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Simple Summary: Healthy diet and physical activity are able to induce beneficial molecular
modifications that have been associated with a lower risk of breast cancer (BC) incidence and a better
prognosis for BC patients. Although the beneficial effects of healthy lifestyle have been described,
the beneficial epigenetic modifications induced by dietary and exercise intervention in BC patients
have not been elucidated yet. On these bases, the aim of the present study was to computationally
identify microRNAs (miRNAs) strictly associated with BC progression and with dietary and exercise
interventions. Through several computational approaches, a set of miRNAs modulated by diet
and exercise and useful as diagnostic and prognostic biomarkers for BC was identified. The results
obtained represent the starting point for further validation analyses performed on BC patients
undergoing lifestyle interventions to propose the miRNAs here identified as novel biomarkers for
BC management.

Abstract: Background: Several studies have shown that healthy lifestyles prevent the risk of breast
cancer (BC) and are associated with better prognosis. It was hypothesized that lifestyle strategies
induce microRNA (miRNA) modulation that, in turn, may lead to important epigenetic modifications.
The identification of miRNAs associated with BC, diet, and physical activity may give further
insights into the role played by lifestyle interventions and their efficacy for BC patients. To predict
which miRNAs may be modulated by diet and physical activity in BC patients, the analyses of
different miRNA expression datasets were performed. Methods: The GEO DataSets database was
used to select miRNA expression datasets related to BC patients, dietary interventions, and physical
exercise. Further bioinformatic approaches were used to establish the value of selected miRNAs in
BC development and prognosis. Results: The analysis of datasets allowed the selection of modulated
miRNAs associated with BC development, diet, and physical exercise. Seven miRNAs were also
associated with the overall survival of BC patients. Conclusions: The identified miRNAs may play a
role in the development of BC and may have a prognostic value in patients treated with integrative
interventions including diet and physical activity. Validation of such modulated miRNAs on BC
patients undergoing lifestyle strategies will be mandatory.
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1. Introduction

Breast cancer (BC) represents the second most diagnosed cancer worldwide and the leading cause
of cancer death in women accounting, respectively, for 2,088,849 million new diagnoses and over
625,000 deaths annually [1]. Despite the advancement of anticancer surgical and pharmacological
treatments, both BC incidence and mortality rates have remained almost unchanged during the last
40 years [2–4].

Recently, several integrative therapies have been proposed for the treatment of BC patients in order
to improve the efficacy of standard anticancer approaches, reduce chemotherapy side effects, ameliorate
patient quality of life, and to reduce BC mortality [5–7]. Currently adopted integrative therapies
for BC patients include nutraceutical products like vitamins, flavonoids and natural extracts [8,9],
prebiotics and probiotics [10,11], the adoption of a healthy lifestyle mainly represented by moderate or
intense physical exercise [12,13], and the adherence to healthy or hypocaloric diets [5,14].

Such approaches have been adopted following the association of cancer development with the
dysbiosis of human microbiota, unhealthy lifestyle habits, hypercaloric diets, hormonal imbalances,
and metabolic disorders [15–19]. In this context, it was demonstrated that sedentary lifestyle and
dietary carbohydrates have detrimental effects for insulinemia and glycemia responsible for chronic
inflammation and, consequently, with neoplastic transformation [20]. In particular, some foods,
characterized by high glycemic index (GI) and high dietary inflammatory index (DII), are known to
alter cellular homeostasis, inducing the over-expression of pro-inflammatory cytokines and hormones
including Insulin-like Growth Factor 1 (IGF-1) [21,22]. All these pro-inflammatory stimuli and growth
factors can lead to the alteration of key cellular processes and signaling transduction pathways like
MAPKs and PI3K/Akt pathways, prompting the malignant transformation of cells [23,24]. Beyond these
molecular changes that alter cellular homeostasis, dietary and environmental factors are also able to
induce epigenetic modifications including changes in microRNA (miRNA) expression or in genetic
methylation status [25–28].

Studies have shown that diet and physical exercise are able to modulate both DNA methylation
status and miRNA expression levels and possibly BC risk [29,30]. Several lines of evidence have
been accumulated in recent years about the protective role of diet against various human cancers
including breast cancer. The “Prevención con Dieta Mediterránea” (PREDIMED) study demonstrated
that adherence to the Mediterranean diet and olive oil intake is associated with a significant lower risk
(68%) of BC incidence [31]. Other diets such as Okinawan and plant-based diets, low energy density,
and low glycemic load dietary patterns are associated with BC prevention and better prognosis [32].
In the same manner, different studies have highlighted the protective role of exercise, which is able to
reduce BC incidence and mortality inducing both genetic and epigenetic modulation [33–35].

All this evidence leads researchers to investigate the epigenetic modifications and beneficial effects
induced by dietary restriction and physical exercise in women and BC patients to assess the reduction
of BC risk, the decrease of BC recurrence, and the therapeutic potential of food administration [5,36,37].
However, no convincing data have been generated on this topic and no epigenetic biomarkers
predictive of the therapeutic efficacy and patient prognosis have been identified as yet. The evaluation
of the expression levels of miRNAs modulated by diet and exercise and directly correlated with BC
progression and/or therapeutic efficacy may represent an additional strategy to establish patients
prognosis, predict cancer recurrence, and evaluate the efficacy of such integrative treatments.

Therefore, the aim of the present study was to computationally select a set of miRNAs
strictly involved in BC development and progression, but also effectively modulated by diet and
exercise. For this purpose, the analysis and integration of different BC, diet, and exercise miRNAs
expression profiling datasets obtained from the Gene Expression Omnibus DataSets (GEO DataSets;
https://www.ncbi.nlm.nih.gov/gds) database was performed. In addition, further bioinformatic
prediction analyses were performed on the selected miRNAs in order to establish their prognostic
significance and clinical usefulness for BC patients.

https://www.ncbi.nlm.nih.gov/gds
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This methodology represents the starting point for novel validation studies performed in BC
patients treated with hypocaloric diets or physical activity interventions.

2. Results

2.1. miRNA Microarray Expression Profiling Dataset Selection

The search of miRNAs expression profiling performed on GEO DataSets allowed for the
identification of several datasets containing miRNA expression related to BC, diet, and exercise.
By using specific search terms, 229, 47, and 21 miRNA microarray expression profiling datasets were
identified for BC, diet, and exercise, respectively. However, following the inclusion and exclusion
criteria described in the “Materials and Methods” section, most of these datasets were excluded,
thus selecting only eight datasets for BC, three datasets for diet, and eight datasets for exercise (Table 1).
The majority of BC datasets were excluded from the analysis because they contained miRNA expression
data obtained from circulating fluids or a limited number of samples, or in vitro or animal models.
In the diet and exercise datasets, those containing samples derived from in vitro or animal studies
were excluded in order to reduce variability between different species.

The selection of eight different datasets for BC allowed for the integrated evaluation of miRNA
expression levels related to 881 BC samples and 187 normal breast tissue samples (control). In the same
manner, the integrated analysis of three miRNA expression datasets related to dietary intervention
was carried out on a total of 76 samples of which 38 were before and 38 after dietary intervention.
Regarding exercise datasets, the computational analysis was performed on 226 samples of which 114
were before and 112 after physical activities.
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Table 1. Main characteristics of the selected datasets.

