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Abstract: Frequently, the vineyards in the Douro Region present multiple grape varieties per parcel
and even per row. An automatic algorithm for grape variety identification as an integrated software
component was proposed that can be applied, for example, to a robotic harvesting system. However,
some issues and constraints in its development were highlighted, namely, the images captured in
natural environment, low volume of images, high similarity of the images among different grape
varieties, leaf senescence, and significant changes on the grapevine leaf and bunch images in the
harvest seasons, mainly due to adverse climatic conditions, diseases, and the presence of pesticides.
In this paper, the performance of the transfer learning and fine-tuning techniques based on AlexNet
architecture were evaluated when applied to the identification of grape varieties. Two natural
vineyard image datasets were captured in different geographical locations and harvest seasons. To
generate different datasets for training and classification, some image processing methods, including
a proposed four-corners-in-one image warping algorithm, were used. The experimental results,
obtained from the application of an AlexNet-based transfer learning scheme and trained on the image
dataset pre-processed through the four-corners-in-one method, achieved a test accuracy score of
77.30%. Applying this classifier model, an accuracy of 89.75% on the popular Flavia leaf dataset was
reached. The results obtained by the proposed approach are promising and encouraging in helping
Douro wine growers in the automatic task of identifying grape varieties.

Keywords: AlexNet deep model; transfer learning techniques; natural vineyard images; leaf vein
extraction; independent component analysis; grape variety identification; precision viticulture

1. Introduction

Throughout the world, harvests within vineyards can vary from year to year with significant
morphological changes on the vines, mainly due to soil conditions, diseases, pests, adverse climate,
and the presence of pesticides. In addition, the vineyards of the Douro Region are also characterized
by having more than one grape variety per parcel and even for row [1]. Knowing the susceptibility of
a particular variety to a specific disease, its identification using this automatic system will help, for
example, in a more specific and targeted treatment. In addition, many wine producers require this
large number of grape varieties to produce their most expensive wines (e.g., the “Blend D. Antónia”
wine, from the Quinta do Vallado, has more than 30 grape varieties). Consequently, implementing an
automatic algorithm for grape variety identification to provide an automatic splitting of the different
grape varieties will be of paramount importance in the Douro Demarcated Region.
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Grape variety identification by in-field images is a challenge because the images mirror of the
adverse effects caused by nature in the grapevines and by the high visual similarity of the leaf images
on the different grape varieties.

To date, the literature has focused mostly on the processing of images prepared in laboratories.
Usually, the objects in study were isolated at the center of the image over a white background. Every
approach over images in the natural environment must be able to deal with issues about lighting
conditions and occlusion of the grapes and leaves, in addition to all the previously mentioned factors.

Under these assumptions, the authors decided to use deep learning (DL), as defined by
Goodfellow et al. [2]. In the area of machine learning and artificial intelligence, deep learning
is recognized as a remarkably active research with successful applications in numerous fields, namely,
for precision agriculture purposes. One of the strongest advantages of using DL in image classification
is its powerful image feature extractor, both from raw or pre-processed data, avoiding the traditional
and time-consuming process of hand feature extraction. Hand feature extraction frequently requires
the intervention of an agriculturist expert and must be altered whenever the dataset or the problem
changes. Deep learning automatically searches for low-level features, such as curves and edges, until
higher levels of its hierarchical structure model are reached [3].

This systematic approach for the hierarchical processing of knowledge and the complex nonlinear
model mark the relevance of the DL network. A convolutional neural network (ConvNet) is a DL
network with many hidden layers, which attempts to imitate the way the visual cortex of the brain
processes and recognizes images. ConvNet has achieved “state-of-the-art results” in image classification
by providing the network with a huge number of natural images [4–6].

Extending this idea, richness and diversity were applied in the experiments on the pre-processed
and augmented image dataset contents, which were crucial for the classification performance
enhancement in a ConvNet. Because of these reasons, the AlexNet ConvNet, trained on diverse
pre-processed image datasets, was used. Developed by Krizhevsky et al. [7], the AlexNet is a model
pretrained on a subset of the ImageNet database which comprises more than one million images
and could classify images into 1000 object categories. The AlexNet was the winner in the ImageNet
Large-Scale Visual Recognition Challenge.

Reusing a pretrained model can solve the long time needed to train such very deep ConvNets.
This method, called transfer learning (TL), is frequently used in the computer vision area and allows
building accurate models in a timesaving way [8]. It consists of starting the learning process from
patterns that have been previously learned when solving a different problem instead of starting
from scratch.

Kamilaris and Prenafeta-Boldú [3] have studied the importance of verifying the conditions of the
test, i.e., whether authors had tested their implementations on the same or different datasets in previous
literature. From 40 research papers analyzed in the study, they concluded that only 20% of the papers
used different datasets for testing and for training, having obtained accuracy results generally less than
70% in these cases. Examples of this are the works of Potena et al. [9] and Dyrmann et al. [10], reaching
an accuracy of 59.4% and an IoU (Intersection over Union) segmentation metric of 0.64, respectively.

Imaged-based plant identification proposed by Grinblat et al. [11] demonstrated the benefits of
using a DL approach instead of applying traditional image processing and classification techniques,
which were reported in their previous research [12]. In both papers, three legume species, namely,
soybeans and white and red beans, were studied based only on the analysis of their vein morphological
patterns. Primarily, penalized discriminant analysis achieved the best average accuracy with 89.9%,
followed by support vector machines (SVM) with linear kernel presenting 89.7% and ConvNet with
five layers presenting a maximum accuracy of 96.9%. Considering that, for plant species recognition,
leaf veins contain important information, Fu and Chi [13] proposed an approach to extract leaf veins
that combined a thresholding method and an artificial neural network (ANN) classifier. They also
developed a preliminary segmentation based on the intensity histogram of leaf images, followed by a
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fine segmentation using a trained ANN classifier. Experimental results showed that this approach was
able to extract more accurate venation of the leaf for vein pattern classification.

Zernike moments and color information for the description of the grape shapes were also exploited
concerning grape detection in outdoor images. For the learning and recognition steps, an SVM was used.
In 99% of cases, the recognition of grapes was successful, with very few samples misidentified [14].
From a dataset of 190 images containing bunches of white grapes and 35 images containing red grapes,
the visual inspection system using color mapping and morphological dilation techniques, proposed by
Reis et al. [1], was able to automatically distinguish between red and white grapes and achieved 97%
and 91% of correct classification, respectively.

