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Abstract 

Background: Gastric cancer (GC) has a high mortality rate in cancer-related deaths worldwide. 
Currently, the pathogenesis of gastric cancer progression remains unclear. Here, we identified several 
vital candidate genes related to gastric cancer development and revealed the potential pathogenic 
mechanisms using integrated bioinformatics analysis. 
Methods: Two microarray datasets from Gene Expression Omnibus (GEO) database integrated. Limma 
package was used to analyze differentially expressed genes (DEGs) between GC and matched normal 
specimens. DAVID was utilized to conduct Gene ontology (GO) and KEGG enrichment analysis. The 
relative expression of OLFM4, IGF2BP3, CLDN1 and MMP1were analyzed based on TCGA database 
provided by UALCAN. Western blot and quantitative real time PCR assay were performed to determine 
the protein and mRNA levels of OLFM4, IGF2BP3, CLDN1 and MMP1 in GC tissues and cell lines, 
respectively. 
Results: We downloaded the expression profiles of GSE103236 and GSE118897 from the Gene 
Expression Omnibus (GEO) database. Two integrated microarray datasets were used to obtain 
differentially expressed genes (DEGs), and bioinformatics methods were used for in-depth analysis. After 
gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments 
analysis, we identified 61 DEGs in common, of which the expression of 34 genes were elevated and 27 
genes were decreased. GO analysis displayed that the biological functions of DEGs mainly focused on 
negative regulation of growth, fatty acid binding, cellular response to zinc ion and calcium-independent 
cell-cell adhesion. KEGG pathway analysis demonstrated that these DEGs mainly related to the Wnt and 
tumor signaling pathway. Interestingly, we found 4 genes were most significantly upregulated in the DEGs, 
which were OLFM4, IGF2BP3, CLDN1 and MMP1. Then, we confirmed the upregulation of these genes 
in STAD based on sample types. In the final, western blot and qRT-PCR assay were performed to 
determine the protein and mRNA levels of OLFM4, IGF2BP3, CLDN1 and MMP1 in GC tissues and cell 
lines. 
Conclusion: In our study, using integrated bioinformatics to screen DEGs in gastric cancer could benefit 
us for understanding the pathogenic mechanism underlying gastric cancer progression. Meanwhile, we 
also identified four significantly upregulated genes in DEGs from both two datasets, which might be used 
as the biomarkers for early diagnosis and prevention of gastric cancer. 
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Introduction 
Gastric cancer (GC) is one of the solid tumors 

with a higher morality worldwide, and the 5-year 
survival rate for GC patients is about 20% globally [1, 
2]. Investigation showed that initially diagnosed at 
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advanced stage should be responsible for poor 5-year 
survival of GC [3-5]. Despite numerous studies have 
partly revealed the molecular mechanisms of GC, and 
the emerging therapeutic options have been 
implemented [6, 7], there also have patients with GC 
could hardly respond to existing molecularly targeted 
agents. To date, the promising novel diagnostic and 
prognostic biomarkers of GC still remain unclear. 
Hence, there has an urgent demand for identifying the 
sensitive and specific biomarkers of GC. 

Recently, gastric gene expression profiles have 
been investigated in many studies, and thousands of 
differentially expressed genes (DEGs) have been 
screened, which might be related to the GC 
progression [8-12]. Due to specimens that were 
collected from different backgrounds and analyzed 
using different technological detection platforms, it is 
discrepant in the identification of significantly 
expressed mRNAs among each independent 
experiment. Thus, an unbiased approach should be 
performed to integrate the results from single-cohort 
study. The microarray and high throughput 
sequencing technologies have been improved in 
recent years and used to identify the promising 
candidate biomarkers for diagnostic application of 
cancer treatment during cancer development [13]. In 
order to overcome the inconsistent results, integrated 
bioinformatics methods have been applied to uncover 
the valuable biological information in cancer research 
[14, 15]. 