Series Accession Number of Control Number of BC Tissue Total Number Samples Platform Ref.

Breast Cancer Datasets

GSE57897 31 422 453 Normal and BC tissues GPL18722 Homo sapiens microRNA array [38]
GSE97811 16 45 61 Normal and BC FFPE tissues GPL21263 3D-Gene Human miRNA V21_1.0.0 [39]
GSE58606 11 122 133 Normal and BC FFPE tissues GPL18838 miRCURY LNA microRNA Array 7th generation [40]
GSE38167 23 31 54 Normal and BC FFPE tissues GPL14943 Agilent-029297 Human miRNA Microarray [41]
GSE32922 15 22 37 Normal and BC tissues GPL7723 miRCURY LNA microRNA Array, v.11.0 [42]
GSE45666 15 101 116 Normal and BC tissues GPL14767 Agilent-021827 Human miRNA Microarray [43]
GSE26666 17 77 94 Frozen normal and BC tissues GPL8227 Agilent-019118 Human miRNA Microarray 2.0 [44]
GSE40525 59 61 120 Normal and BC FFPE tissues GPL8227 Agilent-019118 Human miRNA Microarray 2.0 [45]

Samples before Diet Samples after Diet Diet Datasets

GSE27474 14 14 28 Serum Samples GPL8179 Illumina Human v2 MicroRNA expression beadchip [46]
GSE87103 12 12 24 Subcutaneous adipose tissues GPL11434 miRCURY LNA microRNA Array, 6th generation [47]
GSE75026 12 12 24 PBMCs samples GPL8179 Illumina Human v2 MicroRNA expression beadchip [48]

Samples before Exercise Samples after Exercise Exercise Datasets

GSE133910 46 44 90 Peripheral blood samples GPL25134 Agilent-070156 Human_miRNA_V21.0_Microarray [49]
GSE87103 12 12 24 Subcutaneous adipose tissues GPL11434 miRCURY LNA microRNA Array, 6th generation [47]
GSE45041 10 10 20 White blood cells GPL16770 Agilent-031181 Unrestricted Human miRNA V16.0 [50]
GSE51837 12 12 24 Monocytes GPL10850 Agilent-021827 Human miRNA Microarray (V3) [51]
GSE41915 11 11 22 NK cells GPL10850 Agilent-021827 Human miRNA Microarray (V3) [52]
GSE28745 12 12 24 PBMCs GPL8227 Agilent-019118 Human miRNA Microarray 2.0 [53]
GSE18999 11 11 22 Neutrophils GPL7731 Agilent-019118 Human miRNA Microarray 2.0 [54]
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2.2. Computational Identification of microRNAs Involved in Breast Cancer

The differential analysis between BC samples and controls performed by using GEO2R allowed
for the identification of a list of dysregulated miRNAs for each dataset. In total, a set of 49 miRNAs that
were significantly dysregulated (p < 0.01) was found in at least five out of the eight datasets selected.
Of these miRNAs, 30 were significantly upregulated in BC samples compared to the controls, while 19
were downregulated (Figure 1).

Figure 1. Differentially expressed miRNAs in BC samples compared to normal breast tissues in at
least five out of eight datasets. The results of differential analyses were expressed as log2FC values
indicating with red scale boxes the upregulated miRNAs (Panel (A)) and with blue scale boxes the
downregulated ones (Panel (B)). Dataset IDs were marked with different colors depending on the
platform technology used.

Among the upregulated miRNAs, those most commonly altered in the eight datasets
and with the highest log2FC values were hsa-miR-106b-5p, hsa-miR-141-3p, hsa-miR-182-5p,
hsa-miR-183-5p, hsa-miR-200 family, hsa-miR-21-5p, hsa-miR-7-5p, and hsa-miR-96-5p. Similarly,
among the downregulated miRNAs, the most important were hsa-miR-125b-5p, hsa-miR-123 130a-3p,
hsa-miR-139-5p, hsa-miR-205-5p, hsa-miR-497-5p, and hsa-miR-99a-5p. It is important to note that
almost all of these miRNAs are known to be involved in several tumors, as will be argued in the
Discussion section.

To further corroborate the results obtained from the analysis of the eight GEO DataSets miRNA
expression datasets, differential analyses between the expression levels of the miRNAs in BC samples
and normal control were performed on the Cancer Genome Atlas Breast Cancer (TCGA BRCA) dataset.
As reported in Table 2, this analysis demonstrated that the upregulation and downregulation levels
of the 49 significantly dysregulated miRNAs in BC were confirmed for almost all miRNAs selected
(Table 2).
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Table 2. Validation of the GEO DataSets selected miRNAs in the Cancer Genome Atlas Breast
Cancer database.

