect for the winning
adaptation&prediction model. There is a significant cluster in the fronto-central area peaking at 92ms. B: To determine the driver of this effect, we also show the map
of the main effect of group for the adaptation model (no effect observed for the prediction model). All results are shown at p < .05 FWE corrected at cluster level. C
and D: Correlation with activity associated with both the adaptation&prediction model (C) and adaptation model (D) with negative symptoms. The higher degree of
negative symptoms in 22q11.2DS were associated with less amount of activation associated with both the adaptation&prediction and adaptation model. p-values
shown are corrected for multiple comparison using Bonferroni.
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4. Discussion

This study provides evidence that adaptation to repeated sounds is
diminished in a group of young non psychotic individuals with
22q11.2DS. Our results suggest that repetition-dependent changes both
in ERPs and in effective connectivity are modulated by a combination of
adaptation and prediction processes. Furthermore, we found that group
differences in the relationship between ERP activity and stimuli re-
petition was driven by reduced adaptation in individuals with
22q11.2DS in the early ERP component N1, at fronto-central electrodes.
Critically, the degree to which this relationship between ERP activity
over repetitions was present, correlated negatively with the degree of
negative symptoms in 22q11.2DS. Results therefore suggest that re-
petition dependent changes in cortical responses in 22q11.2DS are as-
sociated with negative symptoms.

RS is characterized by a reduction in neural activity, or adaptation,
caused by repeated stimuli (Buckner et al., 1998; Grill-Spector et al.,
1999; Henson et al., 2000; Kourtzi and Kanwisher, 2001), a phenom-
enon thought to be mediated by synaptic communication. Predictive
coding theories have re-interpreted RS as the neural mechanism un-
derpinning perceptual learning and inference (Auksztulewicz and
Friston, 2016; Friston, 2005). Our findings suggest that repetition-de-
pendent changes both in ERPs and in brain connectivity can be ex-
plained by a model combining both adaptation and prediction pro-
cesses. The adaptation component of our combined model predicts an
initial exuberant prediction error occurring immediately after a change
in sound statistics, which is then followed by decreases in neuronal
responses caused by sound repetition. While this accounts for the
neurophysiological data evoked by the first half of the sound trains, the
prediction component resembles an expectation build-up, as if the
participant began to expect an eventual change sometime during the
second half of the sound trains. This is in line with the notion that
responses to repeated sounds are not only caused by simple mechanisms
as neural fatigue, but are likely to be caused by fulfilled expectations
(Auksztulewicz and Friston, 2016; Summerfield et al., 2008; Todorovic
et al., 2011) including forward message passing of prediction error and
backward message passing of predictions or expectations. The spatio-
temporal analysis within the combined adaptation&prediction model
revealed a group difference driven by the adaptation component,
whereas no difference was seen in the prediction component. This is in
line with our previous work, where no difference was seen in MMN
responses between the two groups (indicating that prediction is pre-
served) (Larsen et al., 2018b). There is however opposing results in the
literature on the change detection mechanism in 22q11.2DS. While
MMN evoked by a duration deviant has been shown to be reduced in
22q11.2DS (Baker et al., 2005) using a classical oddball paradigm, no
difference across five deviants types; duration, frequency, gap, intensity
and location was observed in (Zarchi et al., 2013). While MMN was
found to be preserved in (Larsen et al., 2018b), we found a general
increased response to tones, evidenced by increased N1 responses in
22q11.2, suggesting either increased sensitivity to tones, or reduced
adaptation. Here, we show that the adaptation component is reduced in
22q11.2DS.

We found a correlation with the ERP activity over repetitions and
negative symptoms in the 22q11.2DS group. Specifically, reduced
adaptation to repetitive sounds was associated with greater negative
symptoms in 22q11.2DS, suggesting that adaptation to repeated sounds
might play a role in the generation of negative symptoms in 22q11.2DS.
Predictive coding ideas have been previously discussed in the context of
psychosis and are reminiscent of Kapur's model of psychosis (Kapur,
2003). The relation between the adaptive processes and the negative
symptoms in individuals with 22q11.2DS reported here do not speak
directly to the emergence of positive symptoms in Kapur's model.
However, negative symptoms may be related to positive symptoms (i.e.
if beliefs are repeatedly wrong, why would we act on them (Corlett,
2015)). Hence, reduced adaptation to repeated stimuli might be

indirectly related to positive symptoms. However, we were unable to
test such a relationship, since positive symptoms were very sparse in
this group and none of the individuals met the threshold criteria for
clinical relevance. Therefore, this is purely speculative.

RS is very sparsely studied in 22q11.2DS with opposite results on
sensory gating as well, with P50 shown to be sometimes intact (Rihs
et al., 2013; Vorstman et al., 2009) and other times impaired (Zarchi
et al., 2013). However, sensory gating usually entails a paired-click
paradigm, excluding the possibility of studying effects beyond the first
repetition which have been shown to occur (Stefanics et al., 2018). It is
therefore hard to compare results from the present study to previous
findings on P50 sensory gating. The small sample size of nonpsychotic
individuals with 22q11.2DS is a limitation of the study. The abnorm-
alities in adaptive processes found here warrant replication in larger
cohorts. However, it should be noted that all results presented in the
paper, have been corrected for multiple comparison, which limits the
possibility for false positive results.

Here, we have focused on repetition suppression in 22q11.2DS with
a specific emphasis on the susceptibility to psychosis, given the sig-
nificant higher risk for psychosis associated with the deletion. It is,
however, important to note that the microdeletion involves multiple
genes and therefore it is not only associated with a high risk of psy-
chosis but with a broader range of psychiatric and neurodevelopmental
disorders (Bassett et al., 2008; Olsen et al., 2018; Purcell et al., 2009;
Schneider et al., 2014). In conclusion, we show that young non-psy-
chotic individuals with 22q11.2DS are impaired at modulating neural
activity to the environmental statistics associated with repeated stimuli.
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