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Abstract

Purpose of Review The increased cardiovascular disease (CVD) risk in subjects with type 2 diabetes (T2D) is well established. This
review collates the available evidence and assesses the shared genetic background between T2D and CVD: the causal contribution
of common risk factors to T2D and CVD and how genetics can be used to improve drug development and clinical outcomes.
Recent Findings Large-scale genome-wide association studies (GWAS) of T2D and CVD support a shared genetic background
but minimal individual locus overlap.

Summary Mendelian randomisation (MR) analyses show that T2D is causal for CVD, but GWAS of CVD, T2D and their
common risk factors provided limited evidence for individual locus overlap. Distinct but functionally related pathways were
enriched for CVD and T2D genetic associations reflecting the lack of locus overlap and providing some explanation for the
variable associations of common risk factors with CVD and T2D from MR analyses.

Keywords Type 2 diabetes - Coronary artery disease - Ischemic stroke - Peripheral artery disease - Risk factors - Genetics;

Mendelian randomisation

Introduction

It is well established that cardiovascular disease (CVD) and
type 2 diabetes (T2D) are concomitant. Subjects with T2D are
at 3—4 x higher risk of developing CVD and many of the risk
factors are shared between the two diseases, particularly
hyperglycaemia, obesity, haemodynamic disturbances and
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dyslipidaemia [1]. Because the pathologies of both complex
diseases begin long before the clinical presentation, epidemi-
ology has been unable to answer the question of whether there
are shared pathological mechanisms between CVD and T2D.
There is also epidemiological evidence that CVD presents
differently in subjects with T2D compared to those without
diabetes. Generally, there is a higher atherosclerotic burden
[2]; peripheral arterial disease (PAD) presents distally [3];
and T2D increases the risk of specific ischaemic stroke sub-
types [4]. Whether these differences in CVD manifestation
represent common mechanisms between CVD and T2D, or
whether T2D has a disruptive influence on pathways related to
the vasculature and haemodynamic factors remains largely
unknown.

Experimental animal models for T2D and CVD have been
developed, although these have limited utility as they typically
involve a single gene alteration (in contrast to the evidence of
polygenicity in humans), and the disease pathology and bio-
chemical profiles do not resemble those observed in humans
[5]. Large-scale genome-wide associations studies (GWAS)
have provided robust evidence for many genetic variants
influencing various aspects of metabolic and cardiovascular
disease [6°, 7-10]. Cardiovascular disease, T2D and their
shared risk factors are heritable and genetic information have
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been used in different ways to identify tissues, genes and
pathways relevant to CVD in the context of T2D. Genetic data
has also been used to separate factors on the causal pathway to
CVD in subjects with T2D from those that are correlated with
the disease. This review focuses on the current understanding
of the shared genetic contributions to CVD and T2D, mecha-
nistic insights from Mendelian randomisation (MR) and path-
way analyses, and how these may affect drug development
and clinical practice in the future.

Shared Genetic Background Amongst
Cardiometabolic Traits—Looking Genome-Wide

Shared genetic correlation can be determined by comparing
allelic effects, genome-wide, between two traits or diseases. If
there is a correlation between allelic effects, then a measure of
shared genetic background can be derived [11]. Large GWAS
of T2D [6°], coronary artery disease (CAD) [7] and ischaemic
stroke [10] have been used to assess the shared genetic back-
ground between CVD and T2D using all variants included in
the GWAS [12¢]. Genome-wide, there is strong evidence that
CAD (rg[se] = 0.40[0.03], p=2.5 x 107*®) [6¢] and ischemic
stroke (rg[se] =0.38[0.11], p=5.0 x 10™*) share a genetic
background with T2D, where variants associated with in-
creased risk of CVD are also associated with increased risk
of T2D (Fig. 1). These analyses indicate a shared genetic
background for CVD and T2D but not which mechanisms
are represented by the genetic variants contributing to the
overlap or the direction of effect.

There is also evidence that CVD and T2D share a genetic
background with common risk factors based on analyses of
120 traits available from LD hub (Fig. 1) [12¢]. CVD and T2D
were positively genetically correlated with each other, show-
ing a shared genetic background. Traits related to parents’ age
at death, years’ of schooling and age of first birth, were neg-
atively correlated with T2D and CVD. Genetic variability as-
sociated with increased obesity, fasting insulin, glycated
haemoglobin, triglycerides and propensity to become a smok-
er were also positively genetically correlated with T2D, CAD
and ischaemic stroke (Fig. 1). These analyses show that CVD
and T2D have a shared genetic background with each other
and also with their common risk factors. Efforts to disentangle
the complex relationship between T2D and CVD and their
shared risk factors have included pathway analyses, GWAS
and MR analyses.