miRNA
GEO Datasets log2FC

Average
TCGA BRCA

p-Value

Upregulated miRNAs
hsa-miR-103a-3p 1.044 1.532 1.031 × 10−19

hsa-miR-106b-5p 1.000 2.423 7.270 × 10−28

hsa-miR-107 0.882 1.676 3.424 × 10−17

hsa-miR-141-3p 1.476 5.343 2.723 × 10−29

hsa-miR-142-3p 1.775 3.040 2.214 × 10−18

hsa-miR-142-5p 1.413 2.283 1.313 × 10−13

hsa-miR-146a-5p * 0.902 #N/D #N/D
hsa-miR-155-5p 1.443 1.961 4.674 × 10−18

hsa-miR-15b-5p 1.076 1.908 1.745 × 10−11

hsa-miR-16-5p 0.955 1.591 2.960 × 10−8

hsa-miR-181b-5p 0.616 2.219 1.238 × 10−22

hsa-miR-182-5p 2.027 4.799 2.421 × 10−40

hsa-miR-183-5p 2.759 7.102 3.388 × 10−47

hsa-miR-185-5p 0.883 1.548 2.932 × 10−9

hsa-miR-18a-5p 1.714 1.905 5.766 × 10−14

hsa-miR-200a-3p 1.346 3.948 2.352 × 10−26

hsa-miR-200b-3p 1.564 2.846 4.468 × 10−20

hsa-miR-200c-3p 1.298 2.691 2.049 × 10−17

hsa-miR-203a-3p 1.055 2.287 2.680 × 10−14

hsa-miR-21-5p 2.054 4.448 5.680 × 10−41

hsa-miR-210-3p 1.244 5.632 1.111 × 10−31

hsa-miR-25-3p * 0.946 #N/D #N/D
hsa-miR-301a-3p 1.620 2.314 7.058 × 10−24

hsa-miR-340-5p 0.924 2.001 8.384 × 10−25

hsa-miR-425-5p 1.733 1.740 8.393 × 10−8

hsa-miR-429 1.751 4.884 6.208 × 10−33

hsa-miR-484 0.792 1.399 2.801 × 10−6

hsa-miR-7-5p 1.786 1.850 7.483 × 10−21

hsa-miR-93-5p 1.209 2.110 5.223 × 10−26

hsa-miR-96-5p 2.178 6.970 7.515 × 10−47

Downregulated miRNAs
hsa-miR-100-5p −1.574 −4.066 1.191 × 10−52

hsa-miR-1229-3p −0.819 1.274 2.105 × 10−6

hsa-miR-125b-5p −1.819 −4.107 6.680 × 10−48

hsa-miR-130a-3p −0.996 −2.371 2.085 × 10−30

hsa-miR-139-3p −1.178 −8.512 2.131 × 10−52

hsa-miR-139-5p −2.444 −8.699 6.482 × 10−58

hsa-miR-143-3p −1.422 −2.288 1.458 × 10−28

hsa-miR-145-3p −1.501 −3.196 7.255 × 10−54

hsa-miR-145-5p −2.015 −5.892 2.501 × 10−50

hsa-miR-195-5p −1.541 −2.867 1.560 × 10−39

hsa-miR-202-3p * −1.198 #N/D #N/D
hsa-miR-205-5p −2.033 −5.921 4.198 × 10−35

hsa-miR-335-5p −1.961 −4.846 4.980 × 10−27

hsa-miR-376a-3p −1.441 −1.364 2.287 × 10−8

hsa-miR-377-3p −1.542 −1.418 2.186 × 10−7

hsa-miR-381-3p −1.523 −2.486 3.350 × 10−26

hsa-miR-486-5p −1.496 −10.611 3.737 × 10−26

hsa-miR-497-5p −1.254 −2.726 1.543 × 10−33

hsa-miR-99a-5p −1.433 −5.165 6.270 × 10−63

* Non-significantly dysregulated miRNAs in the TCGA BRCA database; in bold miRNAs with discordant expression
levels between the GEO DataSets and TCGA databases.
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Of note, the most upregulated (e.g., hsa-miR-182-5p, hsa-miR-183-5p, hsa-miR-21-5p) and
downregulated (e.g., hsa-miR-139-5p, hsa-miR-145-3p, hsa-miR-205-5p) miRNAs in the GEO DataSets
microarray platforms were also strongly dysregulated in the TCGA BRCA database. In addition,
among the 49 selected GEO DataSets miRNAs, three miRNAs (i.e., hsa-miR-146a-5p, hsa-miR-25-3p
and miR-202-3p) showed no alteration of their expression in TCGA BRCA database, while the
hsa-miR-1229-3p was downregulated in the GEO DataSets platforms and upregulated in TCGA BRCA
database. Overall, these results further confirm the robustness of the computational analyses performed
on the GEO DataSets for BC.

2.3. Computational Identification of microRNA Modulated by Diet and Exercise

As described for BC datasets, the GEO2R differential analyses performed for diet and exercise
datasets revealed that these interventions may beneficially modulate some miRNAs. In particular,
10 dysregulated miRNAs were found when merging the seven exercise datasets selected. Of these,
five were upregulated and five downregulated (Figure 2A).

Figure 2. Panel (A): Differentially expressed miRNAs before and after exercise. Panel (B):
Differentially expressed miRNAs before and after dietary interventions. miRNAs in common in
at least >50% of the selected datasets were selected. The results of the differential analyses were
expressed as log2FC values indicating with red scale boxes the upregulated miRNAs and blue scale
boxes the downregulated ones. Dataset IDs were marked with different colors depending on the
platform technology used. In bold are reported miRNAs also involved in BC.

In the same manner, three deregulated miRNAs, one upregulated and two downregulated,
were identified by analyzing the three diet datasets alone (Figure 2B).

It is important to note that some of these miRNAs were also deregulated in BC. In particular,
hsa-miR-486-5p and hsa-miR-7-5p were significantly upregulated by diet and exercise, respectively.
These miRNAs were also downregulated and upregulated, respectively, in the BC dataset. Similarly,
hsa-miR-139-5p was significantly downregulated by exercise and also downregulated in BC.

2.4. Breast Cancer (BC) miRNA Modulation of Epithelial-Mesenchymal Transition (EMT) Genes

As expected, the gene expression profiling interactive analysis (GEPIA) showed that the majority of
epithelial-mesenchymal transition (EMT) genes were significantly deregulated in breast cancer samples
compared to controls reflecting an epithelial phenotype. Overall, almost all the EMT genes analyzed
were downregulated in breast cancer samples compared to normal breast tissues, except for CDH1,
CTNNB1, and CDH2 that were upregulated in BC. However, of these, only CDH1 was statistically
upregulated. On the contrary, significantly downregulated EMT genes in thee BC samples were
TWIST1, TWIST2, ZEB1, ZEB2, and VIM (Figure 3).
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Figure 3. EMT gene expression levels in breast cancer samples compared to the controls. The GEPIA
software performs a four-way ANOVA differential analysis (using sex, age, ethnicity, and disease state
(tumor or normal) as variables for calculating differential expression. The p-values were adjusted
according to the Benjamini and Hochberg false discovery rate. The p-value threshold was set at 0.01
(* = p < 0.01). The relative expression levels were first log2(TPM+1) transformed and the log2FC was
defined as median (Tumor)—Median (Normal), where TPM is the transcript count per million.

After GEPIA, the mirDIP prediction tool was used to identify the level of interaction between the
computationally selected miRNAs strongly involved in BC development and the main genes involved
in EMT.

The mirDIP analysis showed that all 49 deregulated miRNAs in BC were able to interact with the
10 genes previously analyzed.

As reported in Figure 4, all selected miRNAs were able to target the EMT genes with interaction
levels ranging from low to very high. Some genes were shown to be strongly modulated by the
upregulated miRNAs. In particular, the CTNNB1, SNAIL2, ZEB1, and ZEB2 EMT genes showed the
highest interaction levels with the upregulated miRNAs; in addition, ZEB1 and ZEB2 also showed
very high interaction levels with some of the downregulated miRNAs. Generally, the upregulated
miRNAs showed higher interaction levels with the EMT genes compared to the downregulated
miRNAs. Of these miRNAs, the upregulated hsa-miR-106b-5p, hsa-miR-146a-5p, hsa-miR-203a-5p,
and hsa-miR-25-3p showed very high interaction levels with almost all the EMT genes analyzed,
suggesting that the modulation of these miRNAs may play a fundamental role in the regulation of
cancer progression and in the development of the EMT phenotype. In contrast, the TWIST1 and
TWIST2 genes showed the lowest interaction levels with all miRNAs (Figure 4).



Cancers 2020, 12, 2555 9 of 28

Figure 4. mirDIP analysis of BC miRNAs and EMT genes. Panel (A): Interaction between BC
upregulated miRNAs and EMT genes. Panel (B): Interaction between BC downregulated miRNAs and
EMT gene. The intensity of miRNA–gene interactions is reported as a red color scale ranging from
yellow (low interaction levels) and dark red (very high interaction levels). Each EMT gene is reported
with the level of interaction with the computationally selected BC miRNAs.

