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Background: High-grade gliomas (HGG) and solitary brain metastases (SBM) are two common types 
of brain tumors in middle-aged and elderly patients. HGG and SBM display a high degree of similarity on 
magnetic resonance imaging (MRI) images. Consequently, differential diagnosis using preoperative MRI 
remains challenging. This study developed deep learning models that used pre-operative T1-weighted 
contrast-enhanced (T1CE) MRI images to differentiate between HGG and SBM before surgery.
Methods: By comparing various convolutional neural network models using T1CE image data from 
The First Medical Center of the Chinese PLA General Hospital and The Second People’s Hospital of 
Yibin (Data collection for this study spanned from January 2016 to December 2023), it was confirmed 
that the GoogLeNet model exhibited the highest discriminative performance. Additionally, we evaluated 
the individual impact of the tumoral core and peritumoral edema regions on the network’s predictive 
performance. Finally, we adopted a slice-based voting method to assess the accuracy of the validation dataset 
and evaluated patient prediction performance on an additional test dataset.
Results: The GoogLeNet model, in a five-fold cross-validation using multi-plane T1CE slices (axial, 
coronal, and sagittal) from 180 patients, achieved an average patient accuracy of 92.78%, a sensitivity of 
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Introduction

High-grade gliomas (HGG) and solitary brain metastases 
(SBM) are two of the most common types of brain tumors 
in middle-aged and elderly patients. HGG originate 
from glial cells, accounting for approximately 70% of all 
primary brain tumors (1). In contrast, SBM result from 
cancer cells spreading from other parts of the body to the 
brain (2). Given their distinct origins and mechanisms of 
occurrence, their therapeutic principles significantly differ 
(3,4). The primary treatment for HGG often involves 
surgery, supplemented by postoperative radiotherapy and 
chemotherapy. Meanwhile, for SBM, it is crucial first to 
ascertain the original location of the tumor, with treatment 
primarily targeting the original lesion.

Brain magnetic resonance imaging (MRI) is a routine 
examination for intracranial tumor patients. However, 
HGG and SBM display a high degree of similarity on 
MRI images, manifesting as irregular enhancement in 
the core region accompanied by extensive edema in the 
surrounding regions. Consequently, differential diagnosis 
using preoperative MRI remains challenging. In current 
clinical practice, for patients with unclear diagnoses, invasive 
procedures like biopsy or open surgery are often adopted 
to obtain tumor tissue for pathological diagnosis (5). For 
many patients, these methods induce additional physical 
and psychological stress, escalating surgery risks and 
potential complications. If a non-invasive method could be 
employed for accurate preoperative differential diagnosis, it 
would positively impact patient treatment and recovery. In 
recent years, with the introduction of magnetic resonance 
spectroscopy (MRS), perfusion magnetic resonance (MR), 
and positron emission tomography (PET)/MR, the ability 
to differentiate between HGG and SBM has improved (6). 
However, these multimodal MR technologies is time-

consuming and expensive, investigating on ways to use 
conventional T1-weighted contrast-enhanced (T1CE) 
images to improve diagnostic accuracy is of great value.

In the past few years, machine learning and deep 
learning have shown promising applications in disease 
diagnosis, especially in tumor automatic identification and 
segmentation. Some studies leveraging traditional machine 
learning models for differentiating HGG and SBM rely 
heavily on various radiomic features, with support vector 
machine (SVM) classifiers demonstrating commendable 
performance (7-9). Nonetheless, extracting radiomics 
features demands rigorous image preprocessing. Moreover, 
these features require manual extraction and selection, 
making clinical applications cumbersome (10). Deep 
learning, a subset of machine learning, with its models 
based on convolutional neural network (CNN), has been 
applied in medical image processing (11). It consistently 
delivers exceptional performance in clinical classification 
and diagnostic tasks. The advantage of deep learning over 
traditional machine learning is that it can extract features 
directly from images without manual intervention, often 
surpassing the discrimination performance of traditional 
machine learning models (12). Recent researches have 
capitalized on deep learning for classifying and grading 
predict ions  between HGG and SBM (10 ,13 ,14) . 
Nevertheless, current studies tend to focus on the tumor 
core region and often overlook the peritumoral edema 
region. Whether the edema region contributes to tumor 
classification remains under-researched. Comparing 
machine learning classifiers is crucial as it helps in identifying 
the most effective model for accurately distinguishing 
between HGG and SBM, particularly when considering 
different regions of the tumor and surrounding areas. By 
evaluating various models, we can determine the strengths 
and weaknesses of each approach, ensuring that the chosen 

95.56%, and a specificity of 90.00%. Moreover, on an external test set of 29 patients, the model achieved an 
accuracy of 89.66%, a sensitivity of 90.91%, and a specificity of 83.33%, with an area under the curve of 0.939 
[95% confidence interval (CI): 0.842–1.000].
Conclusions: GoogLeNet performed better than previous methods at differentiating HGG from SBM, 
even for core and peritumoral edema in both. HGG and SBM could be fast screened using this end-to-end 
approach, improving workflow for both tumor treatments.
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method provides the highest diagnostic accuracy. This 
is especially timely given the advancements in imaging 
techniques and the growing importance of non-invasive 
diagnostic methods in clinical practice.

