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SUMMARY

Bronchoscopic-assisted discrimination of lung tumors presents challenges, especially in cases with contra-
indications or inaccessible lesions. Through meta-analysis and validation using the HumanMethylation450
database, this study identified methylation markers for molecular discrimination in lung tumors and de-
signed a sequencing panel. DNA samples from 118 bronchial washing fluid (BWF) specimens underwent
enrichment viamultiplex PCR before targetedmethylation sequencing. The Recursive Feature Elimination
Cross-Validation and deep neural network algorithm established the CanDo classification model, which
incorporated 11 methylation features (including 8 specific to the TBR1 gene), demonstrating a sensitivity
of 98.6% and specificity of 97.8%. In contrast, bronchoscopic rapid on-site evaluation (bronchoscopic-
ROSE) had lower sensitivity (87.7%) and specificity (80%). Further validation in 33 individuals confirmed
CanDo’s discriminatory potential, particularly in challenging cases for bronchoscopic-ROSE due to patho-
logical complexity. CanDo serves as a valuable complement to bronchoscopy for the discriminatory diag-
nosis and stratified management of lung tumors utilizing BWF specimens.

INTRODUCTION

The global cancer statistics highlight that lung cancer accounts for 12.2–27.2%of the total annual incidence ofmalignant tumors worldwide,1,2

representing a significant 18% of cancer-related mortalities and leading to 1.8 million deaths annually.3 Despite the 5-year survival rate of less

than 13% for patients diagnosed with advanced-stage lung cancer,4 the active promotion of low-dose chest computed tomography (LDCT)

screening has contributed to a significant increase in the 5-year survival rate, rising from 6% for distant-stage disease to 33% for regional stage

and 60% for localized-stage disease.5,6 However, 20–50% of individuals undergoing LDCT screening may detect lung tumors with a diameter

of less than 3 cm, and asmuch as 96.4% of these positive tumors are benign non-neoplastic lesions.7,8 This necessitates careful, followed steps

in clinical stratification management decisions to mitigate the risk of overdiagnosis, preventing patients from bearing unnecessary surgical

and medication risks.9,10

A viable solution is to employ additional auxiliary diagnostic techniques, particularly molecular diagnostics based on genomicmethylation

biomarkers, which offer significant advantages in this context. In comparison to genomic mutations, alterations in the DNA methylation pat-

terns of tumor cells not only occur earlier but also demonstrate a high degree of cell-type specificity.11,12 This theoretically endows methyl-

ation markers with both tumor discrimination and cell lineage tracing capabilities, earning them the designation of ‘‘molecular fingerprints’’.

Numerous studies have successively reported a series of potential methylation markers applicable to lung cancer diagnosis.13 For instance,

Rosa et al. conducted a small sample-size study involving the simultaneous detection of 10 methylation markers, achieving a sensitivity of up

to 73% for the diagnosis of early-stage lung cancer in blood samples.14 Additionally, Guo et al. confirmed the ability to accurately differentiate

between lung cancer and colorectal cancer in a cohort of 59 cancer patients through the methylation patterns of plasma cfDNA.15
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Figure 1. Panel design and database validation

(A) Diagnostic sensitivity reported in the literature for the 13 selected genes, meta-analysis; (B) Diagnostic specificity reported in the literature for the 13 selected

genes, meta-analysis; (C) Average methylation levels of the 13 selected genes in public databases among lung tumor tissue and normal tissue adjacents (i.e., the

averagemethylation level of all 450K BeadChip cg probes covered by each gene). Data are represented asmeanG SEM, and significance testing was performed

using the Student’s t test. ****, p < 0.00005.
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Notably, the low abundance of circulating free DNA (cfDNA) derived from tumor cells in blood poses amajor challenge to sensitivity in the

detection process.16 Another issue in plasma specimens is the heterogeneous interference of clonal hematopoietic mutations.17 In compar-

ison, bronchial washing fluid (BWF) obtained through saline flushing during bronchoscopy holds obvious value for companion diagnostic ap-

plications. Direct contact with the lesion and bypassing the circulatory process allows for the maximization of recovery of various cellular

detritus and exudates, thereby obviously contributing to improved detection rates and accuracy. Furthermore, the collection approach for

BWF is entirely practical for patients with contraindications to biopsy procedures, such as bleeding or pneumothorax, effectively avoiding

additional pain and potential risks associated with invasive diagnostic interventions.18,19

In this study, a customized targetedmethylation sequencing panel was developed to analyze the methylation characteristics of DNAmol-

ecules in BWF specimens. Utilizing the machine learning neural network algorithm for methylation feature selection, a classification model

namedCanDo (cancer diagnosis) was established, and a comprehensive comparison to evaluate the consistency among bronchoscopic rapid

on-site evaluation (bronchoscopic-ROSE), CanDo, and histopathological diagnosis from the biopsy.We proposed a clinical strategy for auxil-

iary diagnosis of lung malignant tumors, aiming to guide more precise patient stratification management.
RESULTS

Candidate genes for the diagnosis of lung malignant tumors

The methylation patterns of 79 genes within 23 selected publications were considered as potential diagnostic markers for lung malignant

tumors (Table S1), and 13 of them were included in the candidate panel due to being mentioned in at least two literatures. Among these,

12 genes exhibited excellent diagnostic specificity exceeding 90% when applied independently or in combination. The exception was

MARCH11, which achieved 88%. However, it’s important to note that five genes (HOXA9, ZNF781, CCDC181, MIR129, and TBR1) reached

a sensitivity level of 90% or higher. Moreover, only HOXA9, ZNF781, and MIR129 demonstrated diagnostic sensitivity and specificity

exceeding 90% in the same study (Figures 1A and 1B).
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To comprehensively evaluate the diagnostic relevance of these 13 genes in the context of malignant lung tumors, we analyzed their

methylation patterns in both lung tumor tissues and adjacent non-cancerous specimens. Publicly available sequencing data from the

HumanMethylation450 (450K) BeadChip platform, encompassing over 480,000 methylation sites across the human genome, were utilized.

Of these, 356 CpG sites were mapped onto the 13 selected genes, with only 18 (5.1%) showing no significant difference in methylation levels

between lung tumors and noncancer tissues (Table S2).

Additionally, we determined the averagemethylation levels for these 13 genes by calculating themean values of methylation rates from all

CpG probes targeting them. Our analysis revealed statistically significant differences in the methylation levels of these genes between lung

malignant tumor tissues and their noncancer counterparts (p < 0.00005, Figure 1C, and Table S2), highlighting their robust potential as diag-

nostic biomarkers.