The same mirDIP analysis on EMT genes was performed for the miRNAs selected by analyzing
the diet and exercise datasets. Furthermore these miRNAs, particularly those obtained from the
exercise datasets, were able to highly interact with the aforementioned EMT genes such as SNAIL2,
ZEB1, and ZEB2. The most evident interactions were mediated by the upregulated hsa-miR-140-5p
and the downregulated hsa-miR-139-5p, hsa-miR-199a-5p, and hsa-miR-92a-3p (Figure 5).
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Figure 5. Panel (A): Interaction levels between EMT genes and miRNAs modulated by exercise.
Panel (B): Interaction levels between EMT genes and miRNAs modulated by diet. The intensity of
miRNA–gene interactions is reported as a red color scale ranging from yellow (low interaction levels)
and dark red (very high interaction levels). For each EMT gene is reported the level of interaction with
the computationally selected BC miRNAs.

Contrary to what was observed for BC miRNAs, in this case, the highest interactions were found
between downregulated miRNAs and EMT genes, especially with regard to diet-modulated miRNAs.
Therefore, these results suggest that lifestyle interventions, and in particular dietary interventions,
may represent a good therapeutic strategy aimed at reducing cancer aggressiveness, thus limiting the
mesenchymal transformation of cancer cells.

2.5. microRNA Pathway Prediction Analysis and miRNA-Targeted Genes Protein–Protein Interaction

The DIANA-mirPath analysis performed on the 10 miRNAs modulated by exercise showed that,
globally, these miRNAs were able to alter 59 different molecular and signaling transduction pathways
deposited on Kyoto Encyclopedia of Genes and Genomes (KEGG) and involved in different cellular
processes (data not shown). Specifically, these miRNAs were able to modulate 35 different pathways
and 2006 genes directly and indirectly involved in cancer development and progression (Table 3).
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Table 3. Molecular and signaling transduction pathways altered by the 10 miRNAs modulated by
exercise and involved in cancer.

KEGG Pathway p-Value N. of Targeted Genes Involved miRNAs

Pathways in cancer (hsa05200) 4.05564 × 10−7 179 10
PI3K-Akt signaling pathway (hsa04151) 0.011123026 140 10

Proteoglycans in cancer (hsa05205) 2.21725 × 10−17 107 10
MAPK signaling pathway (hsa04010) 0.011123026 104 10

Viral carcinogenesis (hsa05203) 6.08511 × 10−8 95 10
Transcriptional misregulation in cancer (hsa05202) 0.002760238 80 10

Hippo signaling pathway (hsa04390) 1.31008 × 10−8 76 10
FoxO signaling pathway (hsa04068) 1.48491 × 10−6 71 10

Cell cycle (hsa04110) 3.14391 × 10−5 66 10
Insulin signaling pathway (hsa04910) 0.009388457 65 10
AMPK signaling pathway (hsa04152) 0.006097228 62 10

Thyroid hormone signaling pathway (hsa04919) 0.000182888 61 10
HIF-1 signaling pathway (hsa04066) 3.77879 × 10−5 57 10
TNF signaling pathway (hsa04668) 0.014299582 54 10

Prostate cancer (hsa05215) 2.74229 × 10−5 52 10
Small cell lung cancer (hsa05222) 2.1672 × 10−5 50 10

Estrogen signaling pathway (hsa04915) 0.00014031 47 10
ErbB signaling pathway (hsa04012) 0.001313884 45 9

Chronic myeloid leukemia (hsa05220) 1.45098 × 10−6 44 10
Renal cell carcinoma (hsa05211) 1.69642 × 10−7 42 10

TGF-beta signaling pathway (hsa04350) 4.62474 × 10−6 41 10
Pancreatic cancer (hsa05212) 9.61555 × 10−6 40 10
Colorectal cancer (hsa05210) 5.0244 × 10−7 39 10

p53 signaling pathway (hsa04115) 0.00014031 39 10
Apoptosis (hsa04210) 0.018765462 38 10

Glioma (hsa05214) 2.56338 × 10−6 37 10
Central carbon metabolism in cancer (hsa05230) 2.56338 × 10−6 36 10

Non-small cell lung cancer (hsa05223) 8.72499 × 10−6 34 10
ECM-receptor interaction (hsa04512) 1.96805 × 10−5 34 10
mTOR signaling pathway (hsa04150) 0.003253273 34 10

Melanoma (hsa05218) 0.009412459 34 10
Endometrial cancer (hsa05213) 3.18028 × 10−5 32 10

Acute myeloid leukemia (hsa05221) 0.019544711 29 10
Bladder cancer (hsa05219) 0.000423154 25 9
Thyroid cancer (hsa05216) 0.000804104 17 10

Of these pathways, the most important and highly modulated were the following KEGG pathways:
“Pathways in cancer (hsa05200)”, “Proteoglycans in cancer (hsa05205)”, “MAPK signaling pathway
(hsa04010)”, and “PI3K-Akt signaling pathway (hsa04151)”. All these pathways are known to be
altered in cancer including that of the breast. Overall, exercise is able to modulate 652 univocal genes
through the modulation of the 10 computationally identified miRNAs. These results suggest that
exercise may play a key role in counteracting cancer progression, in line with current evidence in vivo,
and in support of the therapeutic efficacy of standard anticancer treatments. Indeed, among these
genes, the most frequently altered within the 35 identified KEGG pathways were MAPK1 (27 out of 35
pathways), AKT1, AKT2, PIK3CA, PIK3CB, PIK3R3 (26 out of 35), AKT3, KRAS (23 out of 35), CCND1,
TP53 (22 out of 35), HRAS, MAP2K2, NRAS, RAF1 (21 out of 35), BRAF (19 out of 35), and MYC (18
out of 35).

Overall, these miRNAs were potentially involved in the modulation of the MAPK family
(including RAS/RAF/MAPK genes); Caspase family (strongly involved in apoptosis), Cyclin/CDK
family; transcription factors; epidermal-, vascular endothelial-, fibroblast-, and platelet-derived growth
factors; and the SMAD family, among others.

Regarding the three miRNAs directly modulated by diet, the DIANA-mirPath analysis revealed
that diet-modulated miRNAs were able to modulate five different KEGG pathways: Adherens junction
(hsa04520), Choline metabolism in cancer (hsa05231), Epithelial cell signaling in Helicobacter pylori
infection (hsa05120), Colorectal cancer (hsa05210), and Glioma (hsa05214) (Table 4).
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Table 4. KEGG pathways altered by the three miRNAs modulated by diet.

KEGG Pathway p-Value N. of Targeted Genes Involved miRNAs

Adherens junction (hsa04520) 0.00127981 10 2

Choline metabolism in cancer (hsa05231) 0.0417592 10 2

Epithelial cell signaling in Helicobacter
pylori infection (hsa05120) 0.04463459 9 3

Colorectal cancer (hsa05210) 0.02665458 8 2

Glioma (hsa05214) 0.02665458 7 3

Overall, these miRNAs were able to modulate 44 genes of which 28 were univocal. Among these
genes, the most frequently altered were EGFR and RAC1 (four out of five pathways), PLCG1 (three out
of five), FOS, MET, NRAS, SMAD4, SOS2, TGFBR2, WASF1, and WASL (two out of five).