This study employed current mainstream deep 
learning models to conduct a comparative analysis of the 
core regions, peritumoral edema regions, and overall 
characteristics between HGG and SBM using multi-plane 
T1CE images. We present this article in accordance with 
the TRIPOD reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-24-380/rc).

Methods

Patients

We retrospectively reviewed data from The First Medical 
Center of the Chinese PLA General Hospital (101 patients 
with HGG and 82 patients with SBM) and The Second 
People’s Hospital of Yibin (26 patients with SBM), covering 
patients who underwent surgery for intracranial gliomas 
and metastatic tumors from January 2016 to December 
2023. The study was conducted in accordance with the 

Declaration of Helsinki (as revised in 2013). The study 
was approved by ethics board of The First Medical Center 
of the Chinese PLA General Hospital and The Second 
People’s Hospital of Yibin (No. 2022DZKY-072-01 and 
No. 2023-161-01), and informed consent was taken from 
all individual participants. The diagnosis of all patients 
was confirmed by pathological results. After screening, a 
total of 209 patients were included, and preoperative MRI 
image data were collected. Among them, 101 cases were 
HGG and 108 were SBM (Figure 1), including 60 males 
and 41 females for HGG, and 58 males and 50 females 
for SBM. The average age of patients with SBM was 
58.21±9.00 years, while the average age for HGG patients 
was 50.5±12.22 years. It is important to note that gliomas 
were graded according to the World Health Organization 
(WHO) classification system. This system categorizes 
gliomas into four grades based on histological features, 
cellular atypia, and mitotic activity: Grade I (pilocytic 
astrocytoma, most benign), Grade II (low-grade gliomas), 
Grade III (anaplastic gliomas), and Grade IV (glioblastoma, 
most malignant). HGG in this study refer to WHO Grade 
III and IV gliomas, which are more aggressive and have a 
poorer prognosis compared to lower grades.

Dataset
Covering patients who underwent surgery for intracranial gliomas and metastatic tumors 

from January 2016 to December 2023 (n=459)

Internal dataset:
Patients from gliomas (WHO grade less 

than 3) or solitary brain metastases
(n=180)

External dataset:
Patients from gliomas (WHO grade less 

than 3) or solitary brain metastases
(n=29)

Exclusion criteria:
(I)	 Gliomas with WHO grade less 

than 3
(II)	 Not solitary brain metastases

Extract slices:
Sixty slices were extracted from the 
axial coronal and sagittal positions

Train + validation dataset:
Five-fold cross-validated patients.
Hospital A (HGG =90, SBM =66)

Hospital B (SBM =24)

External test dataset:
Hospital A (HGG =11, SBM =16)

Hospital B (SBM =2)

Figure 1 Patients data selection and division. WHO, World Health Organization; Hospital A, The First Medical Center of the Chinese 
PLA General Hospital; Hospital B, The Second People’s Hospital of Yibin; HGG, high-grade gliomas; SBM, solitary brain metastases.

https://qims.amegroups.com/article/view/10.21037/qims-24-380/rc
https://qims.amegroups.com/article/view/10.21037/qims-24-380/rc
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Segmentation

IWS software (version 1.0, MEDINSIGHT TECHNOLOGY 
CO. LTD., Shanghai, China) was used to view and classify 
MRI DICOM images. MRIConvert software (Version 2.1, 
University of Oregon, Eugene, USA) was used to convert 
DICOM images into NIFTI images. A senior radiologist 
(Q.L.) manually segmented tumors core and edema on T1CE 
images using ITK-Snap software (Version 3.8, University of 
Pennsylvania, Philadelphia, USA). Segmentation labels of 
tumor and edema were saved as masks.

Image preprocessing

Sixty multi-plane slices were extracted and collected for 
each patient, 20 slices from each axial, coronal, and sagittal 
view. Tumor core and edema as regions of interest (ROI) 
were extracted according to segmentation masks from the 
multi-plane T1CE slices. Considering that multi-plane 
slices have different dimensions, we padded the sides to 
256×256 uniformly. 