Kho et al. [15] proposed an automated system to identify three species of Ficus (reaching about
1000 species worldwide, one of the largest genera in plant kingdom) with similar leaf morphology.
Fifty-four leaf images from three different Ficus species were used. Image pre-processing, feature
extraction, and recognition models, using ANN and SVM, were carried out to develop the proposed
system. Evaluation results reached an accuracy of 83.3%, demonstrating the ability of the proposed
system to recognize leaf images.

From a different perspective, Reiser et al. [16] proposed the use of a 3D imaging system using
a sonar sensor and an automated three-axes frame for selective spraying in controlled conditions.
Within these conditions, a robot was able to automatically detect the positions of the plants with an
accuracy of 2.7 cm and was also able to spray on these selected points. Additionally, this selective
spraying reduced the used liquid by 72% when compared to a conventional spraying method in the
same conditions. The stem position and plant height of reconstructed maize plants were determined
by Vázquez-Arellano et al. [17] using a low-cost time-of-flight camera. They merged four-point clouds
generated from different 3-D perspective views using the iterative closest point algorithm. The plant
stem positions were estimated with an average mean error of 24 mm and standard deviation of 14 mm.
The individual plant height estimation average mean error was 30 mm, and standard deviation was
35 mm. The overall plant height profile average mean error was 8.7 mm.

Nuske et al. [18] proposed a vision system that automatically predicts yield in vineyards accurately
and with high resolution. As stated by the authors, “The system incorporates cameras and illumination
mounted on a vehicle driving through the vineyard”. They exploited three prominent visual cues of
texture, color, and shape into a strong classifier that detects berries, and maximized the spatial and the
overall accuracy of the yield estimates by optimizing the relationship between image measurements
and yield: “Analysis of the results demonstrates yield estimates that capture up to 75% of spatial yield
variance and with an average error between 3% and 11% of the total yield”.

Studies of ConvNet applications for image-based plant disease classification were recently
published [3,19–23]. Ferentinos [20] used simple leaf images of healthy and diseased plants from an
open database of 87,848 images containing 25 different plants in a set of 58 classes of plant and disease
combinations. An accuracy score of 99.53% was reached, making the author’s approach promising
to operate in real cultivation environment. Fuentes et al. [21] presented a DL-based approach to
detect diseases and pests in tomato plants from natural images. Experimental results demonstrated
that the authors could recognize nine different types of diseases and pests, reaching accuracies of
55.64% and 83.06% without and with data augmentation, respectively. Mohanty et al. [23] developed a
smartphone-aided disease diagnosis system. A public image database of 54,306 images of diseased
and healthy plant leaves was used for training DL models. Using a held-out test set to calculate the
systems performance, the best trained model reached an accuracy of 99.35%.

Research works of DL for grape recognition and segmentation were recently proposed.
Milella et al. [24] developed methods for automated grapevine phenotyping, namely, the canopy
volume estimation and detection and counting of grape bunches. The authors used four ConvNet
architectures (the AlexNet, VGG16, VGG19, and GoogleNet) to compare segment visual images,
acquired by a task-specific sensor, into multiple classes and recognized grape bunches. According to
the authors, the proposed methods, tested in-field for fruit detection, achieved a maximum accuracy of
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91.52% with the VGG19 model. A method for automatic grape bunch detection in color images was
developed by Marani et al. [25]. They used a pretrained ConvNet to perform image segmentation.
Classification in a few classes of interest was made and compared with sub-patches of known size.
Probability maps for each class were applied for pixel-by-pixel segmentation of the grape clusters. An
accuracy of 87.5% was reached to segment grape bunches in-field images.

This investigation evaluated the accuracy levels for the identification of the grape varieties
of the Douro Demarcated Region in natural vineyard images using several Transfer Learning (TL)
schemes on the AlexNet ConvNet, which was trained using diverse pre-processed image datasets
and data augmentation methods. A proposed image warping method, named four-corners-in-one,
accompanied by the proposed leaf segmentation algorithm (LSA), demonstrated success achieving the
best classification accuracy in the set of performed experiments.

2. Materials and Methods

At all stages of image classification or object recognition research, appropriate datasets are required,
beginning with the training phase on the CNN-based models to evaluate the performance of any
classification or recognition algorithms [19]. Figure 1 presents a block diagram for the generation of
the augmented pre-processed datasets.
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2.1. Original Raw Datasets

In this work, we collected two natural vineyard image datasets at the Douro Demarcated Region
over two years: (i) In the 2016 harvest season, an image dataset named Douro Red Grape Variety
was collected (DRGV), and (ii) in the 2018 harvest season, an image dataset named DRGV_2018
was collected.

The DRGV dataset was previously described by Pereira et al. [26] and comprised 140 vineyard
images. It possessed six different red grape varieties, namely, Tinta Amarela, Tinta Barroca, Tinto Cão,
Touriga Franca, Touriga Nacional, and Tinta Roriz, with nearly 23 images per variety. The DRGV_2018
dataset comprised 84 vineyard images, also distributed by the same six grape varieties with an average
of 14 images per variety. The characterization of the two raw datasets is summarized in Table 1.
Figures 2 and 3 present examples of one image per grape variety for the DRGV and DRGV_2018
datasets, respectively.

Table 1. Distribution of the images per grape variety captured in the 2016 and 2018 harvest seasons.

DRGV Dataset DRGV_2018 Dataset

Grape Variety No. of Images Vineyard No. of Images Vineyard

Tinta Amarela 24 Quinta da Pacheca 14

Quinta do Vallado
Tinta Barroca 23

Quinta do Vale
Abraão

14
Touriga Franca 23 13

Touriga Nacional 22 15
Tinta Roriz 23 14

Tinto Cão 25 Quinta da Pacheca 14 Quinta da Pacheca
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Nacional, (b) Tinta Roriz, (c) Touriga Franca, (d) Tinto Cão, (e) Tinta Barroca, and (f) Tinta Amarela.

The DRGV dataset was captured in the 2016 harvest season, during a full-sun day in August,
using a CANON EOS 600D camera with a resolution of 5184 × 3456 pixels and image aspect ratio of
3:2 (Canon Inc., Ota, Tokyo, Japan). The DRGV_2018 dataset was captured in the 2018 harvest season,
during a full-sun day in August, using a HUAWEI P8 lite 2017 smartphone equipped with a 12 MP BSI
camera, a resolution of 3968 × 2976 pixels, and image aspect ratio of 4:3 (Huawei Technologies Co.
Ltd., Shenzhen, Guangdong, China).

