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Abstract

MicroRNAs regulate networks of genes to orchestrate cellular functions. MiR-125b, the vertebrate homologue of the
Caenorhabditis elegans microRNA lin-4, has been implicated in the regulation of neural and hematopoietic stem cell
homeostasis, analogous to how lin-4 regulates stem cells in C. elegans. Depending on the cell context, miR-125b has been
proposed to regulate both apoptosis and proliferation. Because the p53 network is a central regulator of both apoptosis
and proliferation, the dual roles of miR-125b raise the question of what genes in the p53 network might be regulated by
miR-125b. By using a gain- and loss-of-function screen for miR-125b targets in humans, mice, and zebrafish and by validating
these targets with the luciferase assay and a novel miRNA pull-down assay, we demonstrate that miR-125b directly represses
20 novel targets in the p53 network. These targets include both apoptosis regulators like Bak1, Igfbp3, Itch, Puma, Prkra,
Tp53inp1, Tp53, Zac1, and also cell-cycle regulators like cyclin C, Cdc25c, Cdkn2c, Edn1, Ppp1ca, Sel1l, in the p53 network. We
found that, although each miRNA–target pair was seldom conserved, miR-125b regulation of the p53 pathway is conserved
at the network level. Our results lead us to propose that miR-125b buffers and fine-tunes p53 network activity by regulating
the dose of both proliferative and apoptotic regulators, with implications for tissue stem cell homeostasis and oncogenesis.
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Introduction
MicroRNAs (miRNAs) are short non-coding RNA molecules

that were first discovered as regulators of developmental timing,

and later found to regulate complex networks of genes to

orchestrate cellular functions. Lin-4 was the first miRNA gene to

be discovered, and shown to regulate developmental timing by

repressing its target genes at the post-transcriptional level [1].

Subsequently, miRNAs were found to regulate processes ranging

from proliferation and apoptosis, to cell differentiation and signal

transduction [2–4]. Several miRNAs are conserved in metazoan

evolution, one prominent example being lin-4 whose vertebrate

homologues comprise the miR-125a/b family [5]. Much like lin-49s

role of regulating the homeostasis of reiterative or self-renewing

stem cells in C. elegans [6], recent studies have shown that miR-

125a/b regulates mammalian neural stem cell commitment, as well

as the mammalian hematopoietic stem cell (HSC) pool size [7–10].

Although Lin28 and Bak1 have been proposed as the critical

targets of miR-125a/b for regulating these stem cell compartments

[8,9], the hundreds of predicted targets for miR-125a/b suggest a

more complex interplay between miR-125a/b and its targets in

regulating proliferation and differentiation.

Depending on the cell context, miR-125b has been proposed to

regulate both apoptosis and proliferation. miR-125b has been

shown to downregulate apoptosis in many contexts, in some cases

by repressing Tp53 and Bak1. Examples include mammalian

hematopoietic stem cells, human leukemia cells, neuroblastoma

cells, breast cancer and prostate cancer cells [9–18]. During

zebrafish embryogenesis, loss of miR-125b leads to widespread

apoptosis in a p53-dependent manner, causing severe defects in

neurogenesis and somitogenesis [16]. On the other hand, miR-
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125b can also downregulate proliferation in a variety of human

cancer cell-lines [19–23] and one of its bona fide targets Lin28,

also promotes cancer cell proliferation [24]. Therefore in different

contexts, miR-125b appears to be able to regulate both apoptosis

and proliferation.

Another molecular pathway that regulates both apoptosis and

proliferation is the highly conserved p53 network [25–28]. Due to

the central role of the p53 network in these two processes, and

because we found that miR-125b regulates both human and

zebrafish Tp53 but not mouse Tp53 [16], we sought to examine if

miR-125b regulates the p53 network in a conserved manner in

vertebrates. To address this question, we used a gain- and loss-of-

function screen for miR-125b targets in different vertebrates, and

validated these targets with the luciferase assay and a novel

miRNA-target pull-down assay. We demonstrate that miR-125b

directly represses 20 novel targets in the p53 network, including

both apoptosis regulators like Bak1, Igfbp3, Itch, Puma, Prkra,

Tp53inp1, Tp53, Zac1, and also cell-cycle regulators like cyclin C,

Cdc25c, Cdkn2c, Edn1, Ppp1ca, Sel1l. We found that although

individual miRNA-target pairs were seldom conserved, regulation

of the p53 network by miR-125b appears to be conserved at the

network-level. This led us to propose that miR-125b buffers and

fine-tunes p53 network dosage, with implications for the role of

miR-125b in tissue stem cell homeostasis and oncogenesis.

