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Abstract
Severe acute pancreatitis (SAP) is a life-threatening acute abdominal disease with two peaks of death: the first in the early stage,
characterized by systemic inflammatory response-associated organ failure; and the second in the late stage, characterized by
infectious complications. Neutrophils are the main immune cells participating in the whole process of SAP. In addition to the
traditional recognition of neutrophils as the origination of chemokine and cytokine cascades or phagocytosis and degranulation of
pathogens, neutrophil extracellular traps (NETs) also play an important roles in inflammatory reactions. We reviewed the role of
NETs in the occurrence and development of SAP and its fatal complications, including multiple organs injury, infected pancreatic
necrosis, and thrombosis. This review provides novel insights into the involvement of NETs throughout the entire process of SAP,
showing that targeting NETs might be a promising strategy in SAP treatment. However, precision therapeutic options targeting
NETs in different situations require further investigation.
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Introduction

Severe acute pancreatitis (SAP) is a local inflammatory
injury occurred initially in the pancreas, followed by a
systemic inflammatory disorder with a mortality of
30%.[1,2] It is often accompanied by distant organ
dysfunction and/or pancreatic local complications. There
are two peaks of death occurred in SAP: the first, within
two weeks of acute onset, due to multiple organs failure
which results from the systemic inflammatory storm, and
the second, two weeks after the acute bout, triggered by
multi-organ damage with sepsis caused by infected
pancreatic necrosis (IPN).[3-5]

Neutrophils, the most abundant white blood cells in the
human body, play a pivotal role in the host defense.
Neutrophils can kill invading pathogens via phagocytosis,
degranulation, and reactive oxygen species (ROS) pro-
duction.[6] In addition, activated neutrophils can also form
extracellular networks known as neutrophil extracellular
traps (NETs); this is frequently accompanied by cell death
in a process named NETosis,[7,8] first reported in 2004 by
Brinkmann et al[9]. NETs trap pathogenic microorganisms
such as Staphylococcus aureus, Salmonella typhimurium,
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and Shigella flexneri. IpaB, a virulence factor of Shigella
flexneri, is degraded by neutrophil elastase (NE) of
NETs.[9] Sepsis is one of the most common causes of
death in patients with SAP,[10] while NETs kill pathogens
and prevent their dissemination in vivo, thus reducing
multiple organs injury and mortality in the early stage of
sepsis.[11,12] Moreover, NETs can form a temporary
physical barrier to separate necrotic pancreatic collections
from the remaining viable areas.[13]
Nevertheless, NET generation is a double-edged sword in
SAP, as dysfunctional or excessive release of NETs can also
lead to tissue damage.[14] Several studies have provided
evidence that NETs promote multiple organs dysfunction,
thrombosis, and sepsis in SAP, and that targeting the
pathways and mechanisms involved in NET generation
may therefore be a novel therapeutic strategy for SAP and
its complications. Recently, the triggers and mechanisms
underlying NET formation in vitro have been extensively
studied.[7,15] In this review, we summarized the formation
mechanism and characteristics of NETs, as well as their
roles in the two peaks of deaths in SAP, and discussed
the therapeutic strategies for this severe digestive disorder.
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Components and Functions of NETs

NETs are extracellular reticular structures composed of
cytosolic and granule proteins assembled on a scaffold of
decondensed chromatin, consisting of histones, NE,
cathepsin G (CG), myeloperoxidase (MPO), peptidogly-
can binding protein, and so on.[16] The histones, NE, CG,
and MPO, that normally exist in the cytoplasm and
nucleus of normal neutrophils, are closely related to the
antibacterial activity and lethality of NETs.[17] Further,
depolymerized extracellular chromatin deoxyribonucleic
acid (DNA), the most important component of NETs,[9]

traps pathogens such as bacteria, fungi, viruses, and some
parasites, subsequently allowing these toxic proteins to
neutralize and kill them.[16-18] Remarkably, the DNA
phosphodiester backbone also has highly bactericidal
activity and can directly cause bacterial lysis.[17]
NET Formation

The mechanism of NET formation is subclassified into,
depending on the participation of nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase (NOX), either
NOX-dependent or NOX-independent pathways, and the
former is a classical pathway. Numerous stimuli, such as
phorbol 12-myristate 13-acetate (PMA), bacteria, fungi,
lipopolysaccharide (LPS), interleukin-8 (IL-8), etc,
can induce NET formation via the NOX-dependent
Figure 1: The classical pathway of NET formation. Various stimulators, such as PMA, LPS,
fungi, and bacteria, provoke the release of stored Ca2+ from the ER of neutrophil, resulting
in the activation of PKC and subsequent assembly of the NOX complex producing ROS.
Subsequently, the NE–MPO complex is dissociated by ROS, and then NE enters the
nucleus to cleave the histone octamer to initiate chromatin decondensation. The PAD4
catalyzes histone citrullination, impairing the binding of histones to DNA and promoting
chromatin depolymerization. In addition, the activation of PAD4 requires a high
concentration of calcium. Mixing of the decondensed chromatin DNA, histones, and
cytosolic granzymes such as NE and MPO takes place, and then they are effluxed to the
extracellular space through the pores punched by NE and GSDMD on the cytomembrane,
ultimately forming NETs. Ca2+: Calcium ion; DNA: Deoxyribonucleic acid; ER: Endoplasmic
reticulum; GSDMD: Gasdermin D; LPS: Lipopolysaccharide; MPO: Myeloperoxidase; NET:
Neutrophil extracellular trap; NE: Neutrophil elastase; NOX: Nicotinamide adenine
dinucleotide phosphate oxidase; PAD4: Protein arginine deiminase 4; PKC: Protein kinase
C; PMA: Phorbol 12-myristate 13-acetate; ROS: Reactive oxygen species.
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pathway.[19,20] They first trigger the release of stored
calcium in the endoplasmic reticulum,[21] in turn leading
to the activation of protein kinase C (PKC) and subsequent
assembly of the NOX complex to produce ROS.[22-24]