Cardiovascular Disease and Type 2 Diabetes
Have Pathways in Common but Not Genes

Evaluating the tissue-specific effects of T2D and CVD asso-

ciated loci is key to understanding how overlapping and func-
tionally related pathways contribute to the development of
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CVD and T2D and how the effect of individual loci may differ
by disease context. This requires integration of GWAS data
with tissue-specific expression quantitative trait loci (eQTL)
data and chromatin states [6¢, 13—15]. There have been few
studies of overlapping pathways between CVD and T2D, and
these have been relatively small [16].The largest of these stud-
ies [17] integrated multi-ethnic GWAS of T2D and CVD with
tissue-specific eQTL data and co-expression networks to iden-
tify genes and pathways enriched for T2D and CVD genetic
associations. Co-expression networks are constructed from
genes that have similar expression patterns as co-expressed
genes are more likely to be functionally related. Co-
expression networks can be annotated with pathway data,
and GWAS data overlaid, to identify which co-expression
networks and pathways are enriched for genetic associations.
Co-expression networks related to carbohydrate metabo-
lism and glycan degradation were enriched in T2D and
CVD but by non-overlapping genetic association signals.
Other co-expression networks enriched for T2D genetic asso-
ciation signals were distinct from those enriched for CVD
signals but were functionally related to specific pathways:
lipid and fatty acid metabolism; glucose metabolism; oxida-
tion; and cytokine signalling [17]. These analyses indicate
sparse direct overlap of genes and pathways contributing to
T2D and CVD but show that different genes are likely to be
important in a set of common pathways relevant to the devel-
opment of T2D and CVD. While pathway analysis shows that
there is limited overlap in processes contributing to both dis-
eases, it does not indicate whether these processes affect the
development of T2D and CAD in the same way.

Few Loci Jointly Contribute to Type 2
Diabetes and Cardiovascular Disease

Large GWAS of CVD in the context of T2D have investigated
the presence of overlapping loci by (1) conducting GWAS of
individual traits and looking for overlap, analysing CVD and
T2D in a combined GWAS, and analysing CVD stratified by
T2D status. Based on individual GWAS studies of T2D [6¢],
CAD [7], large artery stroke [10] and PAD [9], there are over-
lapping signals of association in the CDKN2A/B locus
(Table 1). Variants in this locus have been associated with
CAD severity in subjects with T2D, but this study was small
[18], and larger studies of CAD stratified by T2D status have
shown no difference in allelic effects by T2D status in this
region, indicating that this locus is associated with CAD irre-
spective of T2D status [19]. A combined GWAS of T2D and
CAD identified a single variant associated with both T2D and
CAD at genome-wide significance (p <5 x 105, a threshold
used in GWAS to identify robust associations) near /RS
(Table 1). The study describes eight additional lead variants
from eight loci that are associated with T2D and CAD, but these
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Fig. 1 Genetic correlation
analyses with 120 traits available
from LD hub showed that type 2
diabetes, coronary artery disease
and ischaemic stroke share a
genetic background with each
other but also with other traits.
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are not genome-wide significant for both diseases. They share
the same risk allele for seven lead variants and opposite risk
alleles for APOF [20¢]. This highlights that even in large studies
there are few overlapping CVD and T2D loci, that few variants
contribute jointly to CVD and T2D, and that these variants do
not always share the same risk allele for T2D and CVD.
Smaller studies have reported loci associated with CVD in
the context of T2D. A study of CAD in subjects with T2D
reported an association near GLUL with CAD that showed
some evidence for interaction with T2D status [21]. This

finding was not supported by a larger study of CAD in sub-
jects with T2D that found no variants specifically associated
with CAD in the context of T2D [19]. The Action to Control
Cardiovascular Risk in Diabetes (ACCORD) trial reported
two variants associated with fatal cardiovascular events in
subjects under intense glycaemic control. Despite large-scale
efforts to identify overlapping genomic regions, there are few
robustly identified loci. However, most T2D risk-raising al-
leles are also risk-raising alleles for CAD [20+] and MR stud-
ies have shown a causal link between T2D and CAD [20¢].
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Table 1 There are two loci with evidence of association signal overlap amongst cardiovascular disease and type 2 diabetes based on large genome-

wide association studies

Chr:Pos (b37) SNP (gene) Phenotype EA (EAF) OR (95%CI) p

9:22043612 151412830 (CDKN2A/B) Type 2 diabetes C (0.63) 1.04 (1.02-1.05) 9.1x10°8
Coronary artery disease C (0.68) 1.12 (1.10-1.15) 2.6x107%
Peripheral artery disease C (0.63) 1.06 (1.03-1.09) 7.6x107*
Large vessel stroke C (0.63) 1.16 (1.08-1.26) 15x107