Results

Identifying direct targets of miR-125b in the p53 network
To systematically identify direct targets of miR-125b in the p53

network of vertebrates, we first employed a bioinformatics

approach by identifying all predicted miR-125b targets in the

p53 network, followed by three complementary methods to screen

and validate these targets for both direct binding and repression by

miR-125b (Figure 1). Existing databases and prediction algorithms

were used to shortlist a set of p53 network genes predicted to

possess miR-125b-binding sites in their 39 UTRs. We analyzed the

Ingenuity Pathways AnalysisTM (IPA) database and the p53

Knowledgebase [29,30] for a list of genes and proteins that

participate in the p53 network, either by regulating p53 upstream,

by direct interaction with p53 protein, or by serving as effectors of

p53 function downstream. We then analyzed the TargetScan and

MicroCosm Target databases [31,32] for genes that are predicted

to possess miR-125b-binding sites in their 39 UTRs, in three

vertebrate genomes: human, mouse and zebrafish. The genes at

the intersection of the predicted miR-125b target list and the list of

p53 network genes constituted our list of predicted miR-125b

targets in the p53 network (Table S1).

miR-125b gain- and loss-of-function screen in 3 vertebrates
Next we sought to screen our list of predicted targets for

significant repression by miR-125b in cells, by performing a miR-

125b gain- and loss-of-function screen. Gain-of-function (GOF) in

miR-125b was achieved by transfection of miR-125b duplex into

human SH-SY5Y or mouse N2A neuroblastoma cells, whereas

loss-of-function (LOF) in miR-125b was achieved in human

primary lung fibroblasts or mouse 3T3 fibroblasts by knocking

down miR-125b with an antisense (AS) RNA (Figure 2A). We chose

to perform a gain-of-function screen in human (SH-SY5Y) or

mouse (N2A) neuroblastoma cells, because these cells possess low

Figure 1. Identifying miR-125b targets in the p53 network of
vertebrates. Schematic of experimental design and workflow. (A)
Bioinformatic analysis was performed on p53 network genes listed in
the Ingenuity Pathways Analysis database and p53 Knowledgebase, and
miR-125b binding sites predicted by the TargetScan and MicroCosm
databases. (B) p53 network genes were screened for miR-125b targets
by using gain- (GOF) and loss-of-function (LOF) of miR-125b in human
cells, mouse cells and zebrafish embryos, as indicated by effects on
gene expression using qRT-PCR. (C) p53 network genes that were
positive in either the GOF or LOF screen were assayed for direct binding
to miR-125b using a biotinylated microRNA pull-down method. (D) p53
network genes that were also positive in the miR-125b pull-down were
finally validated as miR-125b targets by 39 UTR luciferase reporter assays
and Western blots for protein expression. (E) A model of how miR-125b
regulates the p53 network across vertebrates was constructed using
our combined datasets for human, mouse and zebrafish cells.
doi:10.1371/journal.pgen.1002242.g001

Author Summary

MicroRNAs (miRNAs) are tiny endogenous RNAs that can
regulate the expression of hundreds of genes simulta-
neously, thus orchestrating changes in gene networks and
mediating cellular functions in both plants and animals.
Although the identification of individual targets of miRNAs
is of major importance, to date few studies have sought to
uncover miRNA targets at the gene network level and
general principles of miRNA regulation at the network
level. Here we describe how miR-125b targets 20 apoptosis
and proliferation genes in the p53 network. We found that,
although each miRNA-target pair evolves rapidly across
vertebrates, regulation of the p53 pathway by miR-125b is
conserved at the network level. The structure of the miR-
125b regulatory network suggests that miR-125b buffers
and fine-tunes p53 network activity. This buffering feature
of miR-125b has implications for our understanding of how
miR-125b regulates oncogenesis and tissue stem cell
homeostasis. We believe these findings on miR-125b
support a new fundamental principle for how miRNAs
regulate gene networks in general.

Conserved Regulation of p53 Network by miR-125b
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levels of endogenous miR-125b (Figure S1A, S1B). For the loss-of-

function screen, we chose human fetal lung (hLF) or mouse (3T3)

fibroblasts because they possess high levels of miR-125b (Figure

S1C, S1D). miR-125a-AS was co-transfected with miR-125b-AS to

achieve a complete silencing of the miR-125a/b family, because

miR-125a, which shares the same seed sequence and the same

predicted targets as miR-125b, is also highly expressed in human

and mouse fibroblasts (Figure S1C, S1D). Genes that were either

significantly repressed by miR-125b or significantly derepressed by

miR-125a/b-AS with fold-changes within the range of microRNA

regulation (P,0.05, fold change . 1.3), were selected as candidate

miR-125b targets (Figure 2B–2D). For zebrafish embryos, which

possess high levels of miR-125b, the loss-of-function (LOF) screen

was performed using an antisense morpholino cocktail that blocks

the loop regions of all 3 pre-miR-125b hairpin precursors [16]. The

gain-of-function (GOF) screen was performed by co-injecting miR-

125b duplex with the morpholino (Figure 2A). All gene expression

changes were measured with at least three biological replicates

using qRT-PCR.