Given that our raw datasets were very small, the DRGV_2018 dataset was replaced by merging it
with the DRGV dataset, named DRGV + 2018, summing 224 images distributed by the six different
grape varieties with an average of 37 images per variety. In summary, this work was developed taking
into account two effective raw datasets: The DRGV and the DRGV + 2018 datasets.

2.2. Datasets and Pre-Processing

In a recent DL survey, Kamilaris and Prenafeta-Boldú [3] reported some pre-processing methods
used, including image resizing, segmentation, background removal, foreground pixel extraction, and
features extracted from the images, such as shape, statistics, histograms, principal components analysis
filters, wavelet transformation, and gray-level co-occurrence matrix features, among others.
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In the present study, a first collection of seven pre-processed datasets (#1 to #7), extracted from the
DRGV dataset, and a second collection of three pre-processed datasets (#8 to #10), extracted from the
DRGV + 2018 dataset, were generated.

The first collection encompassed diverse image processing (IP) methods. The first IP method,
independent component analysis (ICA), is a signal processing technique which obtained interesting
results in natural images in previous research [27–29], prompting its use as a pre-processing technique
for grape variety identification in natural environment in this study. For grape variety identification,
the popular fixed-point FastICA algorithm, developed by Hyvärinen and Oja [30] and based on the
maximization of the kurtosis, was used, which generated all independent components filters (ICFs).
Figure 4 depicts the convolution output of an image with the first ICF.
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Figure 4. Independent component analysis: (a) DRGV image; (b) Convolution output of (a) with the
first independent components filter (ICF).

The next two IPs, the Canny edge detector (CED) proposed by Canny [31] and gray-scale
morphology processing (GMP) developed by Zheng and Wang [32], are related with the leaf vein
extraction. Leaf venation aims at identifying the vein pattern of a plant species. The primary vein is
similar to the main trunk of a tree, while the secondary vein is similar to the major limbs of a tree [13].

In a leaf image, the leaf vein can be seen as noise on the leaf surface and displays distinguishable
patterns between species. Methods of noise detection, like mathematical morphology, may be useful
for leaf vein extraction. Thus, Zheng and Wang [32] proposed a new method for leaf vein extraction
based on GMP, which basically comprised two basic mathematical morphology operations: Erosion
and dilation. Other morphology operations, such as the opening and closing operations, the bot-hat
transformation, and the top-hat transformation, were produced based on different combinations on
these two basic operations.

In our case, the complete GMP was composed of six morphology operations, designed according
by Equation (1).

g = ( f ·b− f ) − ( f − f ◦ b) (1)

where f is a gray image, b a structuring element, f ◦ b is an opening operation, f ·b is a closing operation,
f − f ◦ b is a top-hat transformation, f ·b− f is a bot-hat transformation, and g is the gray image output.
The selected structuring element b was a square with a width of seven pixels, with an experimentally
obtained value. A sample of the CED and GMP is shown in Figures 5 and 6, respectively.
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A proposed four-corners-in-one image warping method, described next, was used. From an
original raw image (Figure 7a), the LSA, proposed by Pereira et al. [26], was applied. The segmented
leaf image is shown in Figure 7b.
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Figure 7. The proposed method for grapevine leaf segmentation: (a) An original image from the DRGV
database; (b) segmented leaf output.

All non-black (color) pixels of the image presented in Figure 7b were concentrated at the northwest
corner of the image. For image processing, a sequence of a left shift, followed by a sequence of up shift
operations of the colored pixels of the image, were performed (Figure 8a).
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Figure 8. The steps of the proposed four-corners-in-one method: (a) Northwest corner; (b) northeast
corner; (c) southwest corner; (d) southeast corner; (e) images (a–d) joined after a rotation of 180◦ of
each image; (f) larger square image patch extracted from (e), with non-black pixels inside it (enlarged
view for better visualization).

The algorithm used for processing the northwest corner was replicated for the other three corners
of the image by the sequence: Northeast, southeast, and southwest, replacing the shift left operation
by right shift and up shift operation by down shift at the east and south directions of the image,
respectively. Figure 8b–d shows the resulting images. Next, the four images were concentrated in a
new output image by rotating each image by an angle of 180◦ joining each image following the position
given by the cardinal points of the images, as Figure 8e illustrates.

An auxiliary one-pixel-size white row and column, shown in the Figure 8e, which delimited the
four corners of the image, were used in the algorithm to help the extraction of the larger square image
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patch with non-black pixels inside. Figure 8f presents the resulting image patch centered at the cross
point of the white row and column. Afterward, the white row and column were removed.

The second collection of pre-processed datasets only comprised images resulting from the
application of the four-corners-in-one algorithm.

2.3. Pre-Processed Dataset Augmentation

The aim of applying augmentation is to increase the number of objects in the dataset and introduce
distortion effects to the images, which help in reducing overfitting during the training phase [19].

In this work, we generated “the fake samples” (so-called by Zhang et al. [33]) based on the
training/validation set in three different means. The first data augmentation method was the one-pixel
image translation with a given factor [4,7]. The factor was an integer number of generated sub-sample
images. For example, the factor of 900 (F900) means that the image was translated in a range of
30 × 30 pixels both horizontally and vertically. Thus, we created new samples with size of 900 times
for the training/validation set. The second augmentation method was a horizontal image reflection
(mirror). For the second augmentation, the image was rotated by an angle of 180◦. Finally, the third
augmentation method was the image rotation (rotate). The image was transformed by the rotation
angle in a range from −5◦ to +5◦ with a gap of 1◦ (excluding the 0◦). Thus, we created new samples
with size of 10 times for the original data.

Primarily, as mentioned in Section 2.2, a collection of seven pre-processed datasets was extracted
from the original DRGV dataset. The generation process of pre-processed datasets #1 to #7 is shown in
the flowchart of Figure 9.
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Dataset #1 was generated directly from the original raw image dataset, i.e., without applying any
pre-processing method. To increase the number of training images, each image was resized to a fixed
size of 256 × 256 and distinct 900 sub-images (F900) of 227 × 227 pixels were randomly cropped.