ROS dissociates NE–MPO complexes within the cyto-
plasm, subsequently allowing NE to enter the nucleus and
cleave the histone octamer, triggering chromatin decon-
densation.[25,26] Protein arginine deiminase 4 (PAD4),
which synergistically catalyzes histone citrullination,
impairs the binding of histones to DNA and promotes
chromatin depolymerization, forming the basis of NET
formation in vivo.[19,27,28] PAD4 knockout mice failed to
formNETs, even when they were stimulated by pathogenic
microorganisms.[27] PAD4 is vital for the NET-mediated
immune response, and further acts as the nuclear button
to trigger NETs in inflammatory diseases.[27,29] The cell
membrane breaks down under the action of NE and
gasdermin D (GSDMD), and decondensed chromatin
and cytosolic granzymes are effluxed to the extracellular
space, ultimately forming NETs with bactericidal activity
[Figure 1].[7,30]

Calcium is themain triggerofNOX-independent formation
of NETs;[31,32] how this pathway leads to NET release,
however, is incompletely understood.[24] Currently, PAD4
is known to require a high concentration of calcium for its
activation.[33] Moreover, platelets can trigger NET forma-
tion in the absence of NOX and ROS production.[34] Upon
activationbyLPS, glycoprotein Ibon the surface of platelets
binds to b2-integrin (CD18) on neutrophils and activates
the Src kinase-phosphatidylinositol-3-kinase (PI3K)–extra-
cellular signal-regulated kinase (ERK) pathway,[25] eventu-
ally resulting in NET formation.
Role of NETs in SAP and Lethal Complications

The pathogenesis of SAP involves the intra-acinar
activation of pancreatic enzymes, instigating autodiges-
tion and injury to the pancreas.[35] Under the action of
inflammatory mediators and chemokines, neutrophils are
the first cells of the immune system that migrate from
circulating blood into the inflammatory pancreas,[36]

where they release inflammatory mediators, triggering a
local inflammatory reaction.[37] Neutrophil infiltration is a
major characteristic of pancreatitis, leading to pancreatic
parenchymal damage and dysfunction.[38] Concurrently,
NETs are also released by neutrophils to aggravate
pancreatic inflammation and injury.[39] More importantly,
neutrophils that accumulate in the pancreas undergo
retrograde migration to the circulatory system, causing
systemic and regional complications of SAP, such as multi-
organ failure, thrombosis, IPN, and sepsis, by producing
NETs. In the following section, the role ofNETs in SAP and
its lethal complications will be discussed in detail [Table 1].
Pancreatic injury and microcirculatory disturbance

NETs promote pancreatic damage in the early stage of
SAP. The number of NETs in the peripheral blood of
patients with SAP was significantly higher compared to
that in healthy subjects.[40] Merza et al[39] first identified
a large amount of NET formation in pancreatic tissues
of an SAP mouse model, and NETs aggravated the
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Table 1: Role of NETs in SAP and its lethal complications.

SAP-related lethal
injuries Effects of NETs

Influence on the
prognosis of
SAP References

Pancreas NETs promote inflammatory injury of the pancreas � [39]
NETs contribute to the occlusion of pancreatic duct � [44]

Microcirculatory
disturbance/
thrombosis

NETs participate in vascular leakage by degrading VE-cadherin
in the vascular endothelium and activating b-catenin
signaling

� [46]

Histones stimulate vWF release from endothelial cells and trigger the
aggregation of platelets

� [49]

NETs provide scaffolds for the aggregation of thrombosis � [48-50]
NE, CG, and extracellular nucleosomes enhance TF- and factor
XII-dependent coagulation

� [51]

Cell-free DNA, MPO–DNA complexes, and nucleosomes promote the
adhesion and activation of platelets and activate the intrinsic
coagulation pathway

� [52-54]

NETs and histones significantly accelerate the prothrombinase reaction � [55]
DNA promotes the activation of factor XII and prekallikrein � [56]
NETs activate complements to form thrombi � [57,58]
Histones induce TF expression � [119]
NETs, histones and meshworks of DNA all have antifibrinolytic effects � [123]