In our study, the expression profiles of 
GSE103236 and GSE118897 from GEO database were 
downloaded and further analyzed. The GO pathway 
enrichment analysis of DEGs was conducted on 
DAVID (https://david.ncifcrf.gov/) and the KEGG 
pathways (http://kobas.cbi.pku.edu.cn/). After GO 
analysis, we verified the expressions of OLFM4, 
IGF2BP3, CLDN1 and MMP1 were significantly 
elevated in the DEGs using western blotting and 
qRT-PCR assay. In conclusion, integrated 
bioinformatics methods help us to screen DEGs and 
pathways in gastric cancer and understand the 
pathogenic mechanism underlying gastric cancer 
development. Moreover, we also revealed four 
significantly upregulated genes in DEGs, which might 
be the diagnostic and prognostic biomarkers of GC. 

Methods 
Specimen collection 

The gastric cancer (GC) tissues and 
corresponding adjacent gastric tissues were obtained 
from “The Affiliated Huaian No. 1 People’s Hospital 
of Nanjing Medical University” between Jan. 2012 and 
Jan. 2013. 30 pairs of tissues in total were analyzed in 

this study. No systemic treatment of chemotherapy or 
radiotherapy was conducted in these patients before 
surgery. All of patients had got the written informed 
consent before tissue collection. The study was 
approved by the ethics committee of “The Affiliated 
Huaian No. 1 People’s Hospital of Nanjing Medical 
University”. All samples were stored at -80 °C until 
use. 

Cell culture 
GC cell lines NCI-N87, SNU-1 and MGC80-3 

were cultured in RPMI 1640 Medium (Gibco, 
31800022) with 10% heat‐inactivated fetal bovine 
serum (FBS). GC cell lines KATO III and SNU-5 were 
cultured in Iscove's Modified Dulbecco’s Medium 
(IMDM) (Invitrogen, 31980-030) with 20% heat- 
inactivated FBS. Human fibroblast cells Hs 738.St/Int 
were cultured in dulbecco’s modified eagle medium 
(DMEM) (Invitrogen, 11960-044) with 10% heat‐
inactivated FBS. All cultured cells were incubated in a 
humidified atmosphere containing 5% CO2 at 37 °C. 
We purchased all used cell lines from the Institute of 
Biochemistry and Cell Biology at the Chinese 
Academy of Science (Shanghai, China). 

Microarray data sets 
Gene Expression Omnibus (GEO) (https:// 

www.ncbi.nlm.nih.gov/geo/) is a publicly available 
genomics database, which could be queried for all 
data sets. We downloaded two data sets of GC, which 
were the gene expression profiles of GSE103236 and 
GSE118897, from GEO. The selected datasets in 
accordance with the following criteria and reason: (1) 
The dataset was uploaded between 2017.2.1 to 
2020.2.1. (2) The GC tissue samples were employed, 
and the adjacent normal tissues were used as control. 
It is known that H.pylori infection is one of the most 
important factors for GC studies. However, we did 
not find the H.pylori data in the selected datasets. This 
criteria, including GC tissues and normal tissues in 
one dataset, would help keep the balance of 
H.pylori infection status between tumor and control 
tissue samples. (3) Studies had detail information on 
technology and platform, which were utilized for 
datasets analysis. 

Integration of microarray data and screening 
for DEGs 

Generally, the variability of data is mainly from 
heterogeneity and potential variables. The data sets 
we analyzed in this study were based on different 
platforms, while the samples were handled in 
different groups. Therefore, in order to generated 
more reliable results, we performed the normalization 
and base-2 logarithm conversion for the matrix data of 
each GEO dataset using the limma package in R 
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software [16]. Furthermore, we performed gene 
differential analysis by comparing tumor tissues with 
normal tissues. |logFC| >1, P-value < 0.05 and 
adjusted P-value < 0.05 were considered to be 
statistically significant for the DEGs. We kept a list of 
integrated misalignment genes for subsequent 
analysis. 