2:227020653 157578326 (IRSI) Type 2 diabetes A (0.65) 1.07 (1.05-1.09) 23x107"
Coronary artery disease A (0.65) 1.05 (1.04-1.07) 47x1071°

A Causal Relationship Between Type 2 Diabetes
and Cardiovascular Disease

MR analyses deconvolute the causal relationship between two
traits where the relationship may be confounded by environ-
mental effects. In contrast to genetic correlation, which as-
sesses the shared genetic background of two traits across all
variants in a GWAS, MR uses genetic risk scores (GRS) of
SNPs as a genetic instrument to test the causal effects of one
trait on another. Since unlinked genotypes are randomly allo-
cated at birth, the association between genetic variation deter-
mining one trait and the genetic variation determining another
is free from environmental confounding. Bidirectional MR
analyses can be used to distinguish between biomarkers that
are on the causal pathway to a disease from those that are a
consequence of a disease—otherwise known as reverse cau-
sation, such as the relationship between C-reactive protein
(CRP) and CAD [22]. There are several assumptions that must
be met for MR analyses to be valid. One is that the genetic
instrument should only represent the effect of the trait being
tested. Variants can have pleiotropic effects, where they influ-
ence more than one trait, for example CRP and low-density
lipoprotein cholesterol (LDL-C) levels [23]. If this pleiotropy
is not taken into account, this can lead to spurious associations
between a trait GRS and an outcome [24].

Variants associated with T2D have been shown to contrib-
ute to the development of the disease through different mech-
anisms, such as beta cell function, obesity, insulin secretion,
obesity and hyperlipidaemia [6°, 15]. MR analyses of T2D
and CVD have been conducted during different epochs of
T2D locus discovery. Early studies, that did not take variant
pleiotropy (associations with other cardiometabolic traits) into
account, found associations between a T2D-GRS and CAD
[25, 26] and separately with ischaemic stroke (large artery and
small vessel stroke only) [27]. However, the average CAD
risk per T2D allele was lower than expected [25] indicating
that the GRS did not account for the all the risk of CAD
observed in subjects with T2D. More recent MR studies have
generated GRS based on more T2D-associated variants and
have leveraged pleiotropic variant associations to construct
T2D-GRS that contain variants associated with other similar
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traits. T2D-GRS constructed of non-pleiotropic T2D-associ-
ated variants was associated with CAD [28], but those con-
structed from variants pleiotropic for established CAD risk
factors and for glycaemic traits have shown variable associa-
tions with CAD.

MR studies of shared risk factors for T2D and CVD have
shown variable association with either T2D and CVD. There
is variable evidence to support a role for high-density lipopro-
tein cholesterol (HDL-C), LDL-C, triglycerides, obesity,
adiponectin and hyperglycaemia in the development of T2D
and CVD [29-33]. Genetic variability increasing levels of
LDL-C and triglycerides have been associated with increased
risk of CAD but decreased the risk of T2D [34]. This is jux-
taposed to the literature that correlates increased serum levels
of LDL-C and triglycerides with increased T2D risk [35]
Genetic variability increasing HDL-C levels was shown to
be protective of CAD and T2D [34, 36], but other studies that
excluded pleiotropic variants found no effect of HDL-C on
CAD or T2D risk [37, 38].

Genetic determinants of glycaemic traits have been studied
in healthy populations, which do not necessarily represent the
genetic variability that determines glycaemic traits in subjects
with T2D [8]. Some MR studies have tried to address this
through careful selection of variants used to build genetic in-
struments for glycaemic traits. Genetic instruments consisting
of T2D-associated variants that were also associated with any
other glycaemic trait were not associated with CAD [20].
However, GRS constructed from T2D associated variants also
associated with HbA 1c, beta cell function and insulin resistance
were respectively associated with increased CAD risk but not
those associated with fasting glucose and T2D [26]. On the
other hand, instruments for fasting glucose that exclude T2D-
associated variants were associated with increased CAD risk
[28]. This suggests, perhaps unsurprisingly, that genetic mech-
anisms and underlying pathways that increase the risk of T2D
do not uniformly influence CAD risk.