Our GOF/LOF screen revealed that in humans, out of 29

predicted targets in the p53 network, 13 genes were derepressed by

miR-125a/b-AS in hLF cells and 20 genes were repressed by miR-

125b in SH-SY5Y cells (Figure 2B). In mice, out of 22 predicted

targets in the p53 network, 11 genes were derepressed by miR-

125a/b-AS in 3T3 cells and 12 genes were repressed by miR-125b

in N2A cells (Figure 2C). In zebrafish embryos, out of 20 predicted

targets in the p53 network, 13 genes were derepressed by pre-miR-

125b morpholino and 12 genes were repressed by the injection of

miR-125b duplex (Figure 2D). In total, 22 human genes, 13 mouse

genes and 14 zebrafish genes passed the gain- and loss-of-function

qRT-PCR screen.

Direct binding interactions between miR-125b and
mRNA targets from the p53 network

To assess which candidate miR-125b targets identified in the

gain- and loss-of-function qRT-PCR screen are directly bound by

miR-125b in cells, we employed a novel miRNA pull-down method

developed by Lal et al. (manuscript in preparation). RNA

transcripts bound to biotinylated-miR-125b were pulled down

with streptavidin beads and quantified by qRT-PCR relative to

mRNAs bound to biotinylated-control miRNA (log2 fold change

. 0.5, P,0.05). In this assay, biotinylated miRNAs were shown to

be loaded into the RNA-induced silencing complex (RISC) and

fully functional in repressing their target mRNAs (Lal et al.,

manuscript in preparation). This method provides a robust and

complementary method for detecting miRNAs bound to endog-

enous target mRNAs, and serves as a useful approach for

distinguishing direct and indirect targets in the same pathway

(Lal et al., manuscript in preparation). Quantification of the pulled

down mRNA targets in hLF cells revealed that 13 out of 22 gene

transcripts, Bak1, Cdc25c, Edn1, Igfbp3, Mre11a, Ppp1ca, Ppp2ca,

Prkra, Puma, Tdg, Tp53, Tp53inp1 and Zac1, were direct binding

targets of miR-125b in human cells (Figure 3A). In mouse 3T3 cells,

11 out of 13 gene transcripts, Bak1, Hspa5, Itch, Ppp1ca, Ppp2ca,

Prkra, Puma, Sel1l, Sp1, Tdg and Tp53inp1, were found to be direct

binding targets of miR-125b (Figure 3B). In zebrafish embryos, 8

out of 14 gene transcripts, Cdc25c, Cdkn2c, Gtf2h1, Hspa5, Itch,

Ppp1ca, Sel1l, and Tp53, were pulled down by miR-125b

(Figure 3C). Tp53 mRNA was pulled down by miR-125b only in

human lung fibroblasts and zebrafish embryos but not in mouse

fibroblasts, consistent with previously published results [16] and

the Targetscan algorithmic prediction that miR-125b targets Tp53

in humans and zebrafish but not in mice.

Validation of miR-125b targets in the p53 network
As a final validation of the candidate miR-125b targets we have

identified in the p53 network, we tested our candidate target genes

with the luciferase reporter assay. Where cloning was successful, we

cloned the entire 39 UTR of selected candidate target genes into a

Renilla luciferase reporter, and assayed luciferase expression

following co-transfection of miR-125b duplex into HEK-293T cells.

Transfection of miR-125b significantly suppressed 40-60% (P,0.01)