Lung NE enhances the migration of neutrophils to the lung, increases
alveolocapillary permeability, and disrupts the endothelial cell barrier
function

� [69,70]

Histones cause neutrophil accumulation in alveolar microvessels,
vacuolization of endothelial cells and lung epithelial cells, intra-alveolar
hemorrhage, and deposition of microthrombi and fibrin in alveoli

� [77]

Overproduction and abundant deposition of NETs contribute to airway
occlusion and damage

� [78,79]

NE and DNA fibers promote the formation of sputum plugs, blocking
airways and facilitating bacterial growth and colonization

� [25]

NETs promote macrophage polarization to M1 phenotype, aggravating
the pulmonary injury

� [81,82]

NETs promote alveolar macrophage pyroptosis � [83]
NETs promote microthrombosis in pulmonary vessels � [84]

Kidney Histones are toxic to glomerular endothelial cells, podocytes, and parietal
endothelial cells, leading to renal thrombotic microangiopathy and
glomerular necrosis

� [87]

MPO contributes to glomerular and interstitial injury � [88,89]
NETs induce thrombosis and microcirculatory disturbance � [24,91]

Heart NETs contribute to cardiac inflammatory injury � [94]

NETs increased cardiac titin phosphorylation and reactive interstitial
fibrosis

� [95]

MPO catalyzes the production of the potent oxidant hypochlorous acid,
leading to cardiac injury

� [98]

MPO and histones are cytotoxic to endothelial cells � [97,99]
NETs promote thrombosis leading to myocardial infarction � [24,98,101,102]

Gut NETs cause intestinal barrier injury, resulting in translocation of intestinal
bacteria and endotoxin

� [39,107-110]

Histones directly damage intestinal epithelial cells and lead to apoptosis
of them

� [77]

IPN NETs form a temporary physical barrier separating the necrotic
pancreatic areas from the remaining viable tissues

+ [13]

NETs eliminate pathogens in the infectious pancreas or peripancreatic region + [9]

Sepsis NETs kill pathogens and prevent their dissemination in the early phase of
sepsis

+ [11,12,27]

NETs and histones promote the occurrence and development of DIC in
sepsis

� [55,119,120]

�: Negative; +: Positive; CG: Cathepsin G; DIC: Disseminated intravascular coagulation; DNA: Deoxyribonucleic acid; IPN: Infected pancreatic
necrosis; MPO: Myeloperoxidase; NE: Neutrophil elastase; NETs: Neutrophil extracellular traps; SAP: Severe acute pancreatitis; TF: Tissue factor;
VE-cadherin: Vascular endothelial cadherin; vWF: von Willebrand factor.
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Figure 2: The NET formation promotes intravascular thrombosis. I: Various stimuli,
including platelets, trigger neutrophils to undergo NETosis within the blood vessels. II:
Histones from NETs stimulate vWF release from endothelial cells. III: The vWF leads to
clumping and adhesion of platelets. IV: The reticular structures of NETs provide a scaffold
for the aggregation of platelets, erythrocytes, fibrin, and procoagulant factors such as vWF.
Under the action of NETs and various procoagulant pathways, the coagulation cascade is
activated, eventually resulting in thrombosis. NET: Neutrophil extracellular trap; vWF: von
Willebrand factor.
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inflammation and the damage to the pancreas. Deoxyri-
bonuclease (DNase) I can depolymerize the DNA skeleton
in NETs, and thereby disrupt the structure of NETs.[12]

After administration of DNase I to mice, the degree of
neutrophil infiltration and tissue damage in the pancreas
decreased significantly, as did the expression level of
histones; it is also reported that the activity of trypsin was
markedly increased by coincubation of NETs with
pancreatic acinar cells.[39] Autophagy plays an important
role in NET formation.[41] Chloroquine, an autophagy
inhibitor, improved the outcomes of murine models with
pancreatitis by decreasing this propensity to form NETs
and reducing serum cell-free DNA and citrullinated
histone H3.[42] Madhi et al[43] reported that inhibiting
c-Abelson kinase-related NET formation reduced neutro-
phil infiltration in the inflamed pancreas and acinar cell
necrosis and hemorrhage.

In addition to being involved in the inflammatory injury of
the pancreas, NETs can further form aggregates within the
pancreatic ducts, thereby leading to catheter obstruction
and promoting the occurrence and development of
SAP.[44] Acute biliary pancreatitis (ABP) is one of the
most common forms of pancreatitis. Poor emptying of the
biliopancreatic duct outlet caused by various factors, such
as gallstones, is a crucial trigger for the occurrence of ABP.
The results of one study suggest that gallstone assembly
essentially requires NETs, and targeting NET formation
via a PAD4 inhibitor or metoprolol can effectively inhibit
gallstone formation in vivo.[45] Taken together, these
results suggest that NETs promote the obstruction of the
biliopancreatic ducts, resulting in SAP.