GO and KEGG pathway enrichment analyses 
of DEGs 

The DAVID database (https://david.ncifcrf. 
gov/) is an important website for high-throughput 
gene function analysis. Based on the DAVID database, 
we analyzed and annotated the functional and 
pathway enrichment of candidate genes. A DAVID 
online tool on the screened DEGs was used to conduct 
the GO annotations. For KEGG pathway analysis, the 
KOBAS database (available online: http://kobas.cbi. 
pku.edu.cn/) was used. In our study, the DEGs 
determined from integrated microarray gastric cancer 
data were analyzed and P-value <0.05 was considered 
to have statistical significance. 

UALCAN 
UALCAN (http://ualcan.path.uab.edu) is a 

comprehensive website based on level 3 RNA-seq and 
clinical data from 31 cancer types in The Cancer 
Genome Atlas (TCGA) database (https:// 
cancergenome.nih.gov/). Researchers were allowed 
to analyze the relative expression of interested genes 
across tumor and normal samples and relative 
clinicopathologic parameters from web resources 
provided by UALCAN. In this study, 415 STAD 
samples and 34 matched adjacent normal samples 
were obtained from The Cancer Genome Atlas 
(TCGA). 

Western blot assay 
Total proteins from cultured cells were lysed in 

the RIPA buffer (Beyotime, China) and quantified. 
After SDS‐PAGE assay, we transferred the proteins 
onto polyvinylidene fluoride (PVDF) membranes 
followed by 5% nonfat milk blocked for 1 hour (h). 
Next, we incubated the membranes with primary 
antibodies overnight at 4 °C and then washed using 
phosphate buffered saline supplemented with Tween 
20 (PBST). We subsequently incubated the 
membranes with secondary antibodies at room 
temperature for 2 h. In the final, we took the protein 
bands on membranes into visualization using an 
enhanced chemiluminescence (ECL) detection system 
(Thermo Fisher Scientific, USA). The used primary 
and secondary antibodies were listed as follows: 
rabbit anti-OLFM4 antibody (1:2000, Abcam, 
ab105861), rabbit anti- IGF2BP3 antibody (HRP) 
(1:1500, Abcam, ab208869), rabbit anti-CLDN1 

antibody (1:2000, Abcam, ab180158), rabbit anti- 
MMP1 antibody (1:2000, Abcam, ab38929), rabbit anti- 
GAPDH (1:3000, Abcam, ab181603) and goat anti- 
rabbit IgG H&L (HRP) (1:3000, Abcam, ab205718). We 
used GAPDH as the endogenous control. 

Quantitative real-time polymerase chain 
reaction (qRT-PCR) 

Extraction of Total RNA from cultured cells with 
TRIzol Reagent (Thermo Fisher Scientific, MA, USA) 
following the manufacturer’s instructions. For 
qRT-PCR detection, the reaction was conducted in 
ABI StepOnePlusTM real-time PCR system (Applied 
Biosystems, CA, USA) and GAPDH was served as the 
internal control. The used primers were listed in Table 
1. 

 

Table 1. Primers used for qRT-PCR 

Gene Primer  Sequence 5’ to 3’ 
OLFM4 Forward ACTGTCCGAATTGACATCATGG 

Reverse TTCTGAGCTTCCACCAAAACTC 
IGF2BP3 Forward CCAAGCTAGACAAGCACTAGAC 

Reverse GCGGCCATTTCATCAGGGA 
CLDN1 Forward CCTCCTGGGAGTGATAGCAAT 

Reverse GGCAACTAAAATAGCCAGACCT 
MMP1 Forward CTCTGGAGTAATGTCACACCTCT 

Reverse TGTTGGTCCACCTTTCATCTTC 
GAPDH Forward CTGGGCTACACTGAGCACC 

Reverse AAGTGGTCGTTGAGGGCAATG 
 

Statistical analysis 
GraphPad Prism 5.0 software was utilized to 

perform all the experiments. Results were displayed 
as the mean±SD and analyzed using the two-tailed 
Student t-test. P <0.05, the difference was significant. 
*P < 0.05, **P < 0.01, ***P < 0.001. 