of the luciferase activity of many 39 UTR reporters of the miR-125b

targets we analyzed, relative to transfection of the negative control

miRNA (Figure 4A). For humans, the 39 UTR reporters of Bak1,

Cdc25c, Ppp1ca, Ppp2ca, Prkra, Puma, Tdg, Tp53, Tp53inp1, and Zac1

were significantly suppressed by miR-125b. In mice, the 39 UTR

reporters of Bak1, Itch, Ppp1ca, Ppp2ca, Prkra, Puma, Sel1l, Tdg, and

Tp53inp1 were significantly suppressed by miR-125b (Figure 4B). In

zebrafish, the 39 UTR reporters of Ccnc, Cdc25c, Cdkn2c, Gtf2h1,

Hspa5, Ppp1ca, and Tp53 were significantly suppressed by miR-125b

(Figure 4C). With the exception of zebrafish Ccnc, all genes tested

were positive in the miR-125b-pull-down as well as the miR-125b

gain- and loss-of-function screen. Amongst these targets, we found

Ppp1ca, Prkra and Tp53 to be especially interesting from the

evolutionary viewpoint, since all 3 vertebrate species possess these 3

genes, but each gene shows a different pattern of evolutionary

conservation with respect to miR-125b-repression. Ppp1ca is

repressed by miR-125b in all 3 species, Prkra is repressed by miR-

125b in humans and mice, while Tp53 is repressed in humans and

zebrafish. To examine the sequence evolution of these miRNA-

mRNA pairs in greater detail, we compared the Targetscan-

predicted miR-125b binding sites of these genes in humans, mice and

zebrafish. In Ppp1ca, the predicted binding site is 95% identical

between humans and mice and 55% identical between humans and

zebrafish, while the seed binding sequence is 100% conserved in all

3 species (Figure 4D). In Prkra, the predicted binding site is 94%

identical between humans and mice, but only 26% identical

between humans and zebrafish, while the seed binding sequence is

completely absent in zebrafish (Figure 4D). In contrast, the

predicted binding site in Tp53 is 64% identical between humans

and zebrafish, and the seed binding sequence is 100% conserved

between humans and zebrafish, but only 36% identical between

humans and mice, while the mouse seed binding sequence has

acquired 2 point mutations (Figure 4D). The miR-125b-repression

patterns we observed for each of these genes in the qPCR, pull-

down and luciferase assays are consistent with these DNA sequence

analyses, suggesting that evolution in the miRNA-mRNA binding is

driving the evolution in miR-125b-repression patterns. Introduction

of point mutations into the predicted seed binding sequences

abrogated miR-125b-repression of each target 39UTR luciferase

reporter (P,0.05), validating the predicted miR-125b binding sites

and confirming the miRNA-mRNA sequence evolution patterns we

observed (Figure 4E).

Finally, we checked miR-125b regulation of protein expression

in a subset of p53 network targets for which reliable Western

blotting was possible. miR-125b significantly downregulated the

protein levels of human BAK1, PPP1CA, TP53INP1, PPP2CA,

CDC25C, and TP53 in SH-SY5Y neuroblastoma cells

(Figure 4F). In mouse N2A neuroblastoma cells, miR-125b

significantly downregulated mouse BAK1, PPP1CA, PUMA,

and ITCH protein (Figure 4G).

miR-125b regulation of the p53 network, but not
individual miRNA-target pairs, is conserved

Our results reveal that miR-125b regulation of the p53 network

is conserved at the network-level over the course of vertebrate

evolution, but individual miRNA-target pairs are evolving rapidly.

Conserved Regulation of p53 Network by miR-125b
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Figure 2. GOF/LOF screen for p53 network genes regulated by miR-125b. (A) Loss-of-function (LOF) screens were performed in human primary
lung fibroblasts (hLF) or mouse 3T3 fibroblasts by transfecting an antisense RNA against both miR-125a and miR-125b (miR-125a/b-AS), or by microinjecting
morpholinos (MO) against pre-mir-125b hairpin precursors (all 3 isoforms) into zebrafish embryos. Gain-of-function (GOF) screens were performed in human
SH-SY5Y and mouse N2A neuroblastoma by transfecting the miR-125b duplex into cells in culture, or by coinjecting the miR-125b duplex with the
morpholinos against pre-mir-125b into zebrafish embryos. Fold changes in gene expression were measured by qRT-PCR twenty-four hours after transfection or
injection, relative to the mock and negative control miRNA or morpholino, and shown as log2(fold change) using a heat-map. (B) Human: 13 genes were
significantly derepressed by a loss of miR-125b, while 20 genes were significantly repressed by a gain of miR-125b, making a total of 22 genes that passed the
screen (P,0.05, fold change . 1.3, relative to mock control). (C) Mouse: 11 genes were significantly derepressed by a loss of miR-125b, while 12 genes were
significantly repressed by a loss of miR-125b, making a total of 13 genes that passed the screen (P,0.05, fold change . 1.3, relative to mock control). (D)
Zebrafish: 13 genes were significantly derepressed by a loss of pre-mir-125b (P,0.05, fold change . 1.3, relative to control MO), while 12 genes were
significantly repressed/rescued by a gain of miR-125b (P,0.05, fold change . 1.3, relative to pre-mir-125b MO), making a total of 14 genes that passed the
screen. All experiments were performed with at least three biological replicates.
doi:10.1371/journal.pgen.1002242.g002