Changes in hemodynamic parameters, such as hemocon-
centration, hypercoagulability, and infiltration of inflam-
matory factors, are all characteristics of SAP that cause a
variety of vascular disorders, including endothelial
activation and injury, vascular leakage, and intravascular
thrombosis.[25] NETs and their components have further
been demonstrated to be involved in vascular pathological
changes. The endothelial injury also plays an important
role in thrombosis. NETs damage endothelial cells due to
the cytotoxicity of MPO and histones. NETs are involved
in vascular leakage by degrading vascular endothelial
cadherin (VE-cadherin) in the vascular endothelium and
subsequently activating b-catenin signaling.[46] The von
Willebrand factor (vWF) is a reliable marker of endothe-
lial dysfunction; Chen et al[47] found the vWF appeared to
participate in the development of pancreatic necrosis, but
the mechanism by which vWF affects microcirculation
remains to be clarified. Histones can stimulate vWF release
from endothelial cells, triggering the aggregation of
platelets; in turn, the reticular structures of NETs provide
a scaffold for the aggregation of platelets and erythrocytes,
thus promoting the accumulation of vWF and fibrin,
as well as thrombosis [Figure 2].[48-50] NE, CG, and
extracellular nucleosomes enhance tissue factor (TF)- and
factor XII-dependent coagulation via the local proteolysis
of coagulation suppressor TF pathway inhibitors.[51] Cell-
free DNA, MPO–DNA complexes, and nucleosomes can
promote the adhesion and activation of platelets and
further activate the intrinsic coagulation pathway to
aggravate the hypercoagulable state of blood.[52-54] NETs
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and histones destroy the cell membrane, exposing the
negatively charged phospholipid surfaces to accelerate the
prothrombinase reaction for 250,000 fold.[55] Factor XII
and high molecular weight kininogen could be combined
with oligonucleotides of double-stranded DNA hairpins,
thus promoting the activation of factor XII and pre-
kallikrein, which are both critical in initiating the contact
pathway of coagulation.[56] Furthermore, NETs can
activate complements to form thrombi; complements
can recruit and activate neutrophils, complement-3
deficient mice are incapable of forming NETs,[57] and
pre-stimulation of neutrophils with complement-5a
enhances their ability to produce NETs.[58] In summary,
these factors released by NETs jointly contribute to
thrombosis, particularly microvascular thrombosis, caus-
ing a systemic microcirculatory disturbance in SAP.

In addition, platelets can induce NET formation. The
interaction of NETs and procoagulant molecules, includ-
ing platelets, promotes ischemic injury and even necrosis
in multiple organs, particularly the pancreas. A positive
correlation was found between pancreatic ischemia and
the severity of pancreatitis; it has been reported that nearly
40% of pancreatic capillaries showed complete capillary
deposition in SAP.[59] Heparin was shown to improve the
prognosis of SAP patients and rat models,[60,61] which
might be due to its ability to attenuate histones.[62]

Thrombin activity and the degree of platelet aggregation
were decreased by DNase I, while microvascular perme-
ability was increased.[63] Therefore, targeting inhibition of
NETs may be a new clinical strategy for the treatment of
inflammatory pancreatic injury and microcirculatory
disturbance with SAP.

Acute lung injury

The concentrations of neutrophils in pulmonary capillar-
ies are higher than those in systemic blood, even in the
absence of inflammatory stimuli.[64] More neutrophils
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migrate to the lung to participate in the immune response
under the guidance of inflammatory cytokines and
chemokines during SAP. Excessive activation of neutro-
phils causes the accumulation of locally high concen-
trations of NETs. NETs protect tissues from pathogen
damage.[65] In experimental mice with pulmonary infec-
tion of Candida albicans, NETs reduced the fungal load in
the lung by binding to the fungal hyphae.[66] However,
excessive generation of NETs can lead to acute lung injury
(ALI)/acute respiratory distress syndrome (ARDS),[67] the
most common extrapancreatic complications that con-
tribute to the high fatality rate in SAP.[68]

Components of NETs can induce and aggravate inflam-
matory responses, resulting in lung injury. NE, the most
abundant and active proteolytic enzyme in NETs, induces
the production of proinflammatory cytokines, enhances
neutrophil migration, increases alveolocapillary perme-
ability, and disrupts endothelial cell barrier function,
causing lung injury.[69,70] The levels of cell-free DNA,
MPO–DNA complexes, and histone H3 in the blood
increased, and autopsy revealed the presence of NETs in
lung tissues; this evidence from coronavirus disease 2019
(COVID-19) patients suggests that the virus might
activate NETs to cause acute pulmonary injury.[71-75]

Kinnare et al[76] found that neutrophils isolated from
patients with COVID-19 released markedly increased
amounts of elastase and NETs compared to healthy
donors, either with or without exogenous stimulation.
The toxic effects of histones can result in neutrophil
accumulation in alveolar microvessels, vacuolization of
endothelial cells and lung epithelial cells, intra-alveolar
hemorrhage, and deposition of microthrombi and fibrin in
alveoli.[77]