Dataset #2 was generated from the ICF convolutions. First, the matrix X, as the input to FastICA
algorithm, was constructed by converting each color image to grayscale and resized to 636 × 960 pixels
to accommodate 53 × 80 = 4240 non-overlapping image patches of fixed size of 12 × 12 pixels. Next,
the output matrix X with 144 rows and 4240 columns was fed to the FastICA algorithm to calculate the
144 ICFs through its output variable W. Then, 25 ICFs were randomly selected (i.e., the rows of W),
corresponding to the first three, last three, and the remaining 19 ICFs uniformly spaced using a gap of
three filters. Each selected ICF was convolved with each one of the three channels of the original color
image. Last, eight image blocks of 228 × 228 were selected, with each image block generating four
images (F4) of 227 × 227 pixels.

Dataset #3 was generated from the proposed four-corners-in-one image warping method, as
described in Section 2.2. Each output image was resized to 256 × 256 sub-images of 227 × 227 pixels.
This increased the number of training images by F900.
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Datasets #4 to #7 were generated from the segmented leaf images using the LSA. From these
segmented images, the leaf patch extraction (LPE) of a set of non-overlapping 64 × 64 leaf image
patches with no black pixels was performed and 3644 image patches over the DRGV dataset were
cropped, forming the dataset #4. For augmentation purposes, each 64 × 64 patch was resized to
231 × 231 to extract 25 sub-images (F25) with a fixed size of 227 × 227 pixels.

Dataset #5 was generated from the previous 3644 leaf image patches using ICF convolutions.
First, the matrix X, as the input to FastICA algorithm, was constructed by converting each color image
to grayscale using the HSV color conversion model. Each image was then divided into 64 distinct
image blocks, each with a fixed size of 8 × 8 pixels. Next, the resulting matrix X with 64 rows and
3644 columns was given as input to the FastICA algorithm to calculate all the 64 ICFs through the
output variable W. Then, 25 ICFs were randomly selected (i.e., the rows of W) corresponding to the
first three, last three, and the remaining 19 ICFs uniformly spaced using a gap of three filters. Each
selected ICF was convolved with each one of the three channels of the original color image. Last, each
64 × 64 image patch was resized to 231 × 231 pixels to extract 25 sub-images (F25) with a fixed size of
227 × 227 pixels.

Dataset #6 was also generated from the 3644 leaf image patches. Primarily, each patch was
transformed to grayscale and a Canny edge detector with a sigma factor of 1.75 was applied. All
eight-connected regions containing only one pixel are set to zero. The output binary images were
converted to color images by simply copying the binary channel three times. Each 64 × 64 edge image
patch was resized to 231 × 231 pixels to extract 25 sub-images (F25) of 227 × 227 pixels.

Dataset #7 was generated from the 3644 leaf image patches. It was inspired by the work developed
by Zheng and Wang [32] for leaf vein extraction. For data augmentation purposes, each image patch
was resized to 231 × 231 pixels to extract 25 sub-images (F25) with a fixed size of 227 × 227 pixels.

Table 2 characterizes each one of pre-processed datasets #1 to #7, focused on the pre-processing
and data augmentation methods.

Table 2. Statistics of the used pre-processed datasets from the DRGV image dataset.

Input Raw
Dataset

640 × 960 × 3

Pre-Processing Data Augmentation Output
Pre-Processed

Dataset
227 × 227 × 3

Method N. of
Images Method N. of

Images

DRGV

Not used 140 F900 126,000 #1
ICF 28,000 F4 112,000 #2

LSA + 4-Corners-in-One 140 F900 126,000 #3

LSA +

LPE 3644 F25 91,100 #4
LPE + ICF 3644 F25 91,100 #5
LPE + CED 3644 F25 91,100 #6
LPE + GMP 3644 F25 91,100 #7

First, from each DRGV pre-processed dataset, six images per grape variety and their augmented
forms were randomly removed for test purposes. In pre-processed datasets #1 to #7, a shuffled
data splitting of 80% and 20%, for training and validation datasets, respectively, was applied.
Figure 10 shows the distribution of the number of training, validation, and test samples on the
DRGV pre-processed datasets.

Pre-processed datasets #8 to #10, extracted from the DRGV+2018 dataset, were generated using
the proposed four-corners-in-one image warping method. Initially, 10 images per grape variety were
randomly removed from 224 raw images of the DRGV + 2018 dataset for testing purposes. From the
remaining 164 images, six images per grape variety were randomly removed to form a validation set
(hold-out data). So, the data splitting of the DRGV + 2018 dataset was constituted by the training set
(128 images, 57%), validation set (36 images, 16%), and test set (60 images, 27%).
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To create the dataset #8, the 224 original raw images were resized to a fixed size of 256 × 256 pixels,
in which a one-pixel image translation method with F900 (30 × 30) was applied. To produce dataset
#9, each raw image was transformed by a one-pixel image translation method with F900, followed
by a horizontal reflection image transformation (mirror). To construct dataset #10, each raw image
was resized to a fixed size of 236 × 236 to apply the one-pixel image translation method with F100
(10 × 10), a horizontal reflection image transformation, and a rotation transformation (rotate), with
angles ranging between −5◦ and +5◦ with a gap of 1◦. Table 3 shows the amount of augmented
training/validation and test sets for the second collection of the pre-processed datasets extracted from
the DRGV + 2018 dataset.

Table 3. Data splitting from DRGV + 2018 pre-processed datasets #8 to #10.

Data Splitting Sample Size of All Grape Varieties

#8 #9 #10

Augmented training/validation sets 147,764 295,364 360,964
Original raw image set 164 164 164

1-pixel image translation 147,600 147,600 16,400
Image horizontal reflection — 147,600 16,400

Image rotation — — 328,000

Augmented test set 54,060 108,060 132,060

Original raw image set 60 60 60
1-pixel image translation 54,000 54,000 6000

Image horizontal reflection — 54,000 6000
Image rotation — — 120,000

Total 201,824 403,424 493,024

2.4. Convolutional Neural Network

The ConvNet is composed of a deep structure, consisting of alternating convolution and pooling
layers, and last, by fully connected layers. It has shown better results than state-of-the-art classifiers,
such as SVM and linear regression, among others [34,35].

A convolution layer is defined by the number of filters (for example, the number of output
channels), the properties of these filters (for example, number of input channels, width, and height of
the image) and the properties of the convolution (for example, padding and stride).