Deep learning models

We analyzed four mainstream CNN architectures: 

U-shaped network (U-Net), visual geometry group 
network (VGG), ResNet, and GoogLeNet. U-Net is the 
most popular neuro network used for medical images, 
characterized by its symmetric contraction and expansion 
paths, which helps capture more refined contextual 
information within images (15). The VGG network is 
renowned for its simplicity and efficiency, constructing 
deep networks through the repetitive use of small 
convolutional kernels (16). ResNet addresses the issue 
of vanishing gradients in deep networks by introducing 
residual connections. This allows the network to extract 
more complex features through deep learning (17). Because 
the Inception module effectively extracts features through 
parallel 1×1, 3×3, and 5×5 convolutional kernels (Figure 2), 
GoogLeNet can capture image features at various scales, 
which is particularly crucial for extracting key features 
from complex brain scan images (18).

Dataset split

To increase the number of images available for network 
training, we treated all multi-plane slices from each patient 
as independent images. This means that even if the slices 
come from the same patient, they are input into the network 
separately. This enhances data diversity and training 

Figure 2 Workflow of data preprocessing, model training and validation.
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effectiveness. The data split for 5-fold cross-validation was 
based on patients, not slices, in order to ensure that MRI 
slices from the same patient were grouped together. One 
hundred and eighty patients (10,800 slices) were used for 
training and validation, while 29 patients (1,740 slices) were 
used for testing. The model training of the core area and 
edema area also follows this data split.

Training parameters for models

In the training phase, MRI images were randomly enhanced 
to improve sharpness and contrast a probability of 0.5, 
aiming at enhancing the recognizability of details in the 
images and thus optimizing the quality of input data for 
model training (19). We set the batch size for training at 32 
and used the stochastic gradient descent (SGD) optimizer to 
train for 100 epochs (20). We used an initial learning rate of 
1e−5, chosen based on recommendations from prior literature 
and results from experimental tuning (18). Additionally, we 
adopted an adaptive learning rate adjustment strategy to 
optimize model convergence speed and accuracy. Cross-
entropy was chosen as the loss function for training. All the 
models were trained on two NVIDIA Quadro RTX 6000 
GPUs each with 24 GB of memory.

Evaluation metrics for model performance

In this study, we evaluated our models using a patient-
based prediction method. Since both the training and 
prediction of the models were based on multi-plane slices, 
each slice during the training process was treated as an 
independent entity. Consequently, the models we trained 
can only provide slice-based prediction results. To generate 
predictions for individual patients, we used slice-voting 
method. We predicted each of the 60 slices for a single 
patient separately. If more than half of the slices were 

accurate, the patient was deemed accurately.
In order to evaluate the performance of models, we 

used accuracy (ACC) and area under the curve (AUC). 
Additionally, we selected sensitivity (SE) and specificity (SP) 
as supplementary evaluation metrics. Through the use of 
these comprehensive assessment methods, we were able to 
gain a more comprehensive understanding of the models’ 
performance in distinguishing HGG and SBM.

TP TNACC
TP FN TN FP

+
=

+ + + 	 [1]

TPSE
TP FN

=
+ 	 [2]

TNSP
TN FP

=
+

	 [3]

where ACC is the accuracy, TP is the true positive class, 
TN is the true negative class, FN is the false negative class 
and FP is the false positive class.

Results

Patient information

Utilizing independent sample t-tests (Table 1), we found 
significant differences in age between the SBM and HGG 
groups, suggesting clinically meaningful disparities in age 
distribution between the two groups. For patients with 
SBM, the lungs were the most common primary site (72 
cases), followed by the breast and urinary system (both 
with 9 cases each), intestines (5 cases), and other sites 
collectively accounting for 6 cases. Among HGG patients, 
22 had World Health Organization (WHO) Grade III 
tumors, while 86 had WHO Grade IV tumors. Additionally, 
we conducted independent sample t-tests for age among 
males and females in both groups, revealing significant age 
differences for both genders. This further underscores the 
potential role of gender in the age distribution of patients, 

Table 1 Clinical information of patients 

Parameter Metastases Gliomas t-tests P value

Age (years) (mean ± SD) 58.21±9.00 50.50±12.22 4.917 <0.001

Gender

Male 58 60 4.582 <0.001

Female 50 41 2.341 0.02

Mean volume (mm3) 38,009.03 35,891.56 −0.482 0.63

SD, standard deviation.
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Table 2 Comparison of results from different models