Alveolar collapse and ventilatory flow ratio dysregulation
caused by narrowly occluded small airways are important
pathophysiological changes in acute respiratory distress.
Overproduction and abundant deposition of NETs
increases the viscosity of endobronchial tissue and
disturbs the mucociliary clearance, eventually contribut-
ing to airway occlusion and damage.[78] In a study on
severe lower respiratory tract disease due to respiratory
syncytial virus, the smaller airways and larger bronchiwere
obstructed by dense cellular plugs consisting of NETs, shed
epithelial cells and large numbers of neutrophils.[79] NE
induces airway epithelial cells to produce excessive mucin,
which attaches to DNA fibers to form sputum plugs that
block airways and create a suitable environment for
bacterial growth and colonization.[25]

NETs can also cause lung damage by affecting macro-
phage function. Macrophages are classified into the M1
and M2 types, which exhibit proinflammatory and anti-
inflammatory properties, respectively.[80] NETs aggravate
inflammatory injury of the lung by promoting macro-
phage polarization to theM1 phenotype.[81] NETs further
activate the ERK1/2 and nuclear factor kappa-B (NF-kB)
pathways, leading to an increase in M1-type polarization
of alveolar macrophages and inflammatory injury of the
lung.[82] Furthermore, NETs can also aggravate lung
injury by promoting alveolar macrophage pyroptosis, a
highly proinflammatory mode of cell death.[83]
2777
As previously noted, hypercoagulability of circulation of
SAP and NETs promoting thrombosis leads to microcir-
culation disorders, which can further aggravate lung
injury. In addition, the increased expression of P-selectin
and intercellular adhesion molecule 1 on the surface of
activated platelets promotes neutrophil activation and
recruitment to the lung to produce a large number ofNETs
and further promotes microthrombosis.[84] Senkyunolide
I, an active ingredient of Xuebijing injection, destroyed the
crosstalk between platelets and NETs to protect against
lung injury in a murine model of sepsis.[85]
Acute kidney injury (AKI)

AKI is a common complication of SAP. It has been
reported that more than 50% of SAP patients would
eventually develop AKI.[86] Renal injury resulting from
NETs is further associated with its cytotoxicity. Histones
from NETs cause direct toxicity to glomerular endothelial
cells, podocytes, and parietal endothelial cells, leading to
renal thrombotic microangiopathy and glomerular necro-
sis.[87] Glomerular and interstitial injury in anti-neutrophil
cytoplasmic antibody-associated vasculitis patients was
confirmed to be associated with the oxidative effect of
extracellular MPO.[88,89] CG and NE were also found to
be associated with renal damage.[90] In addition, NETs
can induce thrombosis and microcirculatory disturbance,
which may also contribute to AKI.[24,91] In a PAD4-
deficient mouse model of traumatic shock and sepsis, the
blood urea nitrogen/creatinine (BUN/Cr) ratio and
vascular leakage were significantly decreased compared
to those of control mice.[92]
Acute heart injury

NETs have been confirmed to participate in acute cardiac
injury, another fatal complication of SAP.[93] Weckbach
et al[94] found the presence of NETs in the myocardial
tissue of active myocarditis patients, and NETs were
associated with cardiac inflammatory injury. NETs con-
tribute to cardiac titin phosphorylation and reactive
interstitial fibrosis, resulting in ventricular diastolic dys-
function.[95] Inhibiting NET formation attenuates cardiac
inflammatory injury. GSK484, a PAD4 inhibitor, reduced
neutrophil infiltration in the heart, suppressed inflammato-
ry cytokine secretion, reduced cardiomyocyte apoptosis
and infarct size, and improved cardiac function.[96]

Cytotoxicity of NETs can cause cardiac injury. Circulating
MPO from neutrophils may lead to vascular endothelial
injury.[97] MPO catalyzes the production of the potent
oxidant hypochlorous acid, leading to various inflammato-
ry diseases, including acute heart injury.[98] MPO from
neutrophils was confirmed to promote the occurrence of
atrial fibrillation, one of the most common arrhythmias
amongcritically ill patientshospitalized,which is linked toa
significantly increased risk of death in patients with SAP.[3]

Extracellular histones are cytotoxic to endothelial cells,[99]

and cardiac dysfunction in mice with sepsis was improved
by treatment with histone antibodies.[100]

As previously described, NETs can promote thrombus
formation. The insufficient effective circulating blood
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volume resulting from the systemic inflammatory cascade
associated with SAP causes poor perfusion with multiple
organs. During myocardial ischemia-reperfusion, NET
and NET-related microthrombosis can be triggered,
resulting in myocardial infarction,[98,101] which has been
reported in patients with SAP.Moreover, it was found that
NETs were important constituents of fresh and lytic
thrombi in coronary artery specimens from patients with
acute myocardial infarction,[102] and the NET burden was
positively correlated with the myocardial infarction area
in patients.[24] Some damage-associated molecular pat-
terns (DMAPs), such as high mobility group box 1
(HMGB1), fibronectin extra domain A (FN-EDA),
galectin-3 (GAL3), and CXC receptor 2 (C-X-C chemo-
kine receptor type 2), could induce NETs to promote
thrombosis.[98] Recent studies have shown that the time of
thrombus growth and complete blockage of vessels is
prolonged and the frequency and the size of thrombus
formation are decreased in knockout mice of those
DMAPs.[98,103-106]
Acute gastrointestinal injury