NGS-panel design and methodological assessment

Conducting a large-scale examination of CpG sites in a single sweep undoubtedly enhances the specificity and sensitivity of lung malignant

tumor diagnosis. However, the increased cost may hinder the clinical feasibility of such testing. To strike an optimal balance between preci-

sion and cost-effectiveness, an efficient targeted amplification strategy was developed. In brief, segments of CpG-rich promoter regions from

13 genes that obtained from previous literature meta-analysis were carefully selected, with each fragment approximately 150 base pairs in

length. Following two rounds of targeted enrichment via multiplex PCR, next-generation sequencing (NGS) was employed to analyze the

DNAmethylation levels of these genes. The advantage of this approach lies in its significantly improved cost-effectiveness due to the shorter

and limited fragment lengths. Additionally, libraries enriched through this method effectively enhance sequencing depth and signal-to-noise

ratio. Ultimately, a panel for further studies was customized, encompassing 13 genes and 151 CpG sites (Table S3).

To evaluate themethodological stability of the detection strategy, we divided BWF samples obtained frombronchoscopy examinations of 6

volunteer donors into two equal portions. One portion underwent processing within 24 h of collection and the other portion was stored in stor-

age tubes at room temperature for 7 days before further processing. The differences in DNA methylation rates among samples subjected to

each procedures were then assessed. Results demonstrated that, under standardized protocols and controlled environmental conditions, sam-

ples stored in lavage fluid storage tubes remained highly consistent with fresh samples even after 7 days at room temperature (Fig. S1). This

indicates that the detection strategy ismore robust to variations in sample storage time, effectively extending the sample preservation window.

Patient enrollment

From 2022 to 2023 in Zhongshan Hospital, 118 patients with suspicious lung tumors detected through CT scans and required bronchoscopy-

guided biopsies were enrolled in this study. All participants strictly adhered to inclusion and exclusion criteria (Supplementary Methods), and

detailed records of their baseline information were kept (Tables 1, and S4). Notably, following the diagnostic gold standard pathological ex-

amination, 73 cases were ultimately diagnosed with malignancies, while 45 were classified as benign cases (Table S4).

Methylation characteristics of lung malignant tumors

Out of the 118 clinical bronchoscopy lavage fluid specimens collected, the methylation patterns of three genes (CDO1, SOX17, and

MARCH11) were not fully detected in over 10% of the samples. To ensure the robustness of subsequent diagnostic discrimination modeling,

we excluded these three genes and proceeded with the remaining 115 CpGs (located on 10 genes) as the final testing panel. Our findings

revealed a significant trend of increasedmethylation levels atmost CpG sites in the 73 cancer patients compared to the 45 patients diagnosed

with non-cancerous conditions through pathology (Figure S2, EXdata 1. Mendeley Data: https://data.mendeley.com/datasets/wcnzyth6vd).

To further explore themethylation characteristics distinguishing the cancer and noncancer cohorts, we computed the averagemethylation

level of all CpG sites within each gene in the panel, defining it as the gene average methylation rate. Consistent with the findings from our

previous analysis in the public database, hypomethylation was observed in all 10 genes in the cancer group. In contrast, the noncancer group

exhibited lowermethylation rates, showing a highly significant statistical difference (p< 0.00005, Figure 2A, EXdata 2.Mendeley Data: https://

data.mendeley.com/datasets/wcnzyth6vd).

For amore in-depth examination of whether the observed statistical significance difference could be attributed to small sample bias resulting

from our limited sample size, we conducted further analysis using publicly available DNAmethylation data based on the HumanMethylation450

BeadChip. Through probe chromosome coordinate alignment, we identified a total of 13 CpG sites spanning seven genes included in our

sequencing panel (Table S2). Themethylation status of these 13 CpG sites between our dataset and a public database containing 837 lung can-

cer tissue samples and 74 adjacent non-cancer tissue samples were compared. The results revealed that, in both our dataset and the public data-

base, these 13 CpG sites exhibited significantly elevatedmethylation levels in the cancer group compared to the noncancer group (p < 0.00005,

Figure 2B). This suggests that the methylation pattern changes at these sites were not solely due to small sample effects. These findings under-

score the potential of these CpG sites as promising molecular biomarkers for distinguishing lung malignant tumors in diagnostic applications.

Establishment and application evaluation of CanDo model

Individual receiver operating characteristic (ROC) curves were initially constructed for each gene, and optimal cut-off values were determined

to evaluate the diagnostic performance of each gene separately. Notably, the TBR1 gene exhibited outstanding performance, demonstrating

significant discriminative ability at a methylation level cut-off of 0.2, with 86% sensitivity and 98% specificity (Table S5, and Figure 3A).
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Table 1. Patient characteristics

Characteristics Patient number (%)

All participants 118 (100)

Age at diagnosis (years)

<65 49 (41.5)

R65 69 (58.5)

Gender

Male 75 (63.6)

Female 43 (36.4)

Tobacco Habits

Smoker 45 (38.1)

Nonsmoker 73 (61.9)

Imaging nodule length (mm)

<5 71 (60.2)

R5 18 (15.3)

Pathological

Malignant 73 (61.9)

Benign 45 (38.1)

Tumor Stage

I-III 30 (25.4)

IV 34 (28.9)
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To further enhance the discriminative diagnostic capability, two dimensions were selected for training the machine learning classification

models: the methylation level at 115 individual CpG sites and the average methylation level of all methylated sites covered by each gene

fragment (defined as the average methylation level of the gene). The recursive feature elimination (RFE) algorithm was employed to rank

the importance of all 125 features based on their contribution to the classification ability. Finally, the top 11 feature combinations, displaying

the highest classification accuracy, were determined as the optimal feature set by the cross-validation algorithm (Figure S3).

Subsequently, four types of machine learning classifiers were trained and compared: the least absolute shrinkage and selection operator

(LASSO), the support vector machine (SVM), the extreme gradient boosting (XGBOOST), and the deep neural network (DNN). Due to the

DNNalgorithmexhibiting the highest area under the curve (AUC) and achieving the highest F1 score, indicating themost robust performance

(Figure S4), it was selected to construct the diagnostic model named CanDo. Briefly, CanDo utilized these top 11 features to score and eval-

uate the probability of malignant tumors. When compared with pathological diagnostic results, the CanDo score achieved diagnostic sensi-

tivity and specificity of 98.6% (72/73) and 97.8% (44/45), respectively. This represents an improvement of approximately 10–20% compared to

bronchoscopic-ROSE diagnosis, which presented a sensitivity of 87.7% (64/73) and specificity of 80% (36/45).