Models 1-flod 2-flod 3-flod 4-flod 5-flod Average

U-Net

Accuracy, % 83.33 77.78 75.00 63.89 80.56 76.11

Sensitivity, % 88.89 77.78 66.67 55.56 72.22 72.22

Specificity, % 77.78 77.78 83.33 72.22 88.89 80.00

VGG-16

Accuracy, % 89.47 86.84 73.68 73.68 89.74 82.68

Sensitivity, % 85.00 85.00 75.00 70.00 90.48 80.54

Specificity, % 94.44 88.89 72.22 77.78 88.89 84.44

ResNet-50

Accuracy, % 86.84 81.58 78.95 89.47 82.05 83.78

Sensitivity, % 95.00 95.00 80.00 85.00 76.19 86.24

Specificity, % 77.78 66.67 77.78 94.44 88.89 81.11

GoogLeNet Axial

Accuracy, % 77.14 74.29 71.43 74.29 71.79 73.78

Sensitivity, % 66.67 77.78 50.00 61.11 55.56 62.22

Specificity, % 88.24 70.59 94.12 88.24 85.71 85.38

GoogLeNet

Accuracy, % 86.11 94.44 97.22 94.44 91.67 92.78

Sensitivity, % 88.89 99.99 99.99 99.99 88.89 95.55

Specificity, % 83.33 88.89 94.44 88.89 94.44 90.00

VGG, visual geometry group network.

which may influence treatment choices and prognoses for 
the two types of diseases.

Performance comparison of models

Model performance of four CNN models was compared 
using the same dataset (tumor core and edema) and training 
process (Table 2). For the U-Net network, the average 
cross-validation accuracy was 76.11%, with a sensitivity of 
72.22% and a specificity of 80.00%. For the VGG network, 
the average cross-validation accuracy was 82.68%, with a 
sensitivity of 80.54% and a specificity of 84.44%. For the 
ResNet network, the average cross-validation accuracy 
was 83.78%, with a sensitivity of 86.24% and a specificity 
of 81.11%. However, GoogLeNet exhibited the highest 
performance with an average accuracy of 92.78% in cross-

validation, a sensitivity of 95.55%, and a specificity of 
90.00%. Additionally, we further tested GoogLeNet’s 
performance on axial images alone, where the average 
accuracy in cross-validation was 73.78%, sensitivity 62.22%, 
and specificity 85.38%, showing a decrease of 19.35% in 
accuracy compared to using multi-plane data. 

A heat map visualization technique was adopted in the 
model training process of GoogLeNet. When it made 
predictions, the model successfully focused on tumor core 
and peritumoral edema in all axial, coronal, and sagittal 
slices (Figure 3). The heatmaps in these slices used brighter 
colors to highlight these critical areas, provided a visual 
representation of the model’s focus during diagnostic 
assessments. This not only aided in understanding the 
model’s decision-making process but also offered an intuitive 
means to verify the accuracy and reliability of its predictions.
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Figure 3 Patients training visualization heatmap.
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Figure 4 GoogLeNet performance in different regions on cross-validation. Avg, average.

GoogLeNet performance on tumor core and peritumoral 
edema

Based on GoogleNet’s exceptional discriminative ability, we 
used the same training method to differentiate HGG and 
SBM using tumoral core and peritumoral edema regions 
(Figure 4), separately. On the peritumoral edema region, 
the average cross-validation accuracy was 90.00%, with a 
sensitivity of 93.33% and a specificity of 86.66%. On the 
tumoral core region, the average cross-validation accuracy 
was 91.11%, with a sensitivity of 87.78% and a specificity 
of 95.55%. Additionally, an external dataset was used to 

test GoogLeNet’s discriminative performance in regions of 
the tumoral core, edema, and overall. On the peritumoral 
edema region, accuracy was 79.31%, with an AUC of 0.826 
[95% confidential interval (CI): 0.656–0.971), a sensitivity 
of 81.82%, and a specificity of 77.78%. On the tumoral core 
region, accuracy was 86.76%, with an AUC of 0.866 (95% 
CI: 0.722–0.991), a sensitivity of 81.82%, and a specificity 
of 83.33%. The model still performed best in the overall 
region, with an accuracy of 89.66%, an AUC of 0.939 (95% 
CI: 0.842–1.000), a sensitivity of 90.91%, and a specificity 
of 83.33%. Furthermore, the normalized confusion matrix 
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for the overall region showed a prediction accuracy of 0.91 
for HGG and 0.83 for SBM (Figure 5).

Discussion

In clinical settings, MRI images are indispensable, 
particularly for neurological examinations. Their rich 
lesion information, coupled with the power of CNN, 
offer an optimal solution for medical image classification 
and predictive tasks (21). In this study, we tested U-Net, 
VGG, ResNet, and GoogLeNet using T1CE images. All 
models could achieve differential diagnosis of HGG and 
SBM. With the same training images and training process, 
the performance of the GoogLeNet outperformed the 
other three models (Table 2). It showed that GoogLeNet 
could extract more information on T1CE images when 
making diagnostic predictions between HGG and SBM. 
Additionally, using single-modal rather than multimodal 
imaging reduces costs and simplifies clinical procedures, 
making this method more suitable for rapid clinical 
decision-making.