The barrier function of the intestine is one of the key
factors affecting the severity and mortality of SAP, as the
translocation of intestinal bacteria and endotoxins
following intestinal mucosal barrier injury leads to a
systemic inflammatory response and multiple organs
dysfunction syndrome due to sepsis,[107] which will give
a second attack to SAP and aggravate the condition of
patients with dramatically increased mortality. Notably,
the excessive release or dysfunction of NETs can destroy
the intestinal barrier. NETs can disrupt tight junction
proteins, such as claudin-1, occludin, and Zona occlu-
dens-1 (ZO-1), in intestinal epithelial cells, causing
intestinal mechanical barrier injury.[108] Histones exert
a direct cytotoxic effect on intestinal epithelial cells,
leading to their apoptosis.[77] Extensive release of NETs
can significantly promote the activation of cluster of
differentiation 4-positive (CD4+) T lymphocytes and
mediate apoptosis of cluster of differentiation 8-positive
(CD8+) T cells,[109] thus affecting the immune homeostasis
of the intestinal microenvironment and damaging the
intestinal immune barrier. NETs can also induce intestinal
chemical barrier disorder by hurting hepatocytes and
pancreatic acinar cells to trigger the abnormal secretion of
bile acid and pancreatic juice.[39,110] In addition, NETs
induce thrombosis in the mesenteric vessels, provoking
ischemic necrosis of the intestinal mucosa to damage the
intestinal mucosal barrier.
IPN and sepsis

IPN usually occurs in the late stage of SAP, leading to
sepsis and secondary organ failure, with amortality rate of
40% to 70%.[111-113] NETs can facilitate the occurrence
and development of IPN. As already discussed, NETs
contribute to ischemic necrosis of the pancreas and
impairment of intestinal mucosal barrier function. More
than 35% of necrotizing pancreatitis patients experience
secondary infection, which is mostly caused by intestine-
derived bacteria,[114] directly translocating or spreading
through the bloodstream into the necrotic areas of the
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pancreas.[111] However, the moderate release of NETs
has a positive effect on IPN. After pancreatic necrosis,
NETs can form a temporary tissue barrier separating the
necrotic areas from the remaining viable tissues to exert
protective effects.[13] Neutrophils migrate to the infected
sites of the pancreas or peripancreatic region where they
initiate antimicrobial mechanisms, such as generating
NETs.[9]

Sepsis is a life-threatening organ dysfunction that
promotes mortality by driving organ dysfunction during
the host response to infection.[115] Organ failure, a marker
of increased risk of death, occurs secondary to sepsis
arising from IPN.[116] NETs also play a pivotal role in the
process of sepsis. NETs can eliminate pathogens and limit
their proliferation and dissemination in the early stage of
sepsis. In murine models of necrotizing fasciitis, PAD4
knockout mice were more susceptible to bacterial
infection.[27] However, the hyperfunction of NETs during
sepsis can lead to tissue damage attributed to their
proinflammatory and prothrombotic properties.[117]

During sepsis, the systemic inflammatory response and
significant release of proinflammatory factors can lead to
abnormal activation of coagulation. The coagulation
cascade, a serious complex change in coagulation function
in sepsis, is usually accompanied by vascular endothelial
damage and the formation of intravascular thrombi,
eventually resulting in multiple organs dysfunction.[58] As
mentioned earlier, NETs can hurt vascular endothelial
cells, recruit platelets and procoagulation factors, and
activate complements to participate in thrombosis.

Thrombocytopenia, low levels of clotting factors and
thrombotic occlusion of small- and medium-sized vessels
are all hallmarks of disseminated intravascular coagula-
tion (DIC). The incidence of DIC in sepsis is 30% to 50%,
and when DIC occurs in patients with sepsis, the mortality
rate is doubled.[118] Sepsis-associated DIC is closely
related to excessive endothelial procoagulant TF expres-
sion from circulating monocytes.[55] Kim et al[119] showed
that histones induced TF expression in endothelial cells,
resulting in a pathological procoagulant endothelial
surface. Evidence from a study on cancer patients
indicated that the interaction between NETs and TF
could drive DIC.[120] In addition, histones can induce the
activation, aggregation, and consumption of plate-
lets[48,49,121] and promote thrombin generation via
platelet-dependent mechanisms.[122] The cytotoxic effects
of histones can directly cause vascular endothelial
damage, which is a critical factor to induce DIC.
Furthermore, NETs, histones, and DNA networks all
exert anti-fibrinolytic effects, slowing down the lysis of
plasma clots by inhibiting the tissue-type plasminogen
activator, an effect which could be offset by DNase.[123]

The difficulty in early identification and delayed treatment
may be closely related to highmortality of SAPwith sepsis.
Individual differences in those patients also complicate
treatment. In addition, drug sensitivity results for infection
are usually difficult to obtain in clinical practice, and
prolonged administration of broad-spectrum antibiotics
may induce nosocomial superinfections. Therefore, NETs
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may be a crucial indicator for early recognition and are
expected to become a specific therapeutic target of sepsis
in SAP in the foreseeable future.