Interestingly, within these 11 features, two correspond to CpG sites situated on SHOX2, one is linked to a CpG site on PTGER4, and the

remaining eight features are all intricately connected to the TBR1 gene (comprising 7 CpG sites on TBR1 and the average TBR1methylation

level). This alignment with the previous outstanding ROC curve in lungmalignant tumor diagnosis by the TBR1 single gene, strongly suggests

the potential significance of TBR1 in the discriminative diagnosis of malignant lung tumors.
Potential effects on CanDo diagnostic performance across various baselines

Following the grouping based on pathological diagnostic results, a non-uniform distribution of clinical baseline characteristics was observed

between the two comparative cohorts. Due to these pronounced deviations, it is imperative to assess whether other potential confounding

factors within the sample cohorts might influence the discriminative capacity of the CanDo model. Consequently, we investigated the corre-

lation between the clinical baseline information of all participants and CanDo scores. The analysis revealed that either methylation level or

CanDo scores exhibited the highest correlation with pathological diagnosis, and no statistically significant inter-group differences were

observed in terms of patient gender and tobacco habits. However, both methylation level and CanDo scores displayed a highly significant

inter-group difference between the elderly (R65) and younger (<65) age groups, s suggesting that age could potentially significantly affect

the discriminative capability of the CanDo model (Figure S5 and Figure 3C).

In order to precisely evaluate the impact of age on CanDo diagnostic ability, we further analyzed correlations between patient baseline

characteristics, pathological diagnosis, model scores, and the methylation levels of each feature within the model. Consistent with previous
4 iScience 27, 110079, June 21, 2024



Figure 2. Methylation detection results of the 10-gene panel and database validation

(A) Comparison of the averagemethylation levels of the 10 genes in the panel between the cancer and non-cancer groups (i.e., the averagemethylation level of all

methylated sites covered by each gene fragment); (B) Comparison of the methylation levels quantified in the panel detection results of 13 common CpG sites

covered by both the panel and the public database’s 450K BeadChip cg probes. Cancer, cancer cohort in this study; Noncancer, non-cancer cohort in this study;

dCancer, lung cancer samples in the public database; dNoncancer, lung normal tissue adjacent samples in the public database. Data are represented asmeanG

SEM, and significance testing was performed using the Student’s t test. ****, p < 0.00005.
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analyses, gender and smoking history showed low correlation with CanDodiagnostic, while age exhibited a higher correlationwith both path-

ological diagnosis and CanDo scores. It is noteworthy that a highly significant strong correlation among the methylation patterns of the 11

features was observed, whereas the correlation between age and all 11 features did not reach statistical significance (Figure 3D, and Table S6).

This suggests that despite prominent age disparities between the two cohorts, age does not seem to significantly interfere with the function-

ality of the model.

Considering the noted molecular characteristic differences between lung adenocarcinoma (LUAD) and lung squamous cell carcinoma

(LUSC) patients, such as gene expression profiles, the potential diagnostic performance of the CanDo model among patients with different

subtypes was investigated. It was found that themean or medianCanDo scores did not exhibit significant differences between LUADor LUSC

patients. Furthermore, no significant differences in the methylation levels of these 11 features were observed among different pathological

subtypes (Figure S6). The methylation levels of these 11 features appeared to increase with tumor stage, although most of these differences

did not reach statistical significance. However, stage IV tumors had higher CanDo scores than stage III tumors and showed statistical signif-

icance (p < 0.005), although no significant differences were observed in earlier tumor stages (stage I or II) due to the limited sample size in the

cohort (Figure S7). These findings suggest that CanDo scores are mainly associated with the benign or malignant nature of suspicious nod-

ules, with higher scores potentially correlated with advanced tumor stages. However, CanDo scores are less influenced by pathological sub-

types or other factors, making it a relatively robust model with clinical utility for assisting in diagnosis.
Independent and single-blind validation of CanDo diagnostic accuracy

To rigorously control confounding factors and demonstrate their limited impact on the CanDomodel, a prospectively designed, single-blind,

unbiased independent validation cohort withmore stringent inclusion criteria was recruited (Figure S8). In total, 33 participants with no history

of prior smoking were enrolled (Table S7). Among them, 22 patients were pathologically diagnosed with cancer, and the remaining 11 served

as age- and sex-matched controls. Briefly, a balanced gender ratio (cancer, 11:11; noncancer, 5:6) and consistent age distribution (cancer: max

77, min 36, average 60.1, median 60.5; noncancer:max 78, min 33, average 60.2, median 60) were achieved in two cohorts, which is sufficient to

evaluate diagnostic accuracy with desired statistical errors.
iScience 27, 110079, June 21, 2024 5



Figure 3. Characteristic analysis of the CanDo model

(A) ROC curves using the average methylation levels of the 10 genes individually for distinguishing between benign and malignant lung tumors (i.e., the average

methylation level of all methylated sites covered by each gene fragment); (B) Heatmap comparing the methylation levels of the 11 CanDo model features with

clinical baselines, bronchoscopic-ROSE, CanDo scores, and pathological diagnosis results; (C) Correlation between CanDo scores and baselines in different

groups, data are represented as mean G SEM, significance testing was performed using the Wilcoxon rank-sum test; (D) Heatmap showing the correlation

between the 11 CanDo model features and baselines. The lower left corner represents the magnitude of the correlation coefficients, and p-values are

highlighted in red font when the correlation is not significant. The upper right corner represents the 95% confidence interval range, marked with an "3"

when not significant. ****, p < 0.00005.
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In this rigorously controlled cohort, CanDo displayed a diagnostic sensitivity of 95.5% (21/22) and specificity of 100% (11/11). In compar-

ison, the sensitivity and specificity of bronchoscopic-ROSE maintained 86.4% (19/22) and 81.8% (9/11), respectively (Figure 4A, EXdata 3, EX-

data 4. Mendeley Data: https://data.mendeley.com/datasets/wcnzyth6vd). CanDo demonstrated an improvement of approximately 10–20%

in both sensitivity and specificity, affirming its consistent and enhanced companion diagnostic performance in lung malignant tumors.
Valuable case reports on clinical applications

In five cases of misjudgment during bronchoscopic-ROSE, one case was also misjudged by CanDo. We carefully assessed the remaining four

cases, in which CanDo made accurate diagnoses while ROSE misdiagnosed. Among them, two true benign cases were misjudged as malig-

nant due to various interfering factors. For example, in Case 1 (ID129), a 51-year-oldmale exhibited a suspicious lesion in the rightmiddle lobe

on CT (Figures 4B–1). ROSE initially reported squamous epithelial proliferation as malignant (Figures 4B–2). However, subsequent histopa-

thology diagnosed benign squamous epithelial proliferationwith chronic inflammation (Figure 4B-3). Similarly, in Case 2 (ID143), a 70-year-old

female with a CT-suggested irregular patchy lesion in the right middle lobe was initially considered suspicious for squamous cell carcinoma