The discrete convolution operation C, between an image f and a filter g, at the point of coordinates
(x,y), is defined by Equation (2) as (see, for example, [2]):

C(x, y) = f (x, y)> g(x, y) =
∑

n

∑
m

f (n, m)g(x− n, y−m) (2)



Sensors 2019, 19, 4850 11 of 22

where > denotes the dot product between the image f and the filter g (f and g having the same
dimensions). In the case of neural networks, the output matrix is typically called “a feature map”, and
after processing, the activation function is “an activation map”. The output size decreases slightly with
every convolution if the image f is not padded [2].

2.4.1. Pooling and Stride

Decreasing the activation map size present at the end of the deep network makes it more suitable
for classification purposes.

A pooling layer provided invariance to marginally different input images and reduced the
dimension of the feature maps (e.g., width and height). To each feature map c:a = f (c), a nonlinear
function f ( ) was then applied element-wise. The resulting activations a were then passed to the pooling
layer. This aggregated the information within a set of small local regions, R, producing a pooled feature
map s (of smaller size) at output. If pool( ) denotes the aggregation function for each feature map c, the
pooled feature map is given by Equation (3) [36]:

s j = pool( f (ci)) ∀i ∈ R j (3)

where R_j is the pooling region j in the feature map c, and i is the index of each element within it.
The other way to reduce the size of the activation map is to adjust the stride parameter of the

convolution operation. The convolution output can be calculated for a fixed square grid centered on
every pixel of the input image (stride 1) or jumping by every nth pixel (stride n).

2.4.2. Rectified Linear Unit

The layered structure of a ConvNet typically includes one or more nonlinear activation functions,
the so-called rectified linear activation technique. The output of a nonlinear activation function is
related to the capacity of the neural network to approximate nonconvex functions. Every type of
activation function performs a certain fixed point-wise operation on a vector. The most-used ReLU
function in ConvNet models is defined by Equation (4), where x is an input real number:

ReLU(x) =

x x ≥ 0

0 x < 0
(4)

Due to the linear non-saturating form, the ReLU function greatly accelerates the convergence of
stochastic gradient descent compared to the sigmoid/TanH functions. Another advantage is related
to the lower computational processing effort compared to the calculation of an exponential function.
However, the does not appear ReLU suited for all datasets and architectures because it removes all the
negative information.

2.5. Network Structure

In this work, the structure of the AlexNet model, as proposed by Krizhevsky et al. [7], was used.
The architecture of this ConvNet was pretrained on a subset of the ImageNet database, which comprises
more than one million images and could classify images into 1000 object categories and 25 layers. The
first 22 layers consisted of five convolutional and three max-pooling layers with different square kernel
sizes and strides. Moreover, two layers of dropout with probability of 50% were linked after each fully
connected layer. Next, a softmax layer was present to obtain a probability distribution, and finally, a
classification layer chose the highest probability as its predicted class. Table 4 shows the details of each
AlexNet layer available in the DL MatlabTM toolbox (The MathWorks Inc., Natick, MA, USA).
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Table 4. AlexNet deep network in DL Matlab™ toolbox (adapted from Hertel et al., 2015).

No. Layer (Name) Dimensions
Kernel Stride Padding Observation

Width Height Depth

1 Image input 227 227 3 − − −
‘zerocenter’

normalization

2 Convolution (conv1) 55 55 96 11 4 0

3 ReLU (relu1) 55 55 96 − − −

4 Cross channel (norm1) 55 55 96 − − −

5 Max pooling (pool1) 27 27 96 3 2 0

6 Convolution (conv2) 27 27 256 5 1 2

7 ReLU (relu2) 27 27 256 − − −

8 Cross channel (norm2) 27 27 256 − − −

9 Max pooling (pool2) 13 13 256 3 2 0

10 Convolution (conv3) 13 13 384 3 1 1

11 ReLU (relu3) 13 13 384 − − −

12 Convolution (conv4) 13 13 384 3 1 1

13 ReLU (relu4) 13 13 384 − − −

14 Convolution (conv5) 13 13 256 3 1 1

15 ReLU (relu5) 13 13 256 − − −

16 Max pooling (pool5) 6 6 256 3 2 0

17 Fully-connected (fc6) 1 1 4096 − − − Input size: 9216

18 ReLU (relu6) 1 1 4096 − − −

19 Dropout (drop6) 1 1 4096 − − − Probability: 0.5

20 Fully-connected (fc7) 1 1 4096 − − − Input size: 4096

21 ReLU (relu7) 1 1 4096 − −

22 Dropout (drop7) 1 1 4096 − − − Probability: 0.5

23 Fully-connected (fc8) 1 1 1000 − − − Input size: 4096

24 Softmax (prob) 1 1 1000 − − −

25 Classification (output) 1 1 1000 − − −
‘crossentropyex’

with 1000 classes

2.6. Training Setting

The pretrained ConvNets are usually composed by two basic parts: The convolutional base, which
performs feature extraction, and the classification base, which classifies the input image based on the
features extracted by the convolutional base. Focused on the classification part, different approaches
are followed to build the classifier. First, a stack of fully connected layers, followed by a softmax
activated layer, are used [7,37,38]. Second, the linear SVM classifier [39] may be successfully trained on
the features extracted by the convolutional base [40].

Traditional DL architectures took advantage of the transfer learning, which increases learning
with the already existing knowledge of some related task associated with the problem under study by
fine-tuning pretrained models [3] and builds accurate models in a timesaving way [8]. Specifically, this
investigation focused on transferring the pretrained AlexNet architecture to the specific task of grape
variety identification in natural vineyard images. Applying the knowledge of the TL to our application
domain, fine-tuning and fixed feature extractor schemes were used, as described by Bunrit et al. [41].

To fine-tune the AlexNet to our specific task, some parts of the pretrained network were retrained,
with the transferred weights and bias from the pretrained network using all the pre-processed datasets.
In opposition to fine-tuning, the pretrained weights and bias of the AlexNet extracted through the fixed
feature extractor scheme were directly transferred to a multiclass SVM classifier for training/validation
with our pre-processed datasets.
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Operationally, the classification part of the AlexNet (the last three layers) was removed and
replaced by a new one that fit the six grape varieties, according to the following TL strategies:
(i) “Feature (FE) and classification part”, where no convolutional layers were frozen (a frozen layer
does not change the weights during training), therefore, the network was retrained using the learned
features extracted from the ImageNet database and the new classification part that fits the six grape
varieties identification; (ii) “Learning on last 3 conv. layers”, which involved freezing the first two
convolutional layers, only setting their learning rates to zero. This implies that the network was only
retrained on the last three convolutional layers and the new classification part; (iii) “FE and SVM”,
where the entire convolutional base was frozen and its original activation map was then fed with a
multiclass SVM classifier.