Studies published for distinguishing between HGG 
and SBM using traditional machine-learning approaches 
often involve extracting numerous radiomic features and 
testing various classifiers (12,22). The prediction accuracy 
ranges from 64.00% to 83.00 (8,9). On the deep learning 
frontier, Shin et al. (10) utilized T1-weighted imaging 
(T1WI) and T2-weighted imaging (T2WI) images as 
input and employed the ResNet50 to distinguish between 
gliomas and metastatic tumors, achieving an internal test 
set accuracy of 89.00% and an external test set accuracy of 
85.90%. Tariciotti et al. (13) leveraged the ResNet-101 to 

discern among gliomas, metastatic tumors, and lymphomas 
based on T1Gd images, recording accuracy rates of 80.37% 
for gliomas and metastatic tumors, respectively. Yan  
et al. (14) employed ResNest-18 as a classification model 
and, when combined with diffusion-weighted imaging 
on T1WI and T2WI MRI images, exhibited the best 
differentiation results between HGG and SBM, with a 
validation set accuracy of 88.50% and an external test set 
accuracy of 80.70%. Bathla et al. (23) used 3D CNNs to 
distinguish between glioblastoma and brain metastases by 
combining images from four different sequences, achieving 
an average accuracy of 87.50% on internal data and 85.58% 
on an external test set. When compared to previous studies, 
our GoogLeNet model exhibits stellar performance. It 
demonstrated an average accuracy of 92.78% on cross-
validation and an average accuracy of 89.66% on the test 
set (Table 3). The reasons we speculated are as follows: (I)  
compared to traditional machine learning models, 
GoogLeNet can extract a more extensive array of feature 
information automatically. (II) Compared to deep learning 
models using multimodal imaging, GoogLeNet using axial 
T1CE images is at a disadvantage (25). However, using 
single-modal multi-plane T1CE images allows GoogLeNet 
to surpass multimodal models’ performance. It indicates 
that multi-plane images can serve as multi-modal images 
and be more cost-effectiveness. (III) Due to the Inception 
module, GoogLeNet can flexibly capture multi-level 
features, and extract rich tumor imaging information from 
deeper network (26,27). Despite the superior performance 
demonstrated by GoogLeNet in our internal dataset, 
significant discrepancies were observed when transitioning 
to external datasets, highlighting potential issues with the 
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model’s robustness across different imaging conditions 
and patient demographics. Variations in image quality, the 
diversity of the external dataset, and differences in tumor 
characteristics could contribute to these performance gaps.

Thin-slice T1CE images were collected and used for 
model training in this study. The reasons are as follows: (I) 
thin-slice T1CE images can be reconstructed into multi-
plane slices (coronal and sagittal slices), which provides 
more structural and texture tumor information (28). 
(II) With contrast injection, the tumor core is enhanced 
significantly, which helps distinguish the tumor core and 
edema clearly. (III) A model trained with multi-plane slices 
has better compatibility for axial, coronal, and sagittal 
T1CE images.

Both HGG and SBM have enhanced tumor core and 
significant peritumoral edema on T1CE images. The 
core region is a primary concentration of tumor cells and 
necrosis, featuring high cell density and compact cell 
arrangement, emphasizing the morphological characteristics 
of the tumor (29). Conversely, the edema region mainly 
reflects tissue edema levels and inflammatory responses, 
with low cell density and a relatively loose arrangement (30). 
For HGG, the edema region contains infiltrating tumor 
cells; for metastatic tumors, the edema region typically lacks 
tumor cells. Histologically, edematous areas also aid in the 
differential diagnosis of tumors, although this distinction 
is not detectable to the human eye in MRI images (24,31). 
To investigate if deep learning models could capture 
histological features of tumor core and edema areas in MRI 
images for differential diagnosis, we trained the GoogLeNet 

model using tumor core and edema region separately. The 
GoogLeNet model achieved over 90% prediction accuracy 
using either tumor core or edema areas. These findings 
suggest that a deep learning model can extract features 
at the histological level from MRI images to aid in the 
differential diagnosis of tumors. This approach might opens 
up new avenues for predicting tumor pathological type 
using deep learning methods.

While our deep learning models demonstrate remarkable 
performance, there are certain limitations inherent to this 
study. The model was initially constructed based on three 
distinct MRI scanners used in two centers, which might 
affect its reliability across diverse MRI scanners and patient 
populations from multiple centers. Although GoogLeNet 
and other classic models excel in processing single-modal 
images, they are less efficient at handling multimodal 
MRI images and clinical features, potentially restricting 
their applicability in clinical practice. Considering these 
limitations, future research involving models equipped 
with attention mechanisms or the latest deep learning 
frameworks promises to address these issues. Such 
advancements would not only mitigate the limitations posed 
by the use of single-modal image datasets but also enhance 
performance and applicability in complex clinical settings.