(Figures 4B and 5), despite histopathology ultimately confirming atypical squamous epithelial proliferation (Figures 4B–6).
6 iScience 27, 110079, June 21, 2024
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Figure 4. Validation and Clinical Application Case Reports of the CanDo Model

(A) Heatmap comparing the methylation levels of the 11 CanDo model features with clinical baselines, bronchoscopic-ROSE, CanDo scores, and pathological

diagnosis results in the validation cohort; (B) CT scan image, bronchoscopic-ROSE image, and histopathological image of three representative cases. The length

represented by the scale bar is indicated on each figure: for CT images (numbered 1, 4, and 7), the scale bar represents 2 cm; for the remaining microscopic

images enlarged 200 times, the scale bar represents 100 nm.
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Notably, both true malignant cases were misjudged by ROSE as benign due to the absence of clear malignant tumor cells. A represen-

tative case is Case 3 (ID 149), a 72-year-old male with a CT scan indicating suspicious shadows in the right lower lobe (Figures 4B–7). Bron-

choscopy with peripheral ultrasound in the back segments b6a and b6b of the right lower lobe revealed heterogeneous echoes. ROSE mi-

croscopy showed a small amount of proliferative mucous gland epithelial cells, initially assessed as benign proliferation (Figures 4B–8).

Histopathological biopsy revealed infiltration of a small number of inflammatory cells and concurrent malignant lung adenocarcinoma cells,

confirming the diagnosis of lung adenocarcinoma (Figures 4B–9). These findings underscore the clinical value and potential application of

CanDo as an alternative to ROSE in aiding the differential diagnosis during bronchoscopic examinations, particularly in cases where prolif-

eration or the presence of malignant cells is not readily apparent.

DISCUSSION

Methylation patterns serve as both molecular fingerprints for cells and relatively stable signals within the genome.20 Methylated cytosine sta-

bilizes the DNA helix, specifically increasing the DNA melting temperature, thereby effectively extending the half-life of DNA in clinical sam-

ples.21 Due to being perfectly devoid of additional adverse risks such as hemolysis, the role of this molecular modification in enhancing struc-

tural stability is particularly evident in BWF samples. Our study observed that BWF specimens maintained highly consistent DNAmethylation

levels even after prolonged storage in room temperature, despite the complexity of collection process compared to the convenience of

blood. Therefore, BWF not only offered a higher initial concentration of target molecules19 but also extended preservation duration, which

is advantageous in supporting precision in detection capabilities.

Given the promising potentials exhibited by genomic methylation, numerous studies have attempted clinical tumor screening and differ-

ential diagnosis using whole-genome methylation maps or single-gene methylation-specific PCR (MS-PCR).22,23 Comparison by some re-

searchers revealed that while whole-methylome sequencing (WMS) enables excellent resolution accuracy in detection, its limitation primarily

resides in the sequencing depth, often constrained to 303,24 potentially leading to the oversight of rare methylation signals originating from

early-stage tumors. Additionally, its high cost impedes its broader clinical translational application and widespread implementation. Single-

gene MS-PCR detection can effectively amplify target signals, and its low-cost favors rapid clinical deployment; however, the discovery of

genetic markers with diagnostic value depends on whole-genome methylation data.25 For example, the methylation levels of SDC2 and

SEPTIN9 have provided auxiliary references for minimally invasive colorectal cancer screening, despite the detection sensitivity and specificity

remaining relatively limited.26,27 Here, to the best of our knowledge, we present a targeted methylation detection method for the first time,

involving two rounds of multiplex PCR enrichment of target molecules followed by NGS sequencing. This approach effectively combines the

strengths of existing detectionmethods. Tracemolecular signals within samples are efficiently captured for sequencing after undergoing two

rounds of PCR amplification, resulting in a sequencing depth exceeding 10003 for individual CpG sites, significantly enhancing detection
iScience 27, 110079, June 21, 2024 7



Figure 5. Study summary

ll
OPEN ACCESS

iScience
Article
sensitivity. The three genes included in our 11 features (TBR1, PTGER4, and SHOX2) have been reported in previous literature with average

sensitivities for lung cancer diagnosis of 81.5%, 77%, and 73.4%, and average specificities of 86.5%, 94%, and 95%, respectively (Figures 1A, 1B,

and Table S1). In contrast, our method has a sensitivity of 98.6% and a specificity of 97.8%, demonstrating a significant improvement in diag-

nostic performance.

Another outstanding advantage of our targeted methylation sequencing technology lies in its cost-effectiveness during development.

Building upon the meta-analysis performed before public database verification, this study promptly focused on a concise yet potent gene

set, avoiding the use of costlyWMS and escaping the tedious process of validating tens or even hundreds of thousands of potentially valuable

CpG sites directly sourced from databases. It is essential to recognize that the traditional approach enables a more comprehensive identi-

fication of methylationmarkers and achieves a detection sensitivity of 52–81% in early lung cancer screening.28 However, classic strategies like

WMS can lead to unnecessary resource wastage and economic burden for BWF-based auxiliary diagnostic techniques during bronchoscopy

intervention. Hence, our approach provides a valuable model reference for the development of simplified, efficient, and cost-effective rapid

response technologies tailored to address specific clinical challenges.

After excluding three genes with insufficient detection quality, this study included a total of 115 CpG sites covered 10 genes. Among them,

the CanDo diagnostic established based on the neural network classifier suggested that 11 features associated with SHOX2, PTGER4, and

TBR1 genes were sufficient to support BWF-dependent precise discrimination of malignant lung tumors. This contributes to the subsequent

development of a more affordable and convenient MS-PCR detection method, aiming to further reduce the cost of single tests while

enhancing the clinical application and widespread implementation value of CanDo. Notably, among these 11 features, 8 (comprising 7

CpG sites and the average methylation level) were significantly correlated with the TBR1 (T-box brain transcription factor 1) gene. Although

TBR1 expression is well-documented for its crucial role in brain development,29,30 its hypermethylation and association with lung cancer

occurrence remain unclear, despite being previously identified as one of the joint diagnostic molecular markers for lung cancer.31 This study,

for the first time, underscores the importance of TBR1 in the occurrence of lung cancer, warranting further research to elucidate specific mo-

lecular mechanisms.