The AlexNet models were retrained for six and 30 epochs. An epoch consists of a complete training
cycle over all training image sets. As usually happens in DL, the training phase takes a long time.
Therefore, the creation of checkpoints to save a snapshot of the trained model parameters (weights and
bias of the trained layers) when finished every epoch during training is a good practice. The checkpoints
can be used as classifiers, starting points for ongoing training, or to tune the hyperparameters at any
given epoch. In this work, the checkpoint/restart technique available in MatlabTM was mainly applied
to make and evaluate predictions on test datasets after completing each epoch.

On the training phase, a global base learning rate of 1 × 10−5 was used. To prevent continuous
increase of validation loss during the training phase, the early stopping method was used to finish the
training phase when the validation loss increased along a given number of validation points (patience
parameter set to ten) that occurred at fixed-frequency intervals (set to one epoch). Furthermore, the
SGDM optimization algorithm was selected, with momentum of 0.9, weight decay (L2 regularization)
value of 1 × 10−1, and batch size of 32.

The multiclass SVM classifier was trained on the features extracted by the fully connected (fc6) layer.
Ten-fold cross-validation to estimate the error of the classifier was used. Since 10-fold cross-validation
was applied on pre-processed datasets #1 to #10, no data splitting into training/validation sets was
needed. To optimize the hyperparameter choice of the penalty parameter C of the error term, a grid
search method was used. This method is applied when multiple input parameters exist and is intended
to find the area that contains the best combination of parameters. A grid search algorithm is commonly
guided by some performance metric, typically measured by cross-validation on the training set.

These parameters were determined experimentally according to the best classification accuracies
on a validation set using the grid search method for diverse learning rate and weight decay
hyperparameter values.

Last, to visualize the features learned by the proposed network, the deepDreamImage MatlabTM

function was used. This algorithm is based on a feature visualization technique in DL, called DeepDream,
developed by Google® (Google Inc., Mountain View, CA, USA) in 2015, and implemented in a computer
program using a ConvNet, which synthesizes images that strongly activate the network layers.

3. Experimental Results

A set of experiments led to an effective study of the behavior of the TL on the AlexNet architecture
trained over diverse pre-processed datasets, with the goal to achieve the best classifier for grape
variety identification. So, an experimental strategy to evaluate the performance of a grape variety
identification system was proposed.

The first set of experiments, using pre-processed datasets #1 to #7 (Section 2.3) trained on three
different AlexNet-based TL schemes (Section 2.6), was performed. From its performance results, the
effective IP method related to the pre-processed dataset that present better test accuracy was selected.
The second set of experiments, using pre-processed datasets #8 to #10 (Section 2.3), was trained on the
same three AlexNet-based TL schemes (Section 2.6). Sections 3.1 and 3.2 describe the performance
results obtained on the DRGV and the DRGV+2018 test datasets, respectively.
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All experiments described hereafter were developed on the MatlabTM 9.6 (R2019a) programming
platform, using the deep learning MatlabTM toolbox and running on a computer installed with Windows
10 Home, Intel CoreTM processor i7-7500U at 2.70 GHz, 8 GB DDR4 and dedicated graphics NVIDIA
GeForce 920MX with 2 GB memory (AsusTek Computer Inc., Beitou District, Taipei, Taiwan).

3.1. Performance on the DRGV Test Set

In this first set of experiments, DRGV pre-processed datasets #1 to #7 were trained using the data
splitting scheme, shown in Figure 10. From each DRGV pre-processed dataset, six images per grape
variety and their augmented forms were randomly removed for test purposes. The AlexNet models
were retrained for six epochs.

Table 5 shows the training, validation and test accuracy, and loss values obtained by different
TL schemes trained on the DRGV pre-processed datasets. The IP method which reached better
performance results on the training, validation, and test datasets was the proposed four-corners-in-one
image warping method, as depicted in Table 5.

Table 5. Training, validation and test accuracy, and loss for different transfer learning schemes on the
AlexNet-based network (DRGV pre-processed datasets).

TL Scheme Metric
Pre-Processed Dataset

#1 #2 #3 #4 #5 #6 #7

FE and
classification

part

Train. Acc. [%] 100 87.50 100 65.63 56.25 31.25 37.50
Train. Loss 0.0140 0.4511 0.0210 1.0008 1.2451 1.8715 1.3313

Val. Acc. [%] 78.35 54.40 68.00 47.94 36.13 33.18 41.33
Val. Loss 0.8044 1.3266 1.2182 1.3558 1.6020 1.6732 1.4717

Test Acc. [%] 73.13 60.84 66.05 56.06 45.79 29.95 46.09

Learning on
last 3 conv.

layers

Train. Acc. [%] 100 87.50 100 65.63 62.50 34.38 40.63
Train. Loss 0.0069 0.4326 0.0115 1.0936 1.1414 1.5786 1.4623

Val. Acc. [%] 73.09 58.17 70.67 46.28 34.34 28.06 42.14
Val. Loss 0.9551 1.3159 1.2511 1.4257 1.6374 1.7160 1.4938

Test Acc. [%] 73.37 59.76 71.81 51.33 43.46 27.18 46.10

FE and SVM

Train. Acc. [%] 59.67 61.23 58.07 47.27 38.87 24.51 44.21
Train. Loss 0.4033 0.3877 0.4193 0.5273 0.6113 0.7549 0.5579

Val. Acc. [%] 68.30 43.03 47.71 39.88 33.78 25.93 36.76
Val. Loss 0.2999 0.5799 0.5126 0.5776 0.6297 0.7366 0.6370

Test Acc. [%] 73.43 47.98 55.74 48.14 36.62 23.94 39.25

3.2. Performance on the DRGV + 2018 Test Set

In this second set of experiments, pre-processed datasets #8 to #10 were trained using the data
splitting scheme, shown in Table 3. To evaluate the performance of pre-processed datasets #8 to #10 on
the training progress, the training and validation datasets were shuffled. From each pre-processed
dataset, 10 images per grape variety and their augmented forms were used for test purposes. The
AlexNet models were retrained for 30 epochs.