Although to a lesser extent than exercise, those miRNAs also directly modulated by diet were
able to alter several KEGG pathways and, in turn, key tumor suppressors and oncogenes involved
in cancer progression. In particular, diet-modulated miRNAs were able to target and interfere with
several genes mainly involved in cancer signal transduction pathways (e.g., EGFR, RAC1, PLCG1,
FOS, NRAS, SOS2, etc.).

To further corroborate these DIANA-mirPath results, Search Tool for the Retrieval of Interacting
Genes/Proteins (STRING) and Gene Ontology (GO) analyses were performed to cluster the 652 univocal
genes targeted by exercise-modulated miRNAs. In the STRING analysis, the high number of genes
identified does not permit a clear clustering of all hubs and networks among genes to be obtained.
Nevertheless, it showed that those genes were involved in 203 pathways and, in particular, 61 of them
were strongly involved in the breast cancer KEGG pathway (hsa05224) (Figure 6).

Figure 6. STRING protein interaction network of 61 out of 652 genes targeted by the selected miRNAs
and directly involved in the breast cancer KEGG pathway (hsa05224).
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In Figure 6, it is possible to note that the exercise-modulated miRNAs were able to modulate genes,
and consequently proteins, at all levels of a signal transduction pathway. Overall, the computationally
selected miRNAs were able to significantly alter the Wnt/B-catenin pathway, the MAPKs pathway, and
the PI3K/Akt pathway by altering ligands (FGF and WNT families), receptors (EGFR, ERBB2, FGFR1,
IGFR1, NOTCH family, and FZD receptors), intracellular tyrosine kinases (PI3K family, AKT family,
RAS and RAF family, etc.), transcription factors (E2F family), and finally, effectors.

The same STRING analysis was performed for the 28 univocal genes altered by diet-modulated
miRNAs. In this case, STRING protein–protein interactions showed that the 28 proteins derived from
the selected genes were able to alter 125 different KEGG pathways. Eight out of 28 proteins were also
involved in the breast cancer pathway (hsa05224) and these proteins refer to EGFR and RAS signal
transduction pathways, thus including proteins like EGFR, NRAS, PTEN, RPS6KB1, SP1, SOS2, FOS,
and E2F2 transcription factor (Figure 7).

Figure 7. STRING interaction network between genes targeted by the diet-modulated miRNAs. In red
are the genes involved in the breast cancer KEGG pathway (hsa05224).

By merging the 652 exercise-modulated and the 28 diet-modulated genes, it was possible to
identify 17 genes modulated by both diet and exercise and involved in several cancer pathways
including that of BC.

In order to establish the functional role of the 652 exercise-modulated and the 28 diet-modulated
genes, GO Panther analyses were performed to cluster such genes according to their Molecular
Function, Biological Process, and Cellular Component.

The two independent GO Panther analyses performed on exercise- and diet-modulated genes
showed that, overall, the genes identified were involved in the same molecular functions and biological
processes and were part of the same cellular component (Figure 8).
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Figure 8. STRING and Gene Ontology (GO) enrichment analyses of exercise- and
diet-miRNA-modulated genes. (A) Exercise-modulated genes clustered according to biological process;
(B) exercise-modulated genes clustered according to molecular function; (C) exercise-modulated genes
clustered according to cellular component; (D) diet-modulated genes clustered according to biological
process; (E) diet-modulated genes clustered according to molecular function; and (F) diet-modulated
genes clustered according to cellular component.

As shown in Figure 8, for the “Biological Process” category, the majority of exercise- and
diet-modulated genes were involved in cellular process, biological regulation, metabolic process,
response to stimulus, and in cellular signaling (Figure 8A,D). Concordant results were also obtained
for the “Molecular Function” category, showing that almost 90% of exercise- and diet-modulated
genes were involved in binding and catalytic activities as well as, to a lesser extent, transcriptional
regulation (Figure 8B,E). Finally, the analysis of the “Cellular Component” category showed that the
computationally identified genes were all part of the cell compartment, especially the cell, organelle,
and membrane. However, genes also belonging to the extracellular region including ligands and
growth factors were represented within both exercise- and diet-modulated genes (Figure 8C,F).

Overall, STRING and GO Panther analyses revealed that the miRNAs modulated by both diet
and exercise induced the strong modulation of the main pathways and genes involved in key cellular
processes responsible for BC development and therapeutic failure. Therefore, these encouraging results
suggest how a healthy lifestyle and diet may positively influence the outcome of breast cancer patients
after surgery.
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2.6. Overall Survival Predictive Value of BC, Exercise-Modulated, and Diet-Modulated microRNAs

The OncoLnc analysis performed on the 49 BC miRNAs, the 10 exercise-modulated miRNAs,
and the three diet-modulated miRNAs allowed for the identification of a miRNAs signature able to
predict the prognosis of BC patients with respect to OS, taking into account the survival data contained
in TCGA BRCA database.

The OncoLnc analysis performed on the 49 BC miRNAs revealed that only five miRNAs were
statistically associated with a lower OS (log-rank test, p < 0.05). Of these miRNAs, four were
upregulated (hsa-miR-484, hsa-miR-185-5p, hsa-miR-340-5p, and hsa-miR-146a-5p) and only one,
the hsa-miR-195-5p, was downregulated (Figure 9).

Figure 9. Prognostic value of BC dysregulated miRNAs according to OncoLnc. Panel (A): Upregulated
miRNAs statistically associated with the survival of patients. In the red box is reported the upregulated
miRNA whose expression is not concordant with survival curves. Panel (B): downregulated BC miRNA
statistically associated with the survival of patients.

As shown in Figure 9A, one of the four upregulated miRNAs, the miRNA hsa-miR-146a-5p
showed ambiguous results. Despite this miRNA being over-expressed in BC samples compared to
controls, its upregulation was associated with a better prognosis (Figure 9A).

Contrary to what was observed for the BC-associated miRNAs, no evidence was shown for
the possible prognostic value of exercise- and diet-modulated miRNAs. In particular, none of
the computationally selected miRNAs showed statistical significance with respect to OS. However,
some miRNAs downregulated by exercise showed a weak association with the survival of BC patients.
In particular, hsa-miR-139-5p and hsa-miR-331-3p downregulated by exercise showed interesting
results (Figure 10). Indeed, although not statistically significant, these two downregulated miRNAs
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were associated with a better prognosis for BC patients. Therefore, an integrated treatment including
exercise and/or diet that is able to downregulate these miRNAs may lead to a better prognosis for
BC patients.

Figure 10. Prognostic value of exercise-modulated miRNAs according to OncoLnc.