Results 
Microarray data information and DEGs 
analysis in gastric cancer 

We downloaded the expression microarray 
datasets, including GSE103236 and GSE118897, 
associated with gastric cancer and normalized (Figure 
1A and B, left and middle). Using the limma package 
(|Log FC|> 1 and FDR< 0.05), we screened the two 
datasets to obtain DEGs. Volcano plots displayed the 
differential expression of multiple genes from the two 
sets of each sample data (Figure 1A and B, right). 
Overall, we obtained 1350 DEGs from GSE103236 
dataset and 127 DEGs from GSE54388 dataset (Figure 
2A). Venny diagram showed that there were 34 
upregulated genes and 27 downregulated genes in 
common, respectively (Figure 2A). We used 
R-heatmap software to draw a heatmap of the top 32 
up- and downregulated genes (Figure 2B). 
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Figure 1. Differential gene expression from two datasets based on GEO database. A, The standardization (left and middle) and volcano plots (right) of GSE103236 
data. B, The standardization (left and middle) and volcano plots (right) of GSE118897 data. The data before normalization were displayed as the blue bar, while the normalized 
data were shown as the red bar. The red and green points respectively represented upregulated and downregulated genes screened on the basis of |fold change (FC)|>2.0 and 
a corrected P-value < 0.05. Genes with no significant difference were shown as the black points. 

 
Figure 2. LogFC heatmap of the image data of each expression microarray. A, Venny diagram of intersections of up- and downregulated genes between GSE103236 
data and GSE118897 data. B, The abscissa was defined as GEO ID, and the ordinate was defined as the gene name. Red represents logFC >0, blue represents logFC< 0, and the 
values in the box represent the logFC values. 

 

GO terms and KEGG pathway analysis 
The DAVID online analysis was used to 

conducted biological annotation of the identified 
common DEGs from integrated analysis of microarray 
data in gastric cancer. We obtained GO functional 
enrichments of up- and downregulated genes with a 
P-value<0.05. Three functional groups, including 

molecular function, biological processes, and cell 
composition, were divided in GO analysis of the 
common DEGs (Figure 3A-C). In the molecular 
function group, the identified DEGs were mainly 
enriched in fatty acid binding, metalloendopeptidase 
activity, calcium ion binding and cellular response to 
zinc ion. In the biological process group, the common 
DEGs were mainly enriched in negative regulation of 
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growth, smooth muscle cell differentiation, positive 
regulation of hair follicle development and negative 
regulation of fibroblast growth factor receptor 
signaling pathway. In the cell composition group, the 
selected DEGs were mainly enriched in extracellular 
matrix, endoplasmic reticulum, and cellular response 
to zinc ion and calcium-independent cell-cell 
adhesion. These results indicate that most DEGs were 
significantly enriched in negative regulation of 
growth, fatty acid binding, cellular response to zinc 
ion and calcium-independent cell-cell adhesion via 
plasma membrane cell-adhesion molecules. 

Next, we used the KOBAS online analysis 
database (http://kobas. cbi.pku.edu.cn/) to analyze 
the DEGs identified from gastric cancer-integrated 
gene microarrays, the most significant enrichment 
pathway of DEGs was submitted for KEGG analysis. 
The signaling pathways of DEGs were mainly 
enriched in the Wnt signaling pathways, metabolic 
pathways, and pathways in cancer. The data were 

imported into Cytoscape to calculate the topological 
characteristics of the network and determine each 
node. The genes and pathway nodes are represented 
by semiellipses (Figure 3D). 