The performance results obtained from pre-processed datasets #8 to #10 are depicted in Table 6,
where every column named “epoch” indicates the number of the epochs (or n/a, meaning “not
applicable”) where the test accuracy was higher. In Table 6, the maximum testing accuracy of 77.30%
using the “Learning on last 3 conv. layers” TL scheme of the AlexNet model to train the network from
pre-processed dataset #9 is highlighted. Using this deep model trained on the original raw image
dataset, i.e., without applying any pre-processing method, a classification accuracy of 76.01% was
achieved on the test set. This result highlights the relevance of the application of the four-corners-in-one
image warping method on the original dataset for grape variety identification.
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Table 6. Training, validation and test accuracy, and loss for different TL schemes on the AlexNet-based
network (DRGV + 2018 pre-processed datasets).

TL Scheme Metric

Pre-Processed Dataset

#8 #9 #10

Result Epoch Result Epoch Result Epoch

FE and
classification

part

Train. Acc. [%] 100

9

100

10

100

9
Train. Loss 0.0166 0.0188 0.0171

Val. Acc. [%] 75.29 75.74 76.87
Val. Loss 0.5864 0.6248 0.7941

Test Acc. [%] 68.43 72.58 74.42

Learning on
last 3 conv.

layers

Train. Acc. [%] 100

30

100

17

100

26
Train. Loss 0.0110 0.0122 0.0109

Val. Acc. [%] 77.61 76.32 71.98
Val. Loss 0.6375 0.6456 0.7762

Test Acc. [%] 69.23 77.30 76.22

FE and SVM

Train. Acc. [%] 83.03

n/a

83.93

n/a

76.68

n/a
Train. Loss 0.1670 0.1577 0.2283

Val. Acc. [%] 47.66 46.38 47.35
Val. Loss 0.5237 0.5371 0.5270

Test Acc. [%] 52.24 58.48 53.90

The confusion matrix over the test set was constructed (Table 7). The grape variety Touriga Franca
was identified with the highest accuracy of 89.1%. The varieties with worst performance results were
the Touriga Nacional, Tinta Roriz, and Tinto Cão, presenting accuracies of 65.65%, 67.1%, and 72.95%,
respectively. From the confusion matrix in Table 7, the worst case of misclassification occurred with
the Tinta Roriz variety images, of which 3417 (18.97%) images were misclassified as Touriga Franca.

Table 7. Confusion matrix over the test set (in percentages).

Amarela Barroca Cão Franca Nacional Roriz

Amarela 85.7 0.31 0.03 0 10.06 3.9

Barroca 9.82 83.3 0 0 0.02 6.86

Cão 9.57 16.73 72.95 0.09 0 0.66

Franca 7.39 0.18 0 89.1 2.98 0.35

Nacional 0.43 0.79 2.73 18.86 65.65 11.54

Roriz 10.08 0.86 0 18.97 2.99 67.1

The proposed grape variety identification system comprised a deep classifier using the
pretrained AlexNet architecture and trained on a raw image dataset pre-processed with the proposed
four-corners-in-one image warping method.

3.3. Network Feature Visualization

The two-dimensional filters applied on the successive convolutional and fully connected layers of
a ConvNet can be visualized through the images that highlight the types of features that the network
will detect. The visualization of the convolutional features in the several layers of a ConvNet can help
to understand what kind of pattern a certain filter might detect and is useful to evaluate the progress
of the training phase. Usually, a well-trained network exhibits well-formed, smooth feature images
with an absence of noise.
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Figure 11 shows the first 30 features learned by the five convolutional layers of the proposed
classifier, trained over all the images of pre-processed dataset #9, which was visualized in different
image detail levels. The deepDreamImage function with the PyramidLevels parameter enabled us to
produce more detailed images. Setting this parameter to 1, the images were not scaled.
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The feature images produced by the first two convolutional layers (Figure 11a,b) contained edges
and colors, which indicates that the earlier layers learned about basic features in images. Moving
deeper into the last three convolutional layers, it became difficult to interpret the patterns because the
deeper layers learned much more abstract information regarding more complex features, which led to
generalizations about the classes and not about the own characteristics of the image.

To produce feature images that resemble a given class, the final fully connected layer was selected.
The fully connected layer, toward the end of the ConvNt, learned the high-level combinations of the
features from the earlier layers. Figure 12 depicts the six features (six grape variety classes) by the final
fully connected layer of the proposed classifier network when identifying the class of the test image,
belonging to the grape variety Touriga Franca, shown in Figure 12a.
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(c) Tinta Barroca, (d) Tinto Cão, (e) Touriga Franca, (f) Touriga Nacional, and (g) Tinta Roriz.

4. Discussion

Leaves play an important role in plant identification and plant disease recognition, mainly
because they are easily found and captured in fields during the vegetation period. In the last few
years, several researchers have studied automatic plant identification [11,15,42] and plant disease
detection [16–23,43–45] from leaf images using DL models, achieving very high classification accuracies.
However, the following three situations may lead to these results.

First, it is important to verify if the researching authors tested their implementations using the
same dataset (e.g., by dividing the dataset into training and testing/validation sets) or using different
datasets to test their solution. Most of the released papers did not use different datasets for testing and
for training/validation [3].

Second, many other authors have obtained excellent performance results on the previously
mentioned challenging agricultural problems using DL networks in the range of 99–100% in publicly
available datasets of plants or leaves. However, in images captured in natural environments,
these accuracy values were much lower. Examples of this are the works of Potena et al. [9] and
Dyrmann et al. [10], reaching an accuracy of 59.4% and an IoU (Intersection over Union) segmentation
metric of 0.64, respectively.

The third situation, reported by Šulc and Matas [46], presented excellent performance results when
ConvNets were applied on sufficiently large datasets. In different plant recognition experiments, when
extensive training data is available, better accuracy can be achieved using a ConvNet, performing leaf
classification almost perfect with 99.9–100% accuracy on the MEW (Middle European Woods) dataset
with 153 plant species. Although the experimental results obtained by these authors suggest that the
“recognition of segmented leaves is practically a solved problem, when high volumes of training data
are available”, they also concluded that, in the presence of a small number of samples, the identification
problem remains a valid problem for uncommon plant species and rare phenotypes, among others. To
try to solve this problem, a higher volume of natural images, captured along various harvest seasons in
different geographical locations at the vineyards of the Douro Demarcated Region, should be acquired.