Age-related biases between cohorts may influence outcomes, particularly given the strong correlation between age and genomicmethyl-

ation levels.32,33 Unfortunately, age stands as a known risk factor for lung cancer,34 leading to heightened detection rates among older indi-

viduals. Consequently, our study encountered inevitable age discrepancies between cancer and non-cancer groups among bronchoscopy

participants. Believing that cohorts with baseline biases better mirrored real-world scenarios, we opted against manually matching and

balancing various baseline characteristics across cohorts, despite the potential statistical advantages in controlling confounding factors.35

The established CanDo model demonstrated 98.6% sensitivity and 97.8% specificity, marking a 10–20% improvement over broncho-

scopic-ROSE (sensitivity 87.7%, specificity 80%, similar with previous reports36) in this context. While subsequent analyses suggested a sig-

nificant correlation between age groups and CanDo scores, further detailed examinations of the correlation between age and specific
8 iScience 27, 110079, June 21, 2024
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CpG sites raised doubts about the impact of age bias on CanDo scores. Validation using an impartial cohort reaffirmed that CanDo scores

primarily reflect patient pathology rather than other baseline confounding factors. In this validation, neither the diagnostic accuracy of bron-

choscopic-ROSE nor CanDo showed significant changes, with CanDo maintaining a 10–20% improvement (sensitivity 95.5% vs. 86.4%, spec-

ificity 100% vs. 81.8%).

In conclusion, this study has developed a cost-effective research strategy, investigating 115methylation sites on 10 genes.We established

the CanDo diagnostic method with 11 features. Additionally, CanDo demonstrates a sensitivity of 95.5–98.6% and specificity of 97.8–100% in

discriminating between benign and malignant lung tumors based on BWF specimens. Compared to the sensitivity and specificity of bron-

choscopic-ROSE diagnosis, CanDo shows an improvement of 10–20% and excels in making accurate judgments that are challenging to

diagnose with bronchoscopic-ROSE. Importantly, our results provide a method to mitigate potential risks and discomfort associated with

biopsy, making it clinically valuable and offering guidance for precise patient stratification (Figure 5).

Limitations of the study

First, under conditions of oxidative stress, cytosine has the potential to convert into uracil, leading to the possibility of false positive errors in

bisulfite sequencing. Second, due to the single-center study design, participants who rigorously controlled tominimize baseline deviations in

the CanDo validation cohort were limited in number, which may introduce potential statistical errors. Lastly, this study did not investigate the

influence of heterogeneity in cell composition or cell content in BWF samples from different sources, it is necessary to consider eliminating

this potential impact in subsequent analyses. Therefore, further prospective multicenter studies with a large sample-size should be under-

taken to expand the understanding of the ability of CanDo to distinguish between benign and malignant lung tumor patients. Additionally,

technical interventions incorporated into the methodology are required in further investigation to establish a more robust method for homo-

geneous BWF sample collection, as well as mitigate the risk of cytosine unintended conversion into uracil.37
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Gómez, H.R., Esgleas, M., Román, M.J.,
Canals, J.M., Tole, S., and Vicario, C. (2022).
Tbr1 Misexpression Alters Neuronal
Development in the Cerebral Cortex. Mol.
Neurobiol. 59, 5750–5765. https://doi.org/10.
1007/s12035-022-02936-x.

30. Fazel Darbandi, S., Robinson Schwartz, S.E.,
Pai, E.L.L., Everitt, A., Turner, M.L., Cheyette,
B.N.R., Willsey, A.J., State, M.W., Sohal, V.S.,
and Rubenstein, J.L.R. (2020). Enhancing
WNT Signaling Restores Cortical Neuronal
SpineMaturation and Synaptogenesis in Tbr1
Mutants. Cell Rep. 31, 107495. https://doi.
org/10.1016/j.celrep.2020.03.059.

31. Vrba, L., Oshiro, M.M., Kim, S.S., Garland,
L.L., Placencia, C., Mahadevan, D., Nelson,
M.A., and Futscher, B.W. (2020). DNA
methylation biomarkers discovered in silico
detect cancer in liquid biopsies from non-
small cell lung cancer patients. Epigenetics
15, 419–430. https://doi.org/10.1080/
15592294.2019.1695333.

32. Seale, K., Horvath, S., Teschendorff, A.,
Eynon, N., and Voisin, S. (2022). Making sense
of the ageing methylome. Nat. Rev. Genet.
23, 585–605. https://doi.org/10.1038/s41576-
022-00477-6.

33. Noroozi, R., Ghafouri-Fard, S., Pisarek, A.,
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Bronchial washing fluid of 118 participants Zhongshan hospital,

Fudan University

NA

Bronchial washing fluid of 33 participants

in the validation cohort

Zhongshan hospital,

Fudan University

NA

Chemicals, peptides, and recombinant proteins

Saline Kelun Pharmaceutical H51021158

Critical commercial assays

Bronchial washing fluid storage tubes Yunying Medicine C102-20220108

Human DNAplus kit Yunying Medicine C105-20230020

MetPro DNA bisulfite conversion kit Yunying Medicine C21-20210169

DNA magnetic bead purification kit Yunying Medicine C17-20210171

Equalbit dsDNA HS Assay Kit Vazyme EQ111-02

AceTaq DNA Polymerase Vazyme P401-d2

MiniSeq Mid Output Kit (300-cycles) Illumina FC-420-1004

Deposited data

Raw and analyzed data This paper; Mendeley Data https://doi.org/10.17632/wcnzyth6vd

Human reference genome NCBI build 37, GRCh37 Genome Reference Consortium http://www.ncbi.nlm.nih.gov/projects/

genome/assembly/grc/human/

GDC TCGA Lung Adenocarcinoma (LUAD),

Illumina Human Methylation 450

NCI Genomic Data Commons https://xenabrowser.net/datapages/

GDC TCGA Lung Squamous Cell Carcinoma

(LUSC), Illumina Human Methylation 450

NCI Genomic Data Commons https://xenabrowser.net/datapages/

Oligonucleotides

Primers for 13 selected genes, see Table S3 This paper N/A

Adapter primer:

AATGATACGGCGACCACCGAGATCTACACT

CTTTCCCTACACGACGCTCTTCCGATCT

This paper N/A

Index primer:

CAAGCAGAAGACGGCATACGAGATNNNNNN

NNGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC

This paper N/A

Software and algorithms

Sequencing Analysis Viewer (V1.8) Illumina https://support.illumina.com/downloads/

sequencing-analysis-viewer-software.html

bcl2fastq (V2.20.0.422) Illumina https://support.illumina.com/downloads/

bcl2fastq-conversion-software-v2-20.html

fastp (V0.20.1) Chen et al.38 https://github.com/OpenGene/fastp

Burrows-Wheeler aligner (V0.7.17) Li et al.39 https://github.com/lh3/bwa

samtools (V1.2) Danecek et al.40 https://www.htslib.org/

igvtools (V2.3.98) Robinson et al.41 https://igv.org/doc/desktop/

MetSeq module Yunying Medicine http://10.168.10.102:8080/complex/

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Scikit-learn (V1.3.2), sklearn.feature_selection.RFE Python (V3.9) https://scikit-learn.org/stable/modules/

generated/sklearn.feature_selection.RFE.html

Scikit-learn (V1.3.2), sklearn.feature_selection.RFECV Python (V3.9) https://scikit-learn.org/stable/modules/

generated/sklearn.feature_selection.RFECV.html

Scikit-learn, V1.3.2, sklearn.linear_model.LassoCV Python (V3.9) https://scikit-learn.org/stable/modules/

generated/sklearn.linear_model.