Conserved Regulation of p53 Network by miR-125b
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To summarize our results, our list of predicted miR-125b targets in

the p53 network (Table S1) was filtered and reclassified according

to the results of the screen and validation assays (Figure 5). From

the GOF/LOF screen we were able to identify mRNAs perturbed

by miR-125b. However these results did not discriminate between

direct or indirect targets. To supplement these experiments the

pull-down assay was used to uncover mRNAs physically associated

with miR-125b. Of note, the pull-down might not identify mRNA

targets that are rapidly degraded, and as such the luciferase

reporter assay can complement its shortcomings. Taken together

Figure 3. Direct binding of miR-125b to p53 network targets. Biotinylated miR-125b was used as bait to pull-down mRNAs bound to miR-
125b, using streptavidin-conjugated magnetic beads. The mRNAs were quantified by qRT-PCR, normalized to Gapdh, and then compared relative to
the same mRNA species pulled down by a biotinylated C. elegans negative control microRNA. The enrichment of mRNAs bound to miR-125b is
presented as mean log2 fold change 6 s.e.m. (n$3 biological replicates). (A) Human: 13 out of 22 candidate targets were significantly enriched by
miR-125b pull-down in human primary lung fibroblasts (hLF) 24 hours after transfection. (B) Mouse: 11 out of 13 candidate targets were significantly
enriched by miR-125b pull-down in mouse 3T3 fibroblasts 24 hours after transfection. (C) Zebrafish: 8 of 14 candidate targets were significantly
enriched by miR-125b pull-down in zebrafish embryos 24 hours after injection. Dashed line: cutoff for genes that were significantly enriched (Log2

Fold change . 0.5, P,0.05).
doi:10.1371/journal.pgen.1002242.g003

Conserved Regulation of p53 Network by miR-125b
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Figure 4. Validation of miR-125b targets. Candidate p53 network genes that were positive in both the GOF/LOF screen and miR-125b pull-down
were validated for targeting by miR-125b using the 39 UTR luciferase reporter assay and Western blots for protein expression. (A-C), Reporter genes
containing the full-length 39 UTRs of each selected target gene were co-transfected with miR-125b duplex into 293T cells. Luciferase readings were
obtained 48 hours after transfection and presented here as the average percentage of luciferase activity 6 s.e.m. (n$3) relative to a scrambled
duplex co-transfected control (100%). A reporter containing a 23-nucleotide-binding-site with perfect complementarity to miR-125b was used as the
perfect match positive control, while the unmodified luciferase reporter was used as the empty negative control. (A) Human: 10 out of 13 candidate
genes’ 39 UTRs showed significant repression by miR-125b relative to the control (p,0.01). (B) Mouse: 9 out of 11 candidate genes’ 39 UTRs showed

Conserved Regulation of p53 Network by miR-125b
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the three assays provide a powerful means to identify direct miR-

125b targets. In order to minimize false positives, we counted the

number of assays for which each gene target was positive, and

gene targets that failed to pass at least 2 assays in at least one

vertebrate species were filtered out. Predicted targets that passed 3

assays (red), 2 assays (orange), 1 assay (yellow), or predicted targets

that failed all assays but whose orthologues in other species passed

3 assays of direct regulation by miR-125b (pink), were colored as

indicated (Figure 5). Using our conservative estimate of miR-125b

targets in the p53 network, we found that in all three vertebrates

we examined – humans, mice and zebrafish – miR-125b regulates

multiple p53 network genes. This shows that miR-125b regulation

of the p53 network is conserved at least at the network level.

However very few individual gene targets of miR-125b in the p53

network were conserved across all three vertebrates (Figure 5;

Figure 6A-6C). Instead, conserved miR-125b regulation of the p53

network appears to occur through evolving miRNA-target pairs in

the three vertebrates – zebrafish (Figure 6A), mouse (Figure 6B),

and humans (Figure 6C). In general, we observe miR-125b

regulating 2 general classes of genes in the p53 network: (i)

apoptosis regulators like Bak1, Igfbp3, Itch, Puma, Prkra, Tp53inp1,

Tp53, and Zac1, and (ii) cell-cycle regulators like cyclin C, Cdc25c,

Cdkn2c, Edn1, Ppp1ca, and Sel1l.

Because miR-125b represses both pro-apoptosis and anti-

apoptosis genes, as well as both proliferation and cell-cycle arrest

genes in all three vertebrates (Figure 5), miR-125b appears to

modulate the p53 network on the whole through an incoherent

feedforward loop (FFL) [33,34] acting on the cellular processes of

apoptosis and cell proliferation (Figure 6D). An incoherent type-2

FFL is a regulatory pattern in which X represses a target Z and

also represses Y, another repressor of Z (Figure 6D). Incoherent

FFLs have been found in the transcription factor networks of

human embryonic stem cells and hematopoietic stem cells, and

have been shown to modulate E2F1 dosage in the Myc-E2F1

pathway [35-37]. Besides accelerating responses and acting as

amplitude filters [38-40], the incoherent FFL motif is also a noise

buffering motif that reduces the variance of network dosage [41–

43]. Thus our finding that incoherent FFLs fit the overall structure

of network relationships between miR-125b and the p53-mediated

processes, suggests that miR-125b is fine-tuning and buffering p53

network dosage.

Discussion

In this study, we sought to identify direct targets of miR-125b in

the p53 network of humans, mice and zebrafish, to better

understand how miR-125b regulates the p53 network throughout

evolution and how that might relate to its conserved role in

regulating tissue stem cells.