NET as a Therapeutic Target for SAP

Treatment options for SAP are limited and primarily
consist of fluid resuscitation, nutritional support (paren-
teral or enteral nutrition), organ functional support (i.e.,
mechanical ventilation, vasoactive drugs, and continuous
renal replacement therapy), antibiotics, traditional Chi-
nese medicine, and so on. Unfortunately, there is still a
lack of effective and specific medications for SAP and its
complications. NETs participate in the pathophysiological
process of the two death peaks in SAP, and targeting NETs
and their key components is a potentially efficient
treatment strategy for SAP [Table 2].
Table 2: Potential curative treatments targeting NETs for SAP.

Classification Drug/Substance Mechanism

Blocking NET
formation

Thrombomodulin Blocks TLR4 and its
downstream signaling
pathways

Aspirin Inhibits platelet aggregation

Tirofiban An inhibitor of the platelet
glycoprotein IIb/IIIa recepto

PKC inhibitor Inhibits activity of PKC
DPI Inhibits ROS production
N-acetyl cysteine Scavenges ROS
Sivelestat NE inhibitor

PAD4 inhibitor/
PAD4 deletion

Inhibits histone citrullination
and chromatin
depolymerization

Ethylene glycol
tetraacetic acid

Chelates extracellular calcium

BAPTA-AM Chelates intracellular calcium

Chloroquine Inhibits neutrophil autophagy

Destroying NET
structure

DNase Depolymerizes the DNA
skeleton of NETs

Inhibiting NET
activity

Heparin Binds to extracellular histones

Thrombomodulin Binds to and deactivates
histones

Activated protein
C

Blocks cytotoxicity of histone

CG inhibitor I Inhibits CG in a selective,
potent, and reversible mann

Aminobenzoic acid
hydrazide

An inhibitor of MPO

Histone antibody Neutralizes histone

AKI: Acute kidney injury; BAPTA-AM: 1,2-bis(o-aminophenoxy)ethane-N,N
DNase: Deoxyribonuclease; DPI: Diphenyleneiodonium; MPO: Myelopero
NOX:Nicotinamide adenine dinucleotide phosphate oxidase; PAD4: Protein
13-acetate; ROS: Reactive oxygen species; SAP: Severe acute pancreatitis; T
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Blocking the formation of NETs

The precise intervention of vital individual components in
the formation of NETs has been proven to reduce NET-
related damage. Toll-like receptor 4 (TLR4) on platelets
induces platelets to bind to adherent neutrophils, resulting
in the intensive activation of neutrophils in addition to
NET formation.[124] Thrombomodulin blocks TLR4 and
its downstream signaling pathways to inhibit neutrophil
generating NETs and alleviate hepatic ischemia-reperfu-
sion injury in rats.[125] In addition, TLR4 has been shown
to be involved in pancreatic, pulmonary, and renal injuries
in SAP,[126] and inhibition of TLR4 was positively
correlated with the prognosis of sepsis.[127] Thus, TLR4
inhibitors may hold significant potential for the treatment
of SAP, although it is important to note that some studies
have also reported that complete blockage of TLR4 may
Effects References

Inhibits NET generation and alleviates
hepatic ischemia-reperfusion injury

[125]

Decreases NET formation and improves
lung injury

[128]

r
Inhibits NET formation and improves
lung injury

[128]

Blocks NET formation [129]
Blocks NOX-dependent NET formation [131]
Significantly inhibits NET release [132]
Alleviates pancreatic, pulmonary and
renal injury associated with SAP

[134-137]

Decreases severity of pancreatitis;
suppresses thrombosis; improves
renal function and vascular leakage;
reduces cardiomyocyte apoptosis and
infarct size; and improves cardiac
function

[42,92,96,138,139]

Suppresses NOX-independent NET
formation

[141]

Inhibits NET formation triggered by
PMA

[32]

Decreases severity of SAP and improves
survival

[42]

Inhibits thrombin activity and platelet
aggregation, increases microvascular
permeability, improves pancreatic and
pulmonary injury caused by SAP, and
reduces septic organ dysfunction

[11,39,63,142]

Impairs NET-mediated coagulation
effect and infection-related vascular
dysfunction, improves the prognosis
of SAP

[60-62,143]

Reduces platelet aggregation and
thromboembolism, and improves AKI

[144]

Reduces the ability of NETs to damage
organs

[77]

er
Reduces the inflammation and fibrosis
of the lung

[145]

Reduces blood vessels inflammation [146]

Improves cardiac dysfunction in sepsis [100]