LassoCV.htmlScikit-learn

Scikit-learn (V1.3.2), sklearn.svm.SVR Python (V3.9) https://scikit-learn.org/stable/modules/

generated/sklearn.svm.SVR.html

Scikit-learn (V1.3.2), sklearn.model_

selection.GridSearchCV

Python (V3.9) https://scikit-learn.org/stable/modules/

generated/sklearn.model_selection.

GridSearchCV.html#sklearn-model-

selection-gridsearchcv

XGBOOST (V 2.0.3) Python (V3.9) https://pypi.org/project/xgboost/

KERAS (V2.15) Python (V3.9) https://pypi.org/project/keras/

pROC R (v4.2.3) https://cran.r-project.org/web/

packages/pROC/index.html

CBCgrps R (v4.2.3) https://CRAN.R-project.org/package=CBCgrps

Corrplot R (v4.2.3) https://cran.r-project.org/web/

packages/corrplot/index.html

ggplot2 R (v4.2.3) https://cran.r-project.org/web/

packages/ggplot2/index.html

Other

Count data related to the target methylation

sequencing of the 118 patients and the

validation cohort

This paper (EXdata 1,

EXdata 3); Mendeley Data

https://doi.org/10.17632/wcnzyth6vd

Count data related to the calculated gene

average methylation levels of the 118 patients

and the validation cohort

This paper (EXdata 2,

EXdata 4); Mendeley Data

https://doi.org/10.17632/wcnzyth6vd

Code utilized in constructing and validating

the CanDo model

This paper; Mendeley Data https://doi.org/10.17632/wcnzyth6vd
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Xin Zhang

(xinhaier@sina.com).
Materials availability

This study did not generate new unique reagents.
Data and code availability

� Target methylation sequencing raw/count data has been deposited at Mendeley Data and are publicly available as of the date of pub-

lication. The DOI is listed in the key resources table.

� All original code utilized in constructing and validating the CanDomodel has been deposited at Mendeley Data and are publicly avail-

able as of the date of publication. The DOI is listed in the key resources table.
� Human reference genome and IlluminaHumanMethylation 450 data were sourced frompublic database, accessible openly. TheURL is

provided in the key resources table.
� Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This study was conducted according to the principles of theWorld Medical Association Declaration of Helsinki. The study was approved spe-

cifically by the Internal Review Board of the Affiliated Zhongshan Hospital, Fudan University. All participants provided written informed con-

sent for this study (IRB approval No. B2018-027R).

All participants included in this study were of Han Chinese ethnicity. Detailed information regarding cohort demographics such as age and

gender can be found in Tables S4 and S7 of themanuscript. Potential impacts of age and gender on the outcomes are delineated in Figure 3D

and Table S6.

METHOD DETAILS

Panel design

A comprehensive literature search was conducted employing the search terms "gene methylation," "lung cancer," "diagnosis," and "sensi-

tivity and specificity" across various databases, including PubMed, Google Scholar, and CNKI. The search results were filtered based on pub-

lication dates, with an emphasis on articles published within the last decade (2013-2022). Out of a total of 184 records, we initially excluded

review articles, meta-analyses, and duplicate publications. Subsequent exclusions were applied to studies concerning clinical prognosis,

recurrence prediction, and those lacking explicit information regarding the specificity and sensitivity of methylation biomarkers in the final

diagnostic model. Additionally, publications that combined methylation analysis with other biomarkers in multi-omics studies were omitted

due to the challenge of independently assessing the diagnostic efficacy of methylation markers. Furthermore, studies relying solely on pub-

licly available databases for analysis without validation were not considered.

Among the remaining eligible publications, a detailed analysis was conducted to assess the reported diagnostic sensitivity and specificity

achieved by each methylation panel in the context of lung cancer. All mentioned genes were compiled, and those mentioned at least twice

were selected to form the initial testing panel. Specific amplification primers targeting theCpG-rich promoter regions of these selected genes

were carefully designed using Primer Premier 5 to perform downstream experimental strategies.

The biomedical database resource acquisition and management

The GDC TCGA public lung cancer database was accessed via the UCSC Xena Browser (https://xenabrowser.net/datapages/). Briefly, Illumina

HumanMethylation450 (450K) raw data, phenotype information, and probeMapmappingdata for lung adenocarcinoma (LUAD) and lung squa-

mous cell carcinoma (LUSC) were downloaded. Subsequently, the data were organized and aligned using an in-house Python script, and

TCGAutils was employed to convert UUIDs into Barcode files containing annotated phenotype information. LUAD and LUSC samples were

then combined into ‘‘cancer’’ and ‘‘noncancer’’ groups based on phenotype. Probe sets aligning to the specified 13 genes were filtered using

genomic information obtained from the probe mapping. The inter-group differences in methylation levels for each probe covering these 13

genes were computed. Concurrently, the average methylation level of all probes within each gene was calculated to denote the gene’s

mean methylation level. The t-test was applied to assess the significance of inter-group differences. Additionally, the genomic coordinates

of these gene loci were converted from the GRCh38 version to GRCh37 using the UCSC LiftOver tool. Following this conversion, these coor-

dinates were cross-referenced with our designed primer target segments, and the shared CpG sites were annotated for subsequent analysis.

Inclusion criteria of participants

(1) Patients with peripheral pulmonary lesions necessitating bronchoscopy-guided biopsy for clinical assessment.

(2) Patients without contraindications to bronchoscopy examination or bronchoalveolar lavage.

(3) Patients with comprehensive clinical imaging data (such as CT scan images), baseline information (including age at diagnosis, gender,

and smoking habits), and other pertinent details.