Conclusions

We investigated the capability of T1CE images in deep 
learning models to differentiate HGG from SBM. According 
to this study, the GoogLeNet model demonstrated a higher 

Table 3 Comparison of experimental data from relevant literatures

Author
Number of 

patients
Method

Used radiomics 
features

Used multimodal 
images

Internal ACC 
(%)

External ACC 
(%)

Dong et al. (7) 120 Combine five classifiers Y Y 64.00 –

Artzi et al. (8) 439 SVM Y Y 85.00 –

Qian et al. (9) 412 SVM + LASSO Y Y 83.00 –

Bae et al. (24) 248 LDA + LASSO Y Y 81.70 –

Shin et al. (10) 741 ResNet-50 N Y 89.00 85.90

Tariciotti et al. (13) 126 ResNet-101 N N 80.37 –

Yan et al. (14) 234 ResNet-18 N Y 88.50 80.70

Bathla et al. (23) 366 3D CNN N Y 87.50 85.58

Ours 209 GoogLeNet N N 92.78 89.66

ACC, accuracy; SVM, support vector machine; LASSO, least absolute shrinkage and selection operator; LDA, latent dirichlet allocations; 
CNN, convolutional neural network; Y, yes; N, no.
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level of diagnostic accuracy compared to other CNN models 
and previously reported methods. It achieved an average 
patient accuracy of 92.78% in a five-fold cross-validation. 
Moreover, on an external test set, it reached an accuracy 
of 89.66%. It also achieved a high prediction accuracy 
solely using tumor core or edema region for differentiation 
between HGG and SBM. This approach provides patients 
with robust preoperative and non-invasive diagnostic 
support for fast and initial screening for HGG and SBM.

Acknowledgments

We thank Yiyang Zhao and Guodong Yang for technical 
support in this research.
Funding: This work was supported by the National Natural 
Science Foundation of China (No. 62102133 to Z.X. and 
S.C.), the High-level and Urgently Needed Overseas Talent 
Programs of Jiangxi Province (No. 20232BCJ25026 to 
Z.X. and S.C.), the Natural Science Foundation of Henan 
Province (No. 242300421402 to Z.X. and S.C.), the Kaifeng 
Major Science and Technology Project (No. 21ZD011 to 
Z.X. and S.C.), the Ji’an Finance and Science Foundation 
(Nos. 20211-085454, 20222-151746, 20222-151704 to Z.X. 
and S.C.), Ji’an Key Core Common Technology “Reveal 
The List” Project (No. 2022-1 to Z.X. and S.C.), Hospital 
Management Project (No. 2023LCYYQH025 to X.S.), 
and the Henan University Graduate Student Excellence 
Program (No. SYLYC2023135 to Z.X.).

Footnote

Reporting Checklist: The authors have completed the 
TRIPOD reporting checklist. Available at https://qims.
amegroups.com/article/view/10.21037/qims-24-380/rc

Conflicts of Interest: All authors have completed the 
ICMJE uniform disclosure form (available at https://
qims.amegroups.com/article/view/10.21037/qims-24-
380/coif). Z.X. and S.C. both disclosed the funding from 
the National Natural Science Foundation of China (No. 
62102133), the High-level and Urgently Needed Overseas 
Talent Programs of Jiangxi Province (No. 20232BCJ25026), 
the Natural Science Foundation of Henan Province (No. 
242300421402), the Kaifeng Major Science and Technology 
Project (No. 21ZD011), the Ji’an Finance and Science 
Foundation (Nos. 20211-085454, 20222-151746, 20222-
151704), Ji’an Key Core Common Technology “Reveal 
The List” Project (No. 2022-1). Z.X. also reports the 

funding from the Henan University Graduate Student 
Excellence Program (No. SYLYC2023135). X.S. discloses 
the funding from the Hospital Management Project (No. 
2023LCYYQH025). The other authors have no conflicts of 
interest to declare. 

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013). The study was approved by ethics board 
of The First Medical Center of the Chinese PLA General 
Hospital and The Second People’s Hospital of Yibin (No. 
2022DZKY-072-01 and No. 2023-161-01), and informed 
consent was taken from all individual participants.

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1.	 Yao M, Li S, Wu X, Diao S, Zhang G, He H, Bian L, Lu 
Y. Cellular origin of glioblastoma and its implication in 
precision therapy. Cell Mol Immunol 2018;15:737-9.