The long time needed to train DL networks is one of the main drawbacks of using this methodology
of image classification. This problem can be tackled by reusing the feature extraction part (transfer
learning) of a popular pretrained network from a very large dataset and retraining the classification
part on multiple TL schemes and datasets [4]. However, transferring the pretrained weights and bias
through the fixed feature extractor scheme directly to an SVM classifier also leads to the long time and
memory requirements needed for training with large datasets.

Nalepa and Kawulok [47] stated that it “may be even impossible to train the classifier using a
dataset encompassing a very large number of vectors”. So, the size of the training datasets may be



Sensors 2019, 19, 4850 18 of 22

reduced to generate a small number of support vectors, making the training phase much faster and
practicable. To solve this issue, reduced augmentation data schemes were used to train the multiclass
SVM on the second set of experiments. So, the data augmentation applied on the pre-processed
datasets #8 to #10 was significantly reduced for (i) a one-pixel image translation with F100, (ii) F64 and
a horizontal reflection image transformation, and (iii) F16, Mirror and a rotation transformation in a
range of angles between −5◦ and +5◦ with a gap of 1◦ respectively.

The proposed system for grape variety identification highlights some issues and constraints
concerning the training phase of a deep learning network, including a very low volume of images;
images captured in natural environment; significant changes on the images of grapevine leaf or bunches
of grapes in different harvest seasons, mainly due to adverse climatic conditions, pests, diseases, and
pesticides on the grapevines; high similarity of the images on the different grape varieties in the Douro
Demarcated Region; and issues on the harvesting (both in manual or robotic) at the Douro vineyards
due to the existence of more than one variety per parcel and even for row.

Applying the TL methodology, a set of experiments comprising 10 pre-processed datasets
associated with four distinct image processing techniques, three data augmentation methods, and
three different AlexNet-based TL schemes allowed us to conduct an effective study of the behavior of
the pretrained AlexNet model with the aim of identification of grape varieties.

According to good practice principles, our experimental results should be compared with
some other authors’ results for system validation purposes. Taking into account that the natural
image databases were constructed during this investigation and the deep classifier presented in this
paper identified the grape varieties at the Douro Demarcated Region, it became impossible to make
comparisons with other authors because no other authors the same image databases or identified any
kind of grape varieties at this viticulture region.

Nevertheless, we compared our results with other results obtained by methods for identifying
plant species from leaf images. The proposed system was tested on the publicly available Flavia leaf
dataset, which contains 1907 images of 32 different plant species. Each species has 50 to 77 sample
leaves. Each image has a resolution of 1600 × 1200 pixels on white background. These images were
pre-processed with the four-corners-in-one procedure and trained using the “Learning on last 3 conv.
layers” TL scheme. For each type of plant in the Flavia dataset and before the training phase, 10 species
of leaves from the dataset were randomly removed, which were then used to test the performance and
efficiency of the proposed system. A classification accuracy of 89.75%, trained on the pre-processed
Flavia dataset with the proposed four-corners-in-one image warping method augmented with F121
(11 × 11) and mirrored images, was reached.

Comparing the classification results on the Flavia dataset with the work performed by other
authors, it can be seen that Satti et al. [48] presented an accuracy of 85.9% and 93.3% for KNN and ANN
classifiers, respectively, while Zhang et al. [49] presented a table comparing the accuracy values with
13 other author’s schemes (on the same Flavia dataset). The accuracy average of the works presented
in that table was 87.37%. In the paper by Barrientos [50], the AlexNet type of Philip Xue obtained the
best accuracy in every dataset, reaching a 91% accuracy running on 84 epochs. The reported accuracy
values were in the same order of magnitude, or even lower than that obtained by the proposed system
for the grape variety identification.

Regarding the high similarity of the leaf images on the different species studied, Kho et al. [15]
identified only three leaf species of Ficus (among 1000 species worldwide) which hae similar leaf
morphology. Their proposed system to recognize leaf images reached an accuracy of 83.3%. Compared
with our approach, an accuracy score of 77.30% to identify six grape varieties was reached, i.e., twice
the distinct number of varieties as reported in this paper.

5. Conclusions and Ongoing Work

Automatic grape variety identification is a matter of great interest in precision viticulture.
Traditionally, the Douro Region vineyards produce different grape varieties in the same parcel,
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evidencing high visual similarity between different grape varieties, making their identification a
challenging task, even for viticulture experts.

In this paper, an approach based on the AlexNet architecture with transfer learning scheme
was presented to automatically identify and classify six grape varieties that predominate the Douro
Demarcated Region, which can be applied, for example, in robotic/automated harvesting contexts. The
computer can automatically classify six kinds of grape varieties via the segmented vine leaf images.
Image pre-processing and data augmentation were adopted to reduce the overfitting degree of the
model. The proposed four-corners-in-one image warping method has become the most relevant
IP technique and was applied on the generation of the pre-processed datasets for the automatic
identification of grape varieties in natural images using different TL schemes over a pretrained AlexNet
architecture, as presented in Table 6.

The experimental results demonstrated the reliability of the proposed classifier with a testing
accuracy of 77.30%. The computation time to identify the grape variety in an image was about 6.1
ms. Applying the same classifier model, an accuracy of 89.75% on the popular Flavia leaf dataset
was achieved. These results are promising and certainly encouraging, showing that the proposed
approach may be an effective solution, which is believed to outperform the manual recognition of a
viticulturist expert.

For future work, our prime suggestion is related to the acquisition of a higher volume of natural
images captured in different geographical locations and harvest seasons at the vineyards of the Douro
Demarcated Region for training purposes. As a second suggestion, comparative evaluation of some
extremely deepest networks for improvement of the classification accuracy should be done. Different
TL schemes on deepest models should be tested, such as the VGG net, Inception V4, Resnet (50,101
and 152 layers), and Densenet.

For a new future implementation, we suggest definining different learning rate values for each
convolutional layer, because the results obtained on dataset #8–#10 show that the TL scheme “Learning
on last 3 conv. layers” performed better than changing all the weights within the whole architecture
(i.e., on the “FE and classification part” TL scheme).

Given the promising results reported in this research, the proposed four-corners-in-one image
warping method should be specifically used to generate pre-processed datasets to train and test the
deep networks for grape variety identification in the Douro Demarcated Region.
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