We identified 20 direct targets of miR-125b in the p53 network,

including 15 novel targets like Zac1, Puma, Itch and Cdc25c, and also

targets like Bak1 and Tp53 that were identified in previous studies

[9,16–18]. In general, we found that miR-125b directly represses 2

classes of genes: apoptosis regulators and cell-cycle regulators.

With the exception of Ppp1ca, Itch and Edn1, very few individual

targets were strictly conserved throughout vertebrate evolution.

Instead, we found that only the network-level of regulation was

conserved, and miR-125b-regulation of individual apoptosis and

proliferation regulators appears to be evolving rapidly from species

to species. This observation suggests that, at least within the

vertebrates, the 39 UTR sequences of each gene target is evolving

rapidly via neutral genetic drift. In other words, the loss or gain of

a single miR-125b-binding site in the 39 UTR of most genes

appears to have a relatively insignificant effect on the fitness of an

organism. On the other hand, the strict conservation of miR-125b-

regulation at the network-level in humans, mice and zebrafish,

suggests that natural selection acts on the network-level rather

than the gene-level with regard to miRNA-target evolution. It will

be interesting to see if this novel paradigm applies to other

microRNAs or gene networks as well.

Previous studies on miRNA evolution have suggested that a

relatively poor conservation of individual miRNA-target pairs but

strong conservation of a miRNA-gene network relationship is

consistent with miRNAs’ role as buffers of gene expression

[42,44,45]. Our observation that an incoherent FFL-like network

motif fits the overall structure of the miR-125b - p53 network

models with respect to apoptosis and cell proliferation, lends

further support to this idea since incoherent FFL network motifs

are well-adapted for noise filtering [41,43,46]. It is thought that

miRNAs are at least partially responsible for the phenomenon of

developmental or phenotypic stability within each species

[41,42], termed ‘‘canalization’’ by C. H. Waddington [47].

These studies suggest that miRNAs have a conserved role in

regulating the overall stability of pathways/networks, a role

which is relatively unaffected by the loss or gain of individual

miRNA-targets over the course of evolution. A network buffering

function has also been suggested for the regulation of muscle

development by miR-1 throughout evolution, regulation of the

Wnt pathway by miR-8, and fine-regulation of Pten dosage by a

variety of miRNAs [48–50]. Our findings suggest that the fine-

tuning of p53 network dosage by miR-125b is another example of

this paradigm.

Fine-regulation of p53 network dosage by miR-125b may also

explain miR-125b’s conserved role in regulating tissue stem cell

homeostasis. In C. elegans, loss-of-function mutations in lin-4 lead

to a delay in differentiation and thus expansion of vulval

precursor cells, seam stem cells in the lateral hypodermis and

mesoblasts, causing multiple defects in larval development [6]. In

zebrafish, loss of miR-125b leads to widespread p53-dependent

apoptosis with consequent defects in early embryogenesis,

especially in neurogenesis and somitogenesis [16]. Overexpres-

sion of miR-125a/b causes an expansion of mammalian hema-

topoietic stem cells (HSCs) and aberrant differentiation, leading

to myeloid leukemia [9,10] and also lymphoid leukemia if miR-

125b is overexpressed in fetal liver HSC-enriched cells [12].

However, the molecular underpinnings of miR-125a/b’s regula-

significant repression by miR-125b relative to the control (p,0.01). (C) Zebrafish: 7 out of 8 candidate genes’ 39 UTRs showed significant repression by
miR-125b relative to the control (p,0.01). (D) Alignment of predicted miR-125b binding sites in the 39UTRs of Ppp1ca, Prkra and Tp53 across three
species. Seed-binding sequences are underlined. Bases conserved in two (blue) or three (black) species are highlighted. (E) The 39UTR seed-binding
sequences of 7 target mRNAs were mutated and assayed for direct binding to miR-125b using the luciferase reporter assay, relative to wild-type
39UTR sequences. (E) The seed-binding sequences in the 39UTR of 7 predicted target mRNAs were mutated and compared to wild-type sequences for
binding to miR-125b using luciferase reporter assay. (F-G) Western blot analysis of protein expression of selected target genes two days after a
transfection of miR-125b duplex, miR-125b antisense (AS) or negative control duplex or negative control antisense. (F) Western blots showed that
miR-125b repressed BAK1, PPP1CA, TP53, and PPP2CA levels in human SH-SY5Y neuroblastoma cells, while the antisense RNA miR-125b-AS
derepressed expression of these proteins in human ReNcell VM neural progenitor cells. (G) Western blots showed that miR-125b repressed BAK1,
PPP1CA, PUMA, and ITCH levels in mouse N2A neuroblastoma cells. Abbreviations: h, human; m, mouse; z, zebrafish.
doi:10.1371/journal.pgen.1002242.g004