2.	 Guan X. Cancer metastases: challenges and opportunities. 
Acta Pharm Sin B 2015;5:402-18.

3.	 Weller M, van den Bent M, Tonn JC, Stupp R, Preusser M, 
Cohen-Jonathan-Moyal E, et al. European Association for 
Neuro-Oncology (EANO) guideline on the diagnosis and 
treatment of adult astrocytic and oligodendroglial gliomas. 
Lancet Oncol 2017;18:e315-29.

4.	 Suh JH, Kotecha R, Chao ST, Ahluwalia MS, Sahgal A, 
Chang EL. Current approaches to the management of 
brain metastases. Nat Rev Clin Oncol 2020;17:279-99.

5.	 Jiang B, Chaichana K, Veeravagu A, Chang SD, Black KL, 
Patil CG. Biopsy versus resection for the management 
of low-grade gliomas. Cochrane Database Syst Rev 
2017;4:CD009319.

6.	 Caulo M, Panara V, Tortora D, Mattei PA, Briganti C, 
Pravatà E, Salice S, Cotroneo AR, Tartaro A. Data-driven 

https://qims.amegroups.com/article/view/10.21037/qims-24-380/rc
https://qims.amegroups.com/article/view/10.21037/qims-24-380/rc
https://qims.amegroups.com/article/view/10.21037/qims-24-380/coif
https://qims.amegroups.com/article/view/10.21037/qims-24-380/coif
https://qims.amegroups.com/article/view/10.21037/qims-24-380/coif
https://creativecommons.org/licenses/by-nc-nd/4.0/


Xiong et al. Deep learning for HGG vs. SBM on multi-plane T1CE images5772

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(8):5762-5773 | https://dx.doi.org/10.21037/qims-24-380

grading of brain gliomas: a multiparametric MR imaging 
study. Radiology 2014;272:494-503.

7.	 Dong F, Li Q, Jiang B, Zhu X, Zeng Q, Huang P, Chen 
S, Zhang M. Differentiation of supratentorial single brain 
metastasis and glioblastoma by using peri-enhancing 
oedema region-derived radiomic features and multiple 
classifiers. Eur Radiol 2020;30:3015-22.

8.	 Artzi M, Bressler I, Ben Bashat D. Differentiation between 
glioblastoma, brain metastasis and subtypes using radiomics 
analysis. J Magn Reson Imaging 2019;50:519-28.

9.	 Qian Z, Li Y, Wang Y, Li L, Li R, Wang K, Li S, Tang 
K, Zhang C, Fan X, Chen B, Li W. Differentiation of 
glioblastoma from solitary brain metastases using radiomic 
machine-learning classifiers. Cancer Lett 2019;451:128-35.

10.	 Shin I, Kim H, Ahn SS, Sohn B, Bae S, Park JE, Kim HS, 
Lee SK. Development and Validation of a Deep Learning-
Based Model to Distinguish Glioblastoma from Solitary 
Brain Metastasis Using Conventional MR Images. AJNR 
Am J Neuroradiol 2021;42:838-44.

11.	 Talo M, Yildirim O, Baloglu UB, Aydin G, Acharya UR. 
Convolutional neural networks for multi-class brain 
disease detection using MRI images. Comput Med 
Imaging Graph 2019;78:101673.

12.	 Afshar P, Mohammadi A, Plataniotis KN, Oikonomou A, 
Benali H. From handcrafted to deep-learning-based cancer 
radiomics: challenges and opportunities. EEE Signal 
Processing Magazine 2019;36:132-60.

13.	 Tariciotti L, Caccavella VM, Fiore G, Schisano L, 
Carrabba G, Borsa S, Giordano M, Palmisciano P, 
Remoli G, Remore LG, Pluderi M, Caroli M, Conte 
G, Triulzi F, Locatelli M, Bertani G. A Deep Learning 
Model for Preoperative Differentiation of Glioblastoma, 
Brain Metastasis and Primary Central Nervous System 
Lymphoma: A Pilot Study. Front Oncol 2022;12:816638.

14.	 Yan Q, Li F, Cui Y, Wang Y, Wang X, Jia W, Liu X, Li Y, 
Chang H, Shi F, Xia Y, Zhou Q, Zeng Q. Discrimination 
Between Glioblastoma and Solitary Brain Metastasis Using 
Conventional MRI and Diffusion-Weighted Imaging 
Based on a Deep Learning Algorithm. J Digit Imaging 
2023;36:1480-8.

15.	 Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, 
Erhan D, Vanhoucke V, Rabinovich A. Going deeper with 
convolutions. 2015 IEEE Conference on Computer Vision 
and Pattern Recognition (CVPR), Boston, MA, USA, 
2015:1-9.