,N0,N0-tetraacetic acid; CG: Cathepsin G; DNA: Deoxyribonucleic acid;
xidase; NE: Neutrophil elastase; NETs: Neutrophil extracellular traps;
arginine deiminase 4; PKC: Protein kinase C; PMA: Phorbol 12-myristate
LR4: Toll-like receptor 4.
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deprive the innate immune response to endotoxin.[58] Both
aspirin and tirofiban (an inhibitor of the platelet
glycoprotein IIb/IIIa receptor) decreased NET formation
and improved lung injury.[128] Inhibition of PKC blocked
NET formation in response to PMA.[129] NETosis is
divided into NOX-dependent and NOX-independent
types, and NOX and the subsequent production of
ROS are indispensable for NET formation in the former
pathway.[130] Further, administration of diphenyleneio-
donium (DPI), an inhibitor of NOX, markedly reduced
histamine-triggered NETs.[131] N-acetyl cysteine, a ROS
scavenger, also significantly inhibited NET release,[132]

and reduced systemic lupus erythematosus (SLE) disease
activity.[133] Sivelestat, an NE inhibitor, can mitigate
vascular permeability of the lung, ameliorate injuries in
the alveolar epithelium and vascular endothelium, and
improve pulmonary function and coagulopathy in patients
with ALI/ARDS. Furthermore, it has recently been
considered a promising modality for the treatment of
COVID-19,[134] and has also been proven to be effective in
protecting against pancreatic, pulmonary, and renal
injuries in rats with SAP.[135-137]

PAD4 plays a crucial role in the formation of NETs.[27]

Inhibiting the expression of PAD4 could markedly reduce
NET formation, decrease the severity of pancreatitis and
improve survival in mouse models of SAP.[42,138] PAD4
inhibitors further effectively suppressed venous thrombo-
sis in mice.[139] In a murine model of septic shock, PAD4
deletion mice showed an increased survival rate and a
decreased degree of organ injury compared to wild-type
mice.[92] However, another study found that Klebsiella
and LPS could still induce neutrophil NETosis in the
absence of PAD4.[140]

Calcium is critical for the NOX-independent formation of
NETs. Ethylene glycol tetraacetic acid, by chelating
extracellular calcium, could completely suppress NET
formation in response to ionomycin and partially inhibit
NET formation with Pseudomonas aeruginosa and
PMA.[141] Nevertheless, BAPTA-AM [1,2-bis (o-amino-
phenoxy) ethane-N, N, N0, N0-tetraacetic acid] could
chelate intracellular calcium to inhibit NET formation
triggered by PMA.[32]
Destroying the structure of NETs

DNase I can depolymerize the DNA skeleton of NETs and
destroy their structure.[142] After administration of DNase
I to SAP mice, neutrophil infiltration and tissue damage
in the pancreas and lung were improved.[39] Combined
treatment with antibiotics and DNase further improved
the prognosis of sepsis and reduced septic organ
dysfunction.[11]
Inhibiting the activity of NETs

Some components of NETs, such as histones, CG, and
MPO, are proinflammatory, cytotoxic, or prothrombotic.
Inhibiting the virulence of these proteins can reduce the
ability of NETs to damage organs. Heparin can bind to
extracellular histones and reduce the activity of NETs,
thereby impairing the NET-mediated coagulation effect
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and infection-related vascular dysfunction.[143] Thrombo-
modulin can bind to and deactivate histones, reduce
histone-induced platelet aggregation and thromboembo-
lism, and improve AKI.[144] Similarly, the cytotoxicity of
histones is effectively blocked by activated protein C.[77]

CG inhibitor I inhibits CG in a selective, potent, and
reversible manner, thus reducing the inflammation and
fibrosis of chronic obstructive pulmonary disease.[145] In
addition, MPO contributes to tissue injury in various
inflammatory diseases. As an inhibitor of MPO, amino-
benzoic acid hydrazide prevents neutrophils from adher-
ing to vascular endothelial cells, thus reducing
inflammation of blood vessels.[146]
Conclusions

NETs possess their advantages and limitations. On the one
hand, NETs actively participate in innate immunity,
killing pathogens and preventing their transmission in
vivo. However, dysfunction or excessive release of NETs
aggravates the inflammatory response and drives tissue
damage and organ dysfunction due to their proinflamma-
tory and procoagulant properties. SAP, a celiac disorder
with high morbidity and mortality, is characterized by
lengthy hospital stays, intense suffering, and high medical
costs. This review summarizes the generative mechanisms
and pathophysiological characteristics of NETs, the vital
roles of NETs in SAP and its fatal complications, and
promotes the therapeutic use of targeting NETs in SAP
treatment.

As there are currently no specific and efficient therapeutic
strategies for SAP, the prognosis of the disease depends
heavily on early recognition and interventions, and the
clinical assessment of NETs may serve as a valuable
biomarker for determining the severity of SAP. Direct
visualization and quantitative analysis of NETs is difficult,
but measuring the substitutes of NETosis in blood, such as
histones, cell-free DNA, and nucleosomes, may be more
convenient, dependable, and objective.[56] Overproduction
ofNETspromotesmulti-organ dysfunction, thrombosis, or
sepsis and causes highmortality in SAP, and targetingNETs
or individual components of them may present novel
therapeutic strategies. With increasing research in the field
regarding NETs and SAP, emerging detection techniques
and curative options aimed at NETs to benefit patients
with SAP will be available in the immediate future.
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