3. Discussion

It is known that environmental and lifestyle factors influence the health status of individuals. It has
been widely demonstrated that healthy diets and physical activity have beneficial effects in several
pathological conditions including cancer [55,56]. Several studies have highlighted how some foods with
a high glycemic index or inflammatory index are associated with chronic inflammation, and in turn, to a
plethora of inflammatory-related diseases including cancer, diabetes, and cardiovascular diseases [57,58].
Indeed, nutrients can directly or indirectly modulate the molecular and physiological mechanisms
responsible for cell proliferation, differentiation, and programmed cell death. Some foods including red
meat, sugar, and saturated fats may induce inflammation and oxidative stress, thereby predisposing
cells to genetic mutations [59]. In contrast, other foods and nutrients including vegetables, fruit,
olive oil, and prebiotics may prevent cancer development, possibly due to their high content of vitamins,
minerals, bioflavonoids, and isoflavones, which have antioxidant and hormone-modulating properties,
dietary fiber, which can beneficially affect human microbiota, and unsaturated fats involved in reduced
inflammation [18,60,61]. Although some molecular mechanisms have been elucidated by which diet
and exercise prevent cancer development and progression, to date there are still no clinical cancer
studies on the effect of integrative treatments on epigenetic modifications. Accordingly, the value of
epigenetic alterations in predicting the efficacy of integrative treatments and the prognosis of patients
is not established yet.

In this context, our research group proposed a cross-sectional randomized clinical trial, the “Vitamin
D, Exercise, Diet and Breast Cancer” study (DEDiCa) (NCT02786875), aimed at reducing the risk of
BC recurrence and at increasing the disease-free survival (DFS) in women with surgically resected
BC through the administration of vitamin D and healthy lifestyle including mild/moderate physical
activity and a low glycemic index Mediterranean diet. A secondary aim of the DEDiCa study was
to investigate whether changes in lifestyle may induce changes in the expression levels of miRNAs
associated with BC characteristics and with patient prognosis [37].

In line with the DEDiCa study, the aim of the present study was to computationally identify
miRNAs strictly associated with BC progression and with diet and exercise interventions. For this
purpose, a series of rigorous bioinformatic analyses were performed in order to select miRNAs with
diagnostic and prognostic significance for BC and to identify the molecular pathways and genes
modulated by diet and exercise.

As demonstrated in different studies, the availability of several cancer databases and of a huge
amount of bioinformatic data on tumor molecular and clinical features has allowed for the accurate
identification of useful biomarkers for the early diagnosis of malignant tumors or to predict the risk of
cancer relapse [62–66].
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In the present study, we proposed the integrated analysis of different miRNA expression profiling
datasets obtained from the GEO DataSets related to BC patients with dietary or exercise interventions.
This approach allowed for the collection of miRNA expression data related to more than 1000 BC
samples and healthy controls, which were merged with miRNA expression data obtained from more
than 300 samples related to individuals undergoing diet or exercise interventions. The integration of
different datasets and of a large number of samples allowed us to perform a more robust differential
analysis compared to the analysis of single datasets. Furthermore, the selection of highly dysregulated
miRNAs with concordant expression levels in the various datasets in which they were expressed
allowed for the selection of those miRNAs actually involved in the development and progression of
BC and certainly modulated by diet and exercise.

In particular, the integrated analysis of eight different BC miRNA microarray datasets allowed
for the identification of a set of 49 upregulated and downregulated miRNAs in BC. Among these
miRNAs, there were miRNAs already associated with the development of different tumors including
those for BC. The most represented upregulated miRNAs were hsa-miR-106b-5p, hsa-miR-200a-3p,
hsa-miR-21-5p, hsa-miR-141-3p, and hsa-miR-96-5p (over-expressed in seven out of eight datasets),
while the most upregulated miRNAs (with higher log2FC value) were hsa-miR-182-5p, hsa-miR-183-5p,
hsa-miR-7-5p, and the aforementioned hsa-miR-21-5p and hsa-miR-96-5p. Analogously, the most
frequent downregulated miRNAs were hsa-miR-125b-5p and hsa-miR-99a-5p (downregulated in all
eight analyzed datasets), hsa-miR-130a-3p, hsa-miR-205-5p, and hsa-miR-497-5p (seven out of eight
datasets). Among the downregulated miRNAs, the higher log2FC were observed for hsa-miR-125b-5p,
hsa-miR-139-5p, and hsa-miR-205-5p. The dysregulation of the identified miRNAs through the analysis
of BC datasets was further confirmed by analyzing the miRNA expression data contained in TCGA
BRCA database, thus corroborating the functional and diagnostic roles of these specific miRNAs in
BC patients.

Of note, these dysregulated miRNAs are the result of the analysis of different datasets containing
different molecular subtypes of BC. Therefore, the analysis of a single miRNA may not give useful
results for the effective detection of BC, while the concomitant evaluation of 49 miRNAs is representative
and potentially predictive for the identification of all BC subtypes.

Regarding the upregulated miRNAs identified, several studies have already highlighted their
oncogenic role. For example, increased levels of the miR-200 family were associated with a worse
prognosis in several cancers including that of the breast [67]. Similarly, hsa-miR-21-5p is considered
one of the main oncogenic miRNAs and its upregulation is observed in several cancers (e.g., breast,
colorectal cancer, pancreatic, and non-small cell lung cancers) [68,69]. Furthermore, a specific axis
involving the upregulated miRNA hsa-miR-96-5p, hsa-miR-182-5p, and hsa-miR-183-5p were identified
in breast cancer and other tumors and these miRNAs are known to be responsible for abnormal cell
proliferation and migration [70–72].

Regarding the downregulated miRNAs, hsa-miR-125b-5p is recognized as the most common
downregulated miRNA in several cancers [73]. Other identified miRNAs like hsa-miR-139-5p,
hsa-miR-205-5p, hsa-miR-486-5p, and hsa-miR-99a-5p have shown strong involvement in neoplastic
transformations and some studies are trying to use these miRNAs for the development of novel
therapeutic strategies in BC [74–77]. This evidence corroborates the real diagnostic and prognostic
significance of these miRNAs in patients affected by BC. Therefore, the set of miRNAs we identified
may be proposed as a panel of miRNAs for the monitoring of patients with BC. However, a single
miRNA cannot be univocally considered as a tumor suppressor or oncomiR. Indeed, each miRNA
is able to modulate the expression levels of different genes including both oncogenes and tumor
suppressor genes. Therefore, the tumor-promoting or suppressive action of miRNAs is the result of a
complex network of interactions that is established between different miRNAs and different genes
involved in neoplastic transformation.

Although several studies have confirmed the specificity of selected miRNAs in BC, there are
no concordant studies on the possible miRNA modulating effect of diet and exercise, especially for
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those miRNAs involved in BC. In this context, our results showed that 10 miRNAs were selectively
modulated by exercise interventions and three by diet. Among those miRNAs dysregulated in BC,
hsa-miR-7-5p, hsa-miR-139-5p, and hsa-miR-486-5p were also significantly modulated by exercise and
diet. Therefore, the evaluation of these three miRNAs will be useful not only to predict the prognosis
of patients, but also to evaluate the effectiveness of the integrative treatments as well as the adherence
of patients to the dietary and exercise recommendations. Aside from these three miRNAs strongly
associated with BC, the other miRNAs modulated by diet and exercise may also play a fundamental
role in BC; of these miRNAs, the upregulated miRNA hsa-miR-873-5p and the downregulated miRNA
hsa-miR-199a-5p are involved in BC cells stemness and in tumor suppression, respectively [78,79].