Upregulation of four key genes in stomach 
adenocarcinoma based on TCGA database 

Based on the above analysis, we found that 
OLFM4, IGF2BP3, CLDN1 and MMP1 were the top 4 
upregulated genes in common upregulated DEGs, 
which implied that they could be the candidate target 
for diagnostic application of GC treatment. Hence, to 
confirm the upregulation of these four genes in 
stomach adenocarcinoma (STAD), we used UALCAN 
web portal to detect the mRNA expressions of these 
four differential genes in STAD tissues compared 
with normal stomach tissues. The results displayed 
the mRNA levels of these four differential genes were 
dramatically upregulated in STAD tissues compared 
with the normal tissues (Figure 4A-D). 

 

 
Figure 3. GO terms and KEGG pathway for common DEGs. A, GO analysis divided DEGs into three functional groups: cell composition, molecular function and 
biological processes. B, GO enrichment significance items of DEGs in different functional groups. C, DEGs with different GO-enriched functions were distributed in gastric 
cancer. D, Significant pathway enrichment of DEGs. Red represents the signaling pathway, green represents downregulated genes, purple represents signaling pathway, and yellow 
represents upregulated genes. 
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Figure 4. Transcriptional levels of OLFM4, IGF2BP3, CLDN1 and MMP1 in STAD tissues and adjacent normal gastric tissues from TCGA database. 
Expression panels for OLFM4 (A), IGF2BP3 (B), CLDN1 (C) and MMP1 (D) based on sample types comparing 34 normal individuals and 415 patients with STAD in TCGA 
database. 

 

Expressions of four key genes were elevated in 
GC cell lines and tissues 

To further explore the expression levels of 
OLFM4, IGF2BP3, CLDN1 and MMP1 in GC cell lines 
and tissues, we used qRT-PCR assay to analyze the 
expressions of these genes. We cultured the GC cell 
lines, NCI-N87, SNU-1, MGC80-3, KATO III and 
SNU-5, and human fibroblast cells Hs 738.St/Int for 
deeply study. Western blot and qRT-PCR assay were 
used to detected the protein levels and mRNA levels 
of these four genes, respectively. Data showed that the 
expressions of OLFM4, IGF2BP3, CLDN1 and MMP1 
in both transcription and translation levels were 
obviously elevated in GC cells compared with the 
matched normal cells (Figure 5A-E). In addition, we 
found that the transcriptional levels of OLFM4, 
IGF2BP3, CLDN1 and MMP1 were noticeably 
increased in GC tissues compared with the matched 
normal tissues (Figure 6A, C, E, G). Moreover, we 
explored the 5-year survival rate of patients with GC 
by dividing the patients into two groups based on the 

top and bottom 50% gene expression. Results showed 
that GC patients with top 50% gene expression 
displayed a lower 5-year survival rate compared with 
the patients with bottom 50% gene expression (Figure 
6B, D, F, H). These results indicated that OLFM4, 
IGF2BP3, CLDN1 and MMP1 might be the promising 
potential biomarkers for diagnosis of GC. 

Discussion 
Gastric cancer is one of the malignant tumors 

with highest mortality rate tumors worldwide [1, 2]. 
Currently, due to complex biological processes during 
GC development, researchers still hard to identify the 
early onset of gastric cancer, which mainly contributes 
to the poor 5-year survival rate [3-5]. Therefore, the 
molecular mechanism underlying carcinogenesis and 
development of GC is urgent to be evidenced. In past 
decades, microarray and high-throughput sequencing 
technologies have been developed well and widely 
used to predict potential targets for the treatment of 
multiple cancers by detecting the expression levels of 
numerous genes in humans [13-15]. Even so, the 
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pathogenic mechanism of GC still far less known with 
using the advanced technologies, because previous 
studies mostly took attention on the outcomes from a 
single-cohort study. Here, we integrated the gene 
expression profiles of GSE103236 and GSE118897 
datasets downloaded from GEO database and used R 
software and bioinformatics to deeply analyze these 
datasets. We revealed 1350 DEGs from GSE103236 
datasetand 127 DEGs from GSE54388 dataset. 
Interestingly, there were 34 upregulated genes and 27 
downregulated genes in common. The top 32 most 
significantly up-and downregulated genes were 
listed, and among them, OLFM4, IGF2BP3, CLDN1 