Conserved Regulation of p53 Network by miR-125b

PLoS Genetics | www.plosgenetics.org 7 September 2011 | Volume 7 | Issue 9 | e1002242



tion of tissue stem cell homeostasis had remained unclear largely

due to the complex nature of microRNA regulation of gene

networks. The 2 classes of miR-125b targets in the p53 network,

and the incoherent FFL network motifs that we found, may at

least partially explain how miR-125b regulates tissue stem cells in

vertebrates. By fine-tuning both apoptosis regulators and cell-

cycle regulators, miR-125b may fine-tune the p53 network dosage

to drive the self-renewal of tissue stem cells. It could explain how

overexpression of miR-125b leads to an expansion of self-renewing

hematopoietic stem cells while loss of miR-125b leads to aberrant

apoptosis and proliferation, with consequent defects in tissue

differentiation.

Several studies have implicated miR-125b as an oncogene in a

variety of mammalian tissue compartments, e.g. leukemia, neuro-

blastoma, prostate cancer and breast cancer [9–18]. These studies

have ascribed miR-125b’s anti-apoptotic effect as an oncogene to its

direct suppression of Bak1 or Tp53 [9,16-18]. On the other hand,

several research groups have also reported miR-125b’s role as a

Figure 5. Summary of genes in p53 network that are directly targeted by miR-125b. Only targets that passed $ 2 validation assays, in at
least one species, are shown. Red: predicted targets validated by 3 assays; Orange: predicted targets validated by 2 assays; Yellow: predicted targets
validated by 1 assay; Pink: predicted targets not validated by any assay, but validated by 3 assays in another species.
doi:10.1371/journal.pgen.1002242.g005
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potential tumor suppressor by suppressing proliferation in cell-

culture models [19–23]. Our identification of 20 direct targets of

miR-125b in the p53 network reconciles these findings because miR-

125b modulates the expression of both apoptosis regulators and cell-

cycle regulators. Although miR-125b’s suppression of p53 itself is not

conserved in mice, miR-125b’s anti-apoptotic role – through

suppression of multiple pro-apoptosis regulators in the p53 network

– appears to be conserved in vertebrates. miR-125b’s ability to fine-

tune the subtle balance of apoptosis vs. cell-cycle regulators and thus

buffer the p53 network dosage in different contexts, could explain

why miR-125b dysregulation can lead to either tumor suppression or

oncogenesis depending on the context. It is possible that this

buffering feature of miR-125b represents a general principle of

miRNA regulation of gene networks.

Figure 6. Models of miR-125b regulation of p53 networks in humans, mice, and zebrafish. (A) Human p53 network. (B) Mouse p53
network. (C) Zebrafish p53 network. Models were constructed by Ingenuity Pathway Analysis. Red: predicted targets validated by 3 assays; Orange:
predicted targets validated by 2 assays; Yellow: predicted targets validated by 1 assay; Pink: predicted targets not validated by any assay, but
validated by 3 assays in another species. (D) Incoherent feedforward loop (FFL) motifs characterize miR-125b regulation of p53 network genes that
mediate apoptosis or cell cycle arrest.
doi:10.1371/journal.pgen.1002242.g006
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Materials and Methods

Prediction of miR-125b targets in the p53 network
A list of p53-associated genes was compiled from the p53

Knowledgebase website [30] and from the Ingenuity Pathway

AnalysisTM database [29]. The targets of miR-125b in human and

mouse were predicted by TargetScan [31]. The targets of miR-

125b in zebrafish were predicted by MicroCosm [32]. The human

homologues of mouse and zebrafish targets were identified by the

DAVID gene ID conversion tool.

Cell culture and transfection
Human lung fibroblast cells, human neuroblastoma SH-SY5Y

cells, mouse neuroblastoma Neuro-2A cells, mouse fibroblast

Swiss-3T3 cells and human HEK-293T cells were maintained in

DMEM media, supplemented with 10% fetal bovine serum and

1% penicillin-streptomycin (Invitrogen). Neuro-2A cells, 3T3 cells,

SH-SY5Y cells and human lung fibroblast cells were transfected in

suspension with 56105 cells per well in 6-well plates using

lipofectamin-2000 (Invitrogen). miRNA duplexes and antisense

oligonucleotides (Ambion) were transfected at a final concentra-

tion of 80 nM.

Microinjection in zebrafish embryos
Wild-type zebrafish were maintained by standard protocols

[51]. All injections were carried out at 1–4 cell stage with 2 nl of

solution into each embryo. In the knockdown experiments, miR-

125b morpholinos were injected at 0.75 pmole/embryo

(lp125bMO1/2/3 indicates the co-injection of three lp125bMOs,

0.25 pmole each); miR-125b duplex was injected as 37.5 fmole/

embryo.