The importance of the diet- and exercise-modulated miRNAs here identified for BC patients
was further highlighted by the GEPIA and mirDIP analyses performed on the most important EMT
genes. First, the GEPIA analysis showed that the expression levels of the epidermal marker CDH1
were upregulated in patients with BC compared to healthy individuals; in contrast, the mesenchymal
marker (VIM) and the genes promoting the mesenchymal transition (SNAIL1/2, ZEB1/2, and TWIST1/2)
were all downregulated in BC samples compared to the controls. These trends of expression are typical
of all tumors originating from the epithelia. Subsequently, the mirDIP analysis revealed that both BC
miRNAs and diet- and exercise-modulated miRNAs were able to strongly target the EMT genes whose
dysregulation is associated with a worse prognosis in BC. In particular, both BC and diet- and exercise-
differentially expressed miRNAs were able to strongly interact with genes strongly responsible for
mesenchymal transition including CTNNB1, ZEB1/2, and SNAIL2, suggesting that the fine regulation
of such miRNAs mediated by dietary and exercise interventions may prevent EMT, thus reducing the
risk of BC recurrence [80]. To the best of our knowledge, for the first time, the interactions between
diet- and exercise-modulated miRNAs and genes potentially involved in BC were here investigated,
thus suggesting a relationship between diet, exercise, BC, and epigenetic mechanisms.

As a further demonstration of the effective involvement of both BC and diet- and
exercise-modulated miRNAs in BC, the DIANA-mirPath analysis showed that the selected miRNAs
were able to alter a total of 38 different cancer-related KEGG pathways (35 altered by BC miRNAs and
five by diet- and exercise-modulated miRNAs; of these latter pathways, two were in common with the
previous 35 pathways). Within these pathways, the most targeted genes were genes belonging to the
Wnt/B-catenin pathway, the MAPKs pathway, and the PI3K/Akt pathway such as MAPK1, AKT family,
PIK3 family, RAS/RAF genes, CCND1, EGFR, PTEN, etc. The alteration of all of these genes is known
to be responsible for the development of BC [81]. In particular, the alteration of the PI3K/AKT pathway
is recognized as a hallmark of BC. Recent studies have highlighted how the modulation of some
regulatory proteins in the PI3K/AKT pathway is mediated by various miRNAs [82,83]. In the same
manner, several studies have demonstrated that the dysregulation of CCND1 is associated with cancer
progression while the over-expression of EGFR and EGFR-ligands as well as the dysregulation of the
RAS/RAF/ERK signaling pathway are associated with the acquisition of drug resistance associated
with cancer progression [84–86].

The involvement of these miRNA-targeted genes in BC was not only predicted, but also validated
through the use of STRING and GO Panther enrichment analyses. These analyses thus confirmed that
these genes are strongly involved in the breast cancer KEGG pathways (hsa05224), affecting different
biological process and molecular functions as well as all cellular levels from the extracellular portion
with the modulation of signal molecules (WNT and FGF families) up to the nucleus with the modulation
of different transcription factors (E2F family) [87].

Finally, other important findings derived from the OncoLnc analysis allowed for the identification
of miRNAs predictive of patient outcome.

Although the OncoLnc analysis performed on diet- and exercise- modulated miRNAs did
not produce statistically significant results, the same analysis conducted on those 49 miRNAs
closely associated with the development of BC revealed five miRNAs predicting overall survival
(i.e., the downregulated miRNAs hsa-miR-484, hsa-miR-185-5p, hsa-miR-340-5p, and hsa-miR-146a-5p
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and the upregulated miRNA hsa-miR-195-5p). Several researchers have attempted to independently
validate the prognostic significance of these miRNAs, albeit with controversial results [88–92]. However,
here we suggest a novel prognostic strategy for the management of BC based on the evaluation of
multiple miRNAs instead of single miRNAs that alone are not predictive of BC recurrence or
patient survival.

Interestingly, although not statistically significant, the hsa-miR-139-5p and hsa-miR-331-3p
downregulated by exercise may be good indicators of the efficacy of the integrative intervention and of
patient prognosis as demonstrated by two independent studies [93,94].

Overall, the bioinformatic analyses described above allowed for the identification of specific
miRNAs able to predict the risk of BC recurrence, the efficacy of the diet and exercise treatments, and
patient prognosis. These findings, together with the new diagnostic approaches based on liquid biopsy
samples, circulating tumor DNA (ctDNA) [95], and high-sensitive techniques like droplet digital
PCR (ddPCR) [96–99], will allow for the effective validation of the prognostic significance of selected
miRNAs in liquid biopsy samples obtained from BC patients treated with integrative interventions in
order to improve current follow-up strategies as well as their quality of life.

However, as previously stated, the identification of promising non-invasive biomarkers cannot
be based on the analysis of a single miRNA, but it is necessary to carry out the integrated analysis
of a panel of miRNAs or different circulating markers (including miRNAs, proteins, and genetic or
expression markers) to increase the specificity of liquid biopsy-based diagnostic strategies. In addition,
it is important to note that often inconsistency exists between the expression levels of miRNA in tissue
and liquid biopsy samples [100]. Therefore, the analysis of liquid biopsy samples may need to be
confirmed by the analysis of miRNA expression in tissue specimens.

4. Materials and Methods

4.1. microRNA Expression Profiling Dataset Selection

For the identification of miRNAs strictly involved in the development and progression of BC
and actively modulated by diet and exercise, the publicly available GEO DataSets database was
used. Three different searches were performed in order to select microarray miRNA expression
profiling datasets related to BC, dietary, and exercise interventions, respectively. For this purpose,
three independent advanced searches were performed as previously described [101]. In particular,
for the selection of microarray datasets containing data about miRNA expression levels in BC,
the following search terms were used: “((breast cancer) AND ‘non coding rna profiling by array’
[DataSet Type]) AND ‘Homo sapiens’ [porgn:__txid9606]”.

For the selection of microarray expression profiling datasets related to dietary and exercise
interventions, the following two search strings were used: “((diet) AND ‘non coding rna profiling by
array’ [DataSet Type]) AND ‘Homo sapiens’ [porgn:__txid9606]” and “((Exercise) AND ‘non coding
rna profiling by array’ [DataSet Type]) AND ‘Homo sapiens’ [porgn:__txid9606]”.

All three searches were performed on the relevant datasets available up to March 2020.
Regarding the datasets selected for diet and exercise, the only inclusion criterion adopted was

datasets containing miRNA expression levels of treated and untreated human samples, thus discarding
all datasets obtained from animal models, cell lines, or other in vitro experiments.

Instead, regarding the selection of BC miRNA datasets, the advanced search allowed for the
identification of a list of all BC datasets containing miRNA expression levels. The inclusion and
exclusion criteria for these datasets were as follows:

Inclusion criteria: (i) datasets containing miRNA expression levels of BC tissues excluding datasets
containing serum or plasma samples; (ii) datasets reporting miRNAs expression levels of both tumor
and normal tissue samples; and (iii) datasets containing miRNA expression data of at least 10 tumor
samples and 10 controls.
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Exclusion criteria: (i) datasets containing exclusively tumor samples; (ii) datasets containing
miRNAs expression levels of animal models, cell lines or other in vitro experiments; and (iii) datasets
containing miRNAs expression levels detected in serum/plasma samples.