(4) Patients expressing a willingness to collaborate with the study, engage in potential follow-ups, and sign an informed consent form

either personally or through a designated representative. For minors, the informed consent form should be signed by a legal guardian.

Exclusion criteria of participants

(1) Patients with an ambiguous final diagnosis for various reasons, including cases where the patient did not continue treatment at Zhong-

shan Hospital or demonstrated poor clinical adherence.

(2) Patients clinically diagnosed with contagious diseases or necessitating preventive control measures for infectious diseases (e.g.,

COVID-19, Pulmonary anthrax, Avian Influenza) prior to bronchoscopy examination.

(3) Patients lacking bronchoscopic rapid on-site evaluation diagnosis or histopathological staining of biopsy tissue will be excluded from

the study.

(4) Inadequate collection of bronchial washing fluid specimens or samples of substandard quality.

Patient population and diagnosis

Between September 2022 to May 2023, volunteers with suspected lung nodules detected through CT scans and required bronchoscopy-

guided biopsies were enrolled at Zhongshan Hospital, Fudan University (Shanghai, China). All enrolled participants strictly adhered to the
14 iScience 27, 110079, June 21, 2024

https://xenabrowser.net/datapages/


ll
OPEN ACCESS

iScience
Article
predetermined inclusion and exclusion criteria, underwent bronchoscopy, and provided specimens from both bronchoscopic biopsy and

lavage fluid in accordance with the established protocol. The clinical diagnostic strategy relied on a combination of clinical manifestations,

digital chest X-ray findings, bronchoscopic-ROSE, and confirmation through histopathological biopsy. The histopathology-biopsy procedure

followed the criteria outlined in the NCCN (National Comprehensive Cancer Network) or CSCO (Chinese Society of Clinical Oncology) diag-

nostic guidance for lung malignant tumors. Data regarding clinical characteristics of enrolled patients were carefully collected.

Moreover, an additional validation queuewith rigorous control over baseline informationwas introduced in this study. All patients enrolled

in this cohort reported no history of smoking, and meticulous measures were implemented to ensure uniformity in age and gender distribu-

tion across the groups. The BWF and paired biopsy samples were prospectively collected from each patient, and all examinations were

consistent with the previously mentioned cohort.

Bronchoscopy, bronchial washing and biopsy procedure

The Fibrobronchoscopy (BF-1TQ260; Olympus, Tokyo, Japan) was used for a comprehensive airway examination and the collection of bron-

chial washing fluid (BWF). All bronchoscopies were performed under topical anesthesia and conscious sedation. During bronchoscopy ex-

aminations, two experienced physicians independently assessed the malignancy of the nodular phenotypes observed in the bronchoscopic

field of view. Additionally, all patients underwent a standardized bronchoscopic rapid on-site evaluation (ROSE) process before biopsy for

auxiliary diagnosis. For this, a cytology brush (Olympus, Japan) was used to collect cytological specimens from the target lesion, with

each brushing consisting of 10-20 back-and-forth strokes, repeated 2-5 times. The collected material was then smeared onto three slides

for ROSE examination.36,42 The primary decision was based on the results of bronchoscopic-ROSE.

In cases of endobronchial visible lesions, BWF specimens were obtained from the subsegmental bronchus where the lesion was located,

following saline irrigation of the lesion surface. Subsequently, endobronchial biopsy (EBB) was performed through the working channel of the

wedged bronchoscope in the specified segmental bronchus. For endobronchial invisible peripheral lesions, transbronchial lung biopsy

(TBLB) was performed with the assistance of endobronchial ultrasound. The Endoscopic Ultrasonography (EBUS) model included an EBUS

probe (20MHz mechanical-radial type, UM-S20-20R or UM-S20-17S; Olympus, Japan) and a guide sheath (GS) kit (K-203 of Olympus, Japan).

During EBUS, the ultrasound probe along with the GS was inserted through the working channel of the bronchoscope into the target bron-

chus. After sonographic confirmation of the biopsy site, saline was instilled through the GS channel using a connected syringe. In each ex-

amination, 20-40 mL of saline was used to irrigate the lesion before biopsy, flushed for 3-5 seconds, and then aspirated back, resulting in

aminimumfluid recovery of 6mL. Bronchoscopic forceps were then advanced through theworking channel on the guide sheath, andmultiple

forceps biopsies were conducted with additional X-ray fluoroscopy assistance. All procedures were carried out by experienced practitioners

following established protocols.43,44

Sample preprocessing and DNA extraction

Biopsy samples were sent to the pathology department for formalin-fixed paraffin-embedded processing, routine staining, and assessment

by two experienced pathologists independently. To maintain the stability of DNA molecules during the stages of clinical collection and pre-

processing, BWF specimens were promptly transferred to dedicated tubes (Yunying, Zhejiang, China) following sample collection. The tubes

were then inverted 3-5 times to ensure comprehensive mixing of the preservative with the samples and were stored at 4�C until use.

The storage tubes were vortexed for 5 seconds before DNA extraction, and then 2 mL of BWF was aspirated after pipetting three times.

Both the Human DNAplus kit (Yunying, Zhejiang, China) and the Auto-Pure20 system (Allsheng, Zhejiang, China) were employed for auto-

mated DNA extraction and purification. Subsequent to purification, sulfite conversion was conducted using the MetPro DNA bisulfite con-

version kit (Yunying, Zhejiang, China). Each process strictly adhered to the manufacturer’s protocol, and the products were harvested and

stored at -20�C until use.

Library preparation and targeted methylation DNA sequencing

The bisulfite-treated DNA mentioned above was utilized in a multiplex PCR assay to generate barcoded sequencing libraries. The total re-

action mixture was 30 mL, consisting of 19.5 mL mixed reaction buffer (Vazyme, Jiangsu, China), 5 mL template DNA, 5 mL of the pre-designed

primer mix (synthesized by Sangon, Shanghai, China. 2 mM for each primer, and 0.5 mL AceTaq DNA polymerase (Vazyme, Jiangsu, China),

underwent the first round ofmultiplex PCR in aCFX96 PCRmachine (Eastwin, Beijing, China). The reaction conditionswere set as follows: 95�C
for 10minutes, 35 cycles with an increment of 0.2�Cper cycle (95�C for 30 seconds, 46-53�C for 30 seconds, 72�C for 30 s), followed by 72�C for

5 minutes, and a final hold at 4�C.
For the second round of multiplex PCR, the reaction mixture comprised 20.5 mL mixed reaction buffer (Vazyme, Jiangsu, China), 2 mL

adapter primer (synthesized by Sangon, Shanghai, China), 2 mL index primer (synthesized by Sangon, Shanghai, China), 0.5 mL AceTaq