Quantitative RT-PCR
RNA was extracted from cells or zebrafish embryos using Trizol

reagent (Invitrogen) and subsequently column-purified with

RNeasy kits (Qiagen). For qRT-PCR of miR-125a, miR-125b

and RNU6B, 100 ng of total RNA was reverse-transcribed and

subjected to Taqman microRNA assay (Applied Biosystems). For

qRT-PCR of mRNAs, cDNA synthesis was performed with 1 mg

of total RNA using the High Capacity cDNA Archive Kit (Applied

Biosystems). The expression of all genes was analyzed by SYBR

assay using the Applied Biosystems real-time PCR system or the

Fluidigm 48x48 dynamic array system (Fluidigm) following the

manufacturer’s protocol.

miRNA–target pull-down assay
50 ul of streptavidin coated magnetic beads (Invitrogen) were

blocked with 1 mg/ml yeast tRNA and 1 mg/ml BSA in 1 ml lysis

buffer (20 mM Tris pH 7.5, 100 mM KCl, 5 mM MgCl2, 0.3%

NP-40) for 2 hours at 4uC and wash twice with lysis buffer. hsa-

miR-125b or cel-miR-67 (negative control) duplex was synthesized

with a biotin conjugated at the 39 end of the active strand by

Dharmacon Research Inc. The miRNAs were transfected into

human lung fibroblasts or mouse 3T3 fibroblasts at a final

concentration of 80 nM as described above. The miRNAs were

also injected into zebrafish embryos at 1 to 4-cell stage at a final

concentration of 37.5 fmole/embryo. After 24 hours, cells from 3

wells of fibroblasts or 50 zebrafish embryos were incubated with

500 ul cold lysis buffer containing freshly added 100 units/ml

RNase inhibitor (Invitrogen) and protease inhibitor cocktail

(Roche) for 20 minutes on ice. After the cell debris is removed

by centrifugation, the lysate was incubated with pre-blocked

streptavidin coated beads for 2 hours at 4uC. Subsequently, the

beads were washed 5 times with cold lysis buffer and incubated

with Trizol for RNA extraction.

Luciferase reporter assay
The whole 39 UTR of target genes were cloned into the

psiCHECK-2 vector (Promega), between the XhoI and NotI site,

immediately 3’ downstream of the Renilla luciferase gene. For

selected targets, we introduced 3 point mutations into the 7-nt

seed-binding sequence using inverse PCR with non-overlapping

primers carrying the mutated sequences. 10 ng of each psi-

CHECK-2 construct was co-transfected with 10 nM miRNA

duplexes or into HEK-293T cells in a 96-well plate using

lipofectamin-2000 (Invitrogen). After 48 hours, the cell extract

was obtained; Firefly and Renilla luciferase activities were

measured with the Dual-Luciferase reporter system (Promega)

according to the manufacturer’s instructions.

Western blot assay
Cells were lysed in RIPA buffer (Pierce). Proteins were

separated by a 10% polyacrylamide gel and transferred to a

methanol-activated PVDF membrane (GE Healthcare). The

membrane was blocked for one hour in PBST containing 7.5%

milk and subsequently probed with primary antibodies (Santa

Cruz) overnight at 4uC. After 1-hour incubation with goat-anti-

mouse HRP-conjugated secondary antibody (Santa Cruz), the

protein level was detected with luminol reagent (Santa Cruz).

Statistical analysis
Two-tail T-tests were used to determine the significance of

differences between the treated samples and the controls where

values were obtained from luciferase reporter assay or qRT-PCR.

The tests were performed using Microsoft Excel where the test

type is always set to two-sample equal variance.

Supporting Information

Figure S1 Mature miR-125b levels before and after overex-

pression or knockdown. (A) The level of miR-125b in human SH-

SY5Y cells one day after a transfection with mock (lipofecta-

min2000 only), negative control duplex (NC-DP) or miR-125b

duplex (125b-DP). (B) The level of miR-125b in mouse N2A cells

one day after a transfection with mock, NC-DP or 125b-DP. (C)

The level of miR-125a and miR-125b in human lung fibroblasts

one day after a transfection with mock, negative control antisense

(NC-AS) or miR-125a antisense and miR-125b antisense

cotransfection (125ab-AS). (D) The level of miR-125a and miR-

125b in mouse SWISS-3T3 fibroblasts one day after a

transfection with mock, NC-AS or (125ab-AS). In all panels,

the levels of miR-125a and miR-125b were quantified by real-

time PCR, and presented as log2 (fold change) 6 s.e.m. (n$3)

relative to the levelsof RNU6B loading control.

(TIF)

Table S1 Genes in p53 network with predicted miR-125b

binding sites. a Hsa: Homo sapiens, humans. b Mmu: Mus musculus,

mice. c Dre: Danio rerio, zebrafish. d Non-official but common gene

name that is used in this paper.

(PDF)
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