Results from MR studies can vary despite testing the rela-
tionship between the same traits and outcomes. This could
reflect between-study differences, such as GRS strength,
choice of variants included in the GRS, the sample size of
the study, how subjects were recruited and the study design.
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Study design and participation can introduce collider bias cre-
ating false causal relationships between two traits [39, 40]. In
cross-sectional studies, this can be introduced by selection
bias. If subjects with the highest genetic risk of a disease are
less likely to participate in a study then this may cause an
inverse association between GRS for known risk factors and
the disease outcome [39]. In MR studies of disease progres-
sion in cases only, factors that are causal for disease onset may
also be associated with disease progression through associa-
tion with confounders of disease incidence and progression.
Overall, MR studies have highlighted the complex relation-
ships amongst T2D, CVD and their shared risk factors and
how these are challenging to deconvolute.

Epigenetic Changes and Hyperglycaemia

Epigenetic changes to gene expression usually involve histone
modifications and DNA methylation in response to a stimulus,
such as disease state or environment. There is some experi-
mental evidence of epigenetic changes that modify the risk of
CVD, induced by shared risk factors for CVD and T2D, in-
cluding hyperglycaemia [41]. In the Diabetes Control and
Complications Trial (DCCT) and follow-up Epidemiology
of Diabetic Complications and Interventions Trial (EDIC),
intensive glycaemic control was shown to reduce the progres-
sion of complications (including cardiovascular) in subjects
with T1D, but not completely abrogate them [42]. The con-
cept of ‘metabolic memory’ was coined to account for the
observation, which has been shown to occur because of epi-
genetic changes induced by hyperglycaemia [43].
Hyperglycaemia has been shown to play a causal role in the
development of T2D and CVD [30], although trials of inten-
sive glycaemic control in subjects with T2D have demonstrat-
ed variable effects on rates of CVD and all-cause mortality.
A large meta-analysis of glycaemic intervention trials
(34,533 subjects) showed a small reduction in non-fatal myo-
cardial infarction in the glucose-lowering group, but no over-
all effect on all-cause mortality or CVD death [44]. Two of the
largest glycaemic intervention trials were conducted for
5 years or less [45, 46], and may have been too short to ob-
serve effects on cardiovascular outcomes and all-cause mor-
tality [47]. After 5 years of follow-up in the Action in Diabetes
and Vascular Disease (ADVANCE) trial, there was a non-
significant trend of reduced CVD and all-cause mortality in
the treatment arm, and in a 10-year follow-up of the United
Kingdom Prospective Diabetes Study (UKPDS), there were
significantly reduced rates of CVD and all-cause mortality in
the treatment intervention groups [47]. A reduction in myo-
cardial infarction and all-cause death was observed in the 10-
year follow-up, despite the loss of glycaemic differences after
a year [47]. The ‘legacy effect’ was used to explain this ob-
servation and may correspond to ‘metabolic memory’ in sub-
jects with T1D [43]. While the exact mechanism of the ‘legacy

effect’ is unknown, there is experimental evidence from vas-
cular cells that supports a role for epigenetic changes in the
risk of CVD induced by hyperglycacmia [48]. Epigenetic
modifications change the expression of genes and pathways
associated with endothelial dysfunction (a key step in athero-
genesis), and genes involved in metabolic and cardiovascular
disease [48]. These epigenetic changes could explain the
mechanism by which hyperglycaemia could increase the risk
of CVD in subjects with T2D.

A Balancing Act—Treatment of Type 2
Diabetes and Cardiovascular Disease

The treatment of T2D and CVD may in part reflect the com-
plex relationship between functionally similar pathways that
contribute to both diseases but in a mechanistically different
way. All new treatments for T2D must prove that they do not
increase the risk of CVD outcomes before they can be ap-
proved by the Food and Drug Administration [49].
Thiazolidinedione derivatives, used to reduce blood glucose
by improving hepatic and peripheral tissue utilisation of glu-
cose, have been associated with adverse cardiovascular out-
comes [50] whilst statins, that reduce LDL-C levels, reduce
the risk of CVD but increase the risk of T2D [51, 52].
Identifying adverse drug effects before stage 3 clinical trials
could reduce the costs of drug development and attrition rates.
Genetic studies and MR analyses can be used to investigate
the potential outcomes of pharmacological interventions
where a suitable genetic instrument is available [53, 54].