16.	 Ronneberger O, Fischer P, Brox T. U-Net: Convolutional 
Networks for Biomedical Image Segmentation. In: Navab 
N, Hornegger J, Wells W, Frangi A. editors. Medical 

Image Computing and Computer-Assisted Intervention 
– MICCAI 2015. Lecture Notes in Computer Science, 
Springer, 2015;9351:234-41.

17.	 He K, Zhang X, Ren S, Sun J. Deep residual learning for 
image recognition. 2016 IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR), Las Vegas, NV, 
USA, 2016:770-8.

18.	 Simonyan K, Zisserman A. Very deep convolutional 
networks for large-scale image recognition. arXiv preprint 
arXiv: 1409.1556, 2014.

19.	 Goceri E. Medical image data augmentation: techniques, 
comparisons and interpretations. Artif Intell Rev 2023. 
[Epub ahead of print]. doi: 10.1007/s10462-023-10453-z.

20.	 Robbins H, Monro S. A stochastic approximation method. 
Annals of Mathematical Statistics 1951;22:400-7.

21.	 Jiang Y, Yang M, Wang S, Li X, Sun Y. Emerging role 
of deep learning-based artificial intelligence in tumor 
pathology. Cancer Commun (Lond) 2020;40:154-66.

22.	 Lotan E, Jain R, Razavian N, Fatterpekar GM, Lui YW. 
State of the Art: Machine Learning Applications in Glioma 
Imaging. AJR Am J Roentgenol 2019;212:26-37.

23.	 Bathla G, Dhruba DD, Liu Y, Le NH, Soni N, Zhang H, 
Mohan S, Roberts-Wolfe D, Rathore S, Sonka M, Priya 
S, Agarwal A. Differentiation Between Glioblastoma and 
Metastatic Disease on Conventional MRI Imaging Using 
3D-Convolutional Neural Networks: Model Development 
and Validation. Acad Radiol 2024;31:2041-9.

24.	 Bae S, An C, Ahn SS, Kim H, Han K, Kim SW, Park 
JE, Kim HS, Lee SK. Robust performance of deep 
learning for distinguishing glioblastoma from single brain 
metastasis using radiomic features: model development 
and validation. Sci Rep 2020;10:12110.

25.	 Razzak M I, Naz S, Zaib A. Deep Learning for Medical 
Image Processing: Overview, Challenges and the Future. 
In: Dey N, Ashour A, Borra S. editors. Classification in 
BioApps. Lecture Notes in Computational Vision and 
Biomechanics, Springer, 2018;26:323-50.

26.	 Yang X, Yeo SY, Hong JM, Wong ST, Tang WT, Wu ZZ, 
Lee G, Chen S, Ding V, Pang B, Choo A, Su Y. A deep 
learning approach for tumor tissue image classification. 
IASTED Biomedical Engineering 2016. doi: 10.2316/
P.2016.832-025.

27.	 Yamashita R, Nishio M, Do RKG, Togashi K. 
Convolutional neural networks: an overview and 
application in radiology. Insights Imaging 2018;9:611-29.

28.	 Candemir S, Nguyen XV, Folio LR, Prevedello LM. 
Training Strategies for Radiology Deep Learning 
Models in Data-limited Scenarios. Radiol Artif Intell 



Quantitative Imaging in Medicine and Surgery, Vol 14, No 8 August 2024 5773

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(8):5762-5773 | https://dx.doi.org/10.21037/qims-24-380

Cite this article as: Xiong Z, Qiu J, Liang Q, Jiang J,  
Zhao K, Chang H, Lv C, Zhang W, Li B, Ye J, Li S, Peng S, 
Sun C, Chen S, Long D, Shu X. Deep learning models for 
rapid discrimination of high-grade gliomas from solitary brain 
metastases using multi-plane T1-weighted contrast-enhanced 
(T1CE) images. Quant Imaging Med Surg 2024;14(8):5762-5773. 
doi: 10.21037/qims-24-380

2021;3:e210014.
29.	 Bastola S, Pavlyukov MS, Yamashita D, Ghosh S, Cho H, 

Kagaya N, et al. Glioma-initiating cells at tumor edge gain 
signals from tumor core cells to promote their malignancy. 
Nat Commun 2020;11:4660.

30.	 Baris MM, Celik AO, Gezer NS, Ada E. Role of mass 
effect, tumor volume and peritumoral edema volume 
in the differential diagnosis of primary brain tumor and 

metastasis. Clin Neurol Neurosurg 2016;148:67-71.
31.	 Tateishi M, Nakaura T, Kitajima M, Uetani H, Nakagawa 

M, Inoue T, Kuroda JI, Mukasa A, Yamashita Y. An initial 
experience of machine learning based on multi-sequence 
texture parameters in magnetic resonance imaging to 
differentiate glioblastoma from brain metastases. J Neurol 
Sci 2020;410:116514.