DNA polymerase (Vazyme, Jiangsu, China), and 5 mL products obtained from the first round. The reaction conditions were set as follows:

95�C for 5 minutes, 20 cycles (95�C for 30 seconds, 55�C for 30 seconds, 72�C for 30 seconds), followed by 72�C for 5 minutes, and a final

hold at 4�C.
The products from the second round of multiplex PCR were purified using the DNA magnetic bead purification kit (Yunying, Zhejiang,

China). The concentration of barcoded libraries was determined using the Equalbit 13 dsDNA HS assay kit (Vazyme, Jiangsu, China). The

150-bp paired-end next-generation sequencing strategy was performed on the MiniSeq system (Illumina, California, United States) using

the Miniseq Mid Output Reagent Cartridge (Illumina, California, United States), strictly following the manufacturer’s protocols.
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Sequencing data processing

The raw data BCL files were subjected to quality control using Sequencing Analysis Viewer V1.8 (Illumina, California, United States). Se-

quences with a Q30 base percentage exceeding 70% were considered as high-quality sequences. The bcl2fastq V2.20.0.422 (Illumina, Cali-

fornia, United States) was employed to converted the qualified BCL files to FASTQ files. Followed by the fastp (V0.20.1)38 removing the

adapter sequences, low-quality base fragments, the Burrows-Wheeler aligner (BWA, V0.7.17)39 was utilized to align the sequences from

the quality-controlled FASTQ files to a custom methylated reference sequence (GRCh37). The aligned sequences were then sorted based

on genomic coordinates using samtools (V1.2)40 to generate BAM files and construct file indices. The igvtools (V2.3.98)41 was applied for

base depth analysis at each position in the resulting BAM files, and sites with sequencing depth below 10003 were filtered out. Finally,

the internally developed MetSeq module (Yunying, Zhejiang, China) was employed to calculate the methylation levels at each CpG and

non-CpG site. A comprehensive set of quality control metrics, including sample Q30 base percentage, sequencing depth at each position,

and methylation rates, was aggregated and output as a tsv table file.

Methylation feature selection using RFE and RFECV

Themethylation status of 151 CpG sites across 13 geneswas assessed in 118 samples. Geneswith over 10%of samples unable to detectmethyl-

ation across all CpG sites in amplification fragments were excluded. The final dataset included 125 methylation features for each sample,

comprising the methylation levels of 115 CpG sites and the average methylation levels of 10 genes (calculated as the mean methylation across

all CpG sites covered by each gene fragment). The Recursive Feature Elimination (RFE) algorithm (Scikit-learn, V1.3.2, sklearn.feature_selec-

tion.RFE) was used for feature selection, removing theweakest features. This decisionwas validated through 10-fold cross-validation, with favor-

able outcomes observed when the feature number ranged from 5 to 17. The final number of selected features, denoted as "n_feature_to_

select," was determined by the Recursive Feature Elimination Cross-Validation (RFECV) algorithm (Scikit-learn, V1.3.2, sklearn.feature_selec-

tion.RFECV), with the "step" option set to 1, the "cv" option set to "StratifiedKFold(2)," and the parameter "scoring" set to "accuracy." Ulti-

mately, 11 features were identified as optimal and deemed most relevant for constructing the diagnostic model.

Machine learning classifier evaluation

The LASSO model extends the classic linear regression model by incorporating an additional regularization term in the loss function to

constrain the weights and mitigate overfitting. The alpha value of the LASSO model is determined using the LassoCV algorithm with

5-fold cross-validation (Scikit-learn, V1.3.2, sklearn.linear_model.LassoCV). The SVM model is employed for group classification using a hy-

perplane and is often utilized as a regression model due to its high flexibility. The parameters (C, gamma, epsilon) of the SVM model are

automatically selected using the GridSearchCV algorithm (Scikit-learn, V1.3.2, sklearn.model_selection.GridSearchCV) with 5-fold cross-vali-

dation. XGBOOST algorithm (XGBOOST, V 2.0.3) is based on the decision tree model but offers a parallel tree boosting method, enabling

rapid and stable resolution of regression problems. The optimal settings for XGBOOST, including maximum depth, minimum sub-depth,

gamma, subsample, colsample bytree, and reg alpha, are determined using the GridSearchCV (Scikit-learn, V1.3.2, sklearn.model_selection.

GridSearchCV) algorithm with 5-fold cross-validation. Other parameters (eta, nthread, etc.) are set to their default values as specified in the

original documentation. Receiver Operating Characteristic (ROC) curves were employed to evaluate the classification performance of these

machine learning algorithms, and the F1 score was calculated using the "f1_score" function imported from the "sklearn.metrics" module. In

brief, the F1 score is calculated as 2*(precision*recall)/(precision+recall), where precision = TP/(TP+FP) and recall = TP/(TP+FN). In the for-

mula, TP represents true positive, FP represents false positive, and FN represents false negative.

CanDo model development using DNN

The CanDo model was developed using a DNN algorithm (KERAS, V2.15) with three fully connected hidden layers. The model takes 11

methylation percentage values of each sample as inputs, with the output ranging from 0 to 1, where a higher value indicates a higher likeli-

hood of the patient having cancer. The first hidden layer consists of 50 nodes, the second has 10 nodes, and the third has 5 nodes. Dropout

layers with a dropout rate of 0.2 were added to all hidden layers, and batch normalizationmethods were applied. Rectified Linear Units (ReLU)

were used as the activation function for the hidden layers, while the output layer utilized the sigmoid function. Additionally, L2 regularizers

(lambda = 0.001) were applied to adjust the weights smoothly.

During the training validation phase, the network underwent 500 epochs of training, utilizing Adam as the optimizer with a learning rate of

0.0002, a batch size of 8, a validation split of 0.2, andMean Squared Error (MSE) as the loss function.Model performance was evaluated based

on both accuracy and loss for each epoch.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis and data visualization were conducted using R (v4.2.3). One-way analysis of variance (ANOVA) was employed to compare

differences in methylation detection among different groups. Significance analysis of intergroup differences was conducted based on the

normality of data distribution, using either Student’s t-test or Wilcoxon rank-sum test. Statistical significance was assessed using a two-tailed

p value < 0.05. The ’pROC’ package was used to calculate ROC curves for the methylation levels of different genes, and the ’CBCgrps’ pack-

age was employed for correlation analysis between various factors. The ‘‘corrplot’’ package was used to generate a correlation heatmap.

Various plots, including scatter plots, boxplots, and sequencing heatmaps, were created using the ‘‘ggplot2’’ package.
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