A missense variant in glucagon-like peptide 1 receptor
(GLPIR), used to mimic the effects of GLP1R agonists, was
associated with reduced risk of CAD, thus providing some
evidence that GLP1R agonists are unlikely to be associated
with increased cardiovascular risk [53]. The clinical trials for
Liraglutide and Semaglutide (two GLP1R agonists) both
showed reduced risk of cardiovascular end points in the treat-
ment groups, which support the finding of the MR analysis
[53,55, 56]. Variants in the gene encoding 3-Hydroxy (-meth-
viglutaryl-CoA (HMG-CoA), the target of statins, were asso-
ciated with reduced cardiovascular risk and with a slight in-
crease in T2D risk [57], which agrees with the trial data on
statin use. Proprotein convertase subtilisin/kexin type 9
(PCSK9) inhibitors are a new class of lipid-lowering drugs
to reduce the risk of CVD. MR studies of variants in PCSK9
are associated with reduced risk of CVD but increased risk of
T2D, indicating that PCSK9 inhibitors may have similar ef-
fects on T2D risk to those seen for statins [54]. The application
of MR analyses to drug intervention studies is restricted by
how well the genetic instrument mimics the pharmacological
intervention and cannot predict off-target drug effects. They
can be used with other data sources to accumulate evidence
for drug development. There are many omics data sources that
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are publicly available that can be combined with findings from
GWAS, such as eQTL data from GTEx [58] or functional
regulatory data from Epigenome RoadMap [59] and a large
amount of phenotypic and genetic data available from large
population studies, such as the UK Biobank (http:/www.
ukbiobank.ac.uk/). These data sources can be used to
identify features that predict which subjects with T2D are at
higher risk of developing cardiovascular complications. There
are projects underway using these types of data to improve
treatment for cancer: patient data are used to identify digital
twins to predict disease progression and identify factors that
are important for disease progression [60]. Identification of at-
risk individuals can be used to improve clinical trial design but
also to enhance treatment regimens, which may open new
avenues for treatments.

Although numerous longitudinal studies have highlighted
several biomarkers that are likely to be on the causal pathway
to T2D and CVD [61], the long pre-clinical phase of both T2D
and CVD mean that may not be predictive of disease. In recent
years, the number of GWAS of circulating biomarkers has
expanded rapidly [62—64]. However, the number of loci typ-
ically detected, and the effect sizes on T2D and/or CVD are
modest. An MR study of the role of branch chain amino acids
(BCAA) in T2D used instruments that explained 5.3—7.5% of
the variance in three different BCAA levels [65]. Frequently,
findings from these studies have been used to conduct MR
studies, although few have been conducted sufficiently strin-
gently as to be robust, and comparisons between studies are
hindered by differences in the genetic instruments tested, sam-
ple characteristics and power issues. Ongoing GWAS of bio-
markers, which include over 500,000 participants, have iden-
tified hundreds of new loci for metabolic and anthropometric
traits. GRS constructed from larger GWAS will improve the
precision of the genetic instruments, based on more accurate
estimation of allelic effects. Increased sample size of GWAS
studies will also improve power to detect effects of GRS on
outcomes even for weaker instruments [66]. In combination,
these should improve the robustness of findings from MR
studies. Testing causality using these well-powered instru-
ments in large populations with longitudinal data will aid in
identifying and ruling out factors that increase the risk of car-
diovascular complications.

Conclusions

There is evidence of shared genetic background underlying
T2D and CVD, but it is not reflected in individual locus over-
lap and is more likely to be due to a handful of shared path-
ways and risk factors that may have divergent effects on the
two diseases. These divergent effects may be reflected in car-
diovascular complications because of treatment for
hyperglycaemia and increased the T2D risk associated with
LDL-C lowering CVD treatments. To advance understanding
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of'the overlap between T2D and CVD, and how shared mech-
anisms affect each disease, it is essential that causal variation,
effector transcripts and effector tissues are identified.
Statistical methodology is continuously evolving to maximise
the potential of existing genetic datasets, but there is a consid-
erable benefit to understanding disease biology by increasing
the sample size of GWAS studies and improving methods for
data integration [6¢, 67].
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