and MMP1 were the most upregulated genes. In 
addition, the common differential genes were divided 
into molecular function, biological process, and 
cellular component groups using GO functional 
annotation. GO terms analysis displayed that DEGs 
were mostly enriched in negative regulation of 
growth, fatty acid binding, cellular response to zinc 
ion and calcium-independent cell-cell adhesion via 
plasma membrane cell-adhesion molecules. 
Moreover, the enriched KEGG pathways of DEGs 
included the Wnt signaling pathway, metabolic 
pathways, and pathways in GC. 

 

 
Figure 5. The expressions of OLFM4, IGF2BP3, CLDN1 and MMP1 in GC cell lines. A, western blot assay for detecting the protein levels of OLFM4, IGF2BP3, 
CLDN1 and MMP1 in GC cell lines. The relative mRNA levels of OLFM4 (B), IGF2BP3 (C), CLDN1 (D) and MMP1 (E) in GC cell lines. 

 
Figure 6. The expressions and 5-year survival rate of OLFM4, IGF2BP3, CLDN1 and MMP1 in GC tissues. The transcriptional levels for OLFM4 (A), IGF2BP3 (C), 
CLDN1 (E) and MMP1 (G) in GC tissues. The 5-year survival rate of patients with GC based on top and bottom 50% OLFM4 (B), IGF2BP3 (D), CLDN1 (F) and MMP1 (H) 
expression. 
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After a comprehensive analysis, we found 
OLFM4, IGF2BP3, CLDN1 and MMP1 were the most 
upregulated genes from both GSE103236 and 
GSE118897 datasets. Human olfactomedin 4 
(OLFM4), also known as GW112, is normally 
expressed in bone marrow, prostate, stomach and 
others [17, 18]. Several studies reported OLFM4 
overexpression were also found in gastric biopsies 
infected with Helicobacter pylori [19, 20]. IGF2BP3, 
known as IMP3, is a member of conserved IGF2 
mRNA-binding protein family [21, 22]. Accumulating 
evidences indicated that IGF2BP3 could be a 
promising biomarker in multiple cancers, such as 
colon cancer and GC [23]. Claudin-1 (CLDN1) were 
the most consistently up-regulated genes in the 
tumors, such as GC [24]. The phenotype with CLDN1 
overexpression was generally identified as an 
independent and significant predictor of reduced 
post-operative survival. Matrix metalloproteinases 
(MMPs), an important family of metal-dependent 
enzymes, are responsible for the degradation of 
extracellular matrix components [25, 26]. Molecular 
epidemiologic studies have shown associations 
between genetic polymorphisms of MMPs and cancer 
susceptibility, progression and prognosis [27-29]. To 
test the mRNA levels of OLFM4, IGF2BP3, CLDN1 
and MMP1, we used UALCAN web portal to certify 
the significant upregulation of these genes in STAD 
tissues compared with normal stomach tissues. In the 
final, western blot and qRT-PCR assay were 
performed to verify an elevation in the protein levels 
and mRNA levels of these four genes in the GC tissues 
and cell lines. Taken together, we analyzed two 
datasets from different groups using integrated 
bioinformatics analysis, and uncovered four most 
upregulated genes, OLFM4, IGF2BP3, CLDN1 and 
MMP1, in DEGs from both GSE103236 and 
GSE118897 datasets. Further investigation based on 
TCGA database or in GC cell lines confirmed the 
upregulation of these four genes. Thus, our results 
might provide novel insights for understanding GC 
pathogenic mechanism and potential biomarkers for 
early diagnosis of GC treatment. 
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