In particular, data derived from liquid biopsy samples were discarded in order to select
only datasets containing tissue samples with miRNA expression levels strictly associated with
the tumor mass.

Finally, the miRNA expression data contained in the “miRNA mature strand expression RNAseq”
dataset of the Cancer Genome Atlas Breast Cancer (TCGA BRCA) database were analyzed to further
confirm the miRNA expression results obtained from GEO DataSets microarray platforms.

4.2. Differential Analysis between Groups and microRNA Annotation

Regarding the BC datasets, differential analyses were performed between the tumor samples and
normal breast tissues, while for the diet and exercise datasets, the differential analyses of miRNAs
expression levels were performed between dietary and exercise treated and untreated samples.

In particular, the data matrices were obtained from each GSE dataset and samples were stratified
into two distinctive groups (Tumors vs. Normal; Diet vs. No Diet, Exercise vs. No Exercise).
Before differential analysis, the miRNAs of each dataset were annotated using the latest version of
miRBase nomenclature (V.22.) (http://www.mirbase.org/), thus converting the sequence or the miRNA
ID (MIMAT00 code) of each miRNA in the following nomenclature “hsa-miR-”. The differential analyses
between groups were subsequently performed by using the GEO2R software publicly available on GEO
DataSets. The results of the differential analyses were expressed as base-2 logarithm of Fold Change
(log2FC) in order to normalize the variability of results obtained from different microarray technologies.

miRNAs with log2FC with a statistical significance of p < 0.01 (for BC datasets) or p < 0.05 (for
diet and exercise datasets) were selected as significantly deregulated miRNAs.

4.3. Identification of microRNAs Involved in Breast Cancer and Effectively Modulated by Diet and Exercise

The lists of differentially expressed miRNAs obtained for each BC dataset were subsequently
merged by using the publicly available Venn Diagrams of the Bioinformatics & Evolutionary Genomics
(BEG) tool (http://bioinformatics.psb.ugent.be/webtools/Venn/). The same analysis was performed for
the diet and exercise datasets.

After data merging, among all the dysregulated miRNAs in the BC, diet, and exercise datasets,
only those highly upregulated or downregulated and with concordant expression levels in more than
50% of the analyzed datasets were selected.

For each miRNA, the log2FC was reported indicating with red boxes the over-expressed miRNAs
and with blue boxes the downregulated ones.

4.4. Interaction between Selected microRNAs and Epithelial-Mesenchymal Transition (EMT) Genes

After miRNA selection, the basal expression levels of EMT genes including CTNNB1, TWIST1/2,
SNAIL1/2, ZEB1/2, VIM, CDH1 (E-Cad), and CDH2 (N-Cad) were analyzed in the BC samples and
in healthy controls. For this purpose, the GEPIA software (http://gepia.cancer-pku.cn/index.html),
capable of deriving and processing the RNA sequencing expression data of 1085 breast cancer samples
and 291 normal breast tissues contained in the TCGA Breast Invasive Carcinoma and GTEx datasets,
was used [102].

Subsequently, the interaction levels between the computationally identified BC miRNAs and genes
responsible for EMT were established by using the bioinformatic tool microRNA Data Integration Portal
(mirDIP—Version 4.1.11.1, Database version 4.1.0.3, September 2018) (http://ophid.utoronto.ca/mirDIP).
In particular, mirDIP software allowed for the integration of the human RNA-gene target predictions
contained in 30 different miRNA prediction databases, thus obtaining more robust data about
the interaction levels between miRNAs and gene targets and avoiding database-specific bias [103].

http://www.mirbase.org/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://gepia.cancer-pku.cn/index.html
http://ophid.utoronto.ca/mirDIP
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The mirDIP analysis was performed for the aforementioned EMT genes: CTNNB1, TWIST1/2, SNAIL1/2,
ZEB1/2, VIM, CDH1 (E-Cad) and CDH2 (N-Cad).

4.5. microRNA Pathway Prediction Analysis

For the diet- and exercise-modulated miRNAs previously identified, a pathway prediction analysis
was performed to investigate the role of such miRNAs in the modulation of molecular and signal
transduction pathways known to be involved in tumor progression. For this purpose, the computational
prediction tool DIANA-mirPath (v.3) was used as previously described [104]. Briefly, DIANA-mirPath
is able to identify the molecular pathways significantly modulated by a list of miRNAs predicting the
targeted 3′-UTR gene regions by consulting the experimentally validated miRNA interactions obtained
from the DIANA-TarBase v7.0 database [105]. These interactions (predicted and/or validated) were
subsequently combined with sophisticated merging and meta-analysis algorithms by DIANA-mirPath,
giving as a result the genes and pathways targeted by a specific miRNA and the statistical significance
of this interaction.

4.6. miRNA-Targeted Genes Interaction and Gene Ontology (GO)

To better understand the functional effects of exercise- and diet- modulated miRNAs, STRING:
Functional protein association networks’ (https://string-db.org/) software was used to establish the
interaction network of the genes identified through DIANA-mirPath analysis [106]. For both exercise-
and diet- modulated genes, the involvement within the breast cancer KEGG pathway (hsa05224)
was highlighted.

For the genes identified through DIANA-mirPath, the software GO Panther (GO Panther
v.14.0—http://pantherdb.org/) [107] was used to perform GO analysis. The DIANA-mirPath-selected
genes were classified according to their Molecular Function (MC), Biological Process (BP), and Cellular
Component (CC).

4.7. Prognostic Significance of Computationally Selected microRNAs

In order to determine the prognostic significance of the computationally selected miRNAs obtained
from the BC, diet, and exercise datasets, the bioinformatics tool OncoLnc (http://www.oncolnc.org/)
was used [108]. In particular, OncoLnc is able to calculate Kaplan–Meier curves by analyzing the
miRNA expression and survival data derived from TCGA BRCA datasets. The Kaplan–Meier curves
were obtained following the instruction provided by the developers of the software, thus comparing
the miRNA expression levels and survival data of the bottom quartile samples and top quartile samples.
Overall survival (OS) curves were reported only when the log-rank p-value was p < 0.05.

4.8. Statistical Analyses

The log2FC values of the computationally selected miRNAs were already normalized by the
GEO2R software. As stated before, for the BC datasets, miRNAs with a p-value of p < 0.01 were
selected, while for the diet and exercise datasets, miRNAs with a p-value of p < 0.05 were selected.
With regard to the GO and pathway prediction analyses, STRING, GO Panther, and DIANA-mirPath
automatically perform proper statistical tests, providing statistically significant data expressed as
p-values. Finally, for the Kaplan–Meier analysis, only overall survival curves with a log-rank p-value
p < 0.05 were selected.

5. Conclusions

The integration of different miRNA expression microarray datasets and the use of several
bioinformatics prediction tools has allowed for the identification of miRNAs strictly involved in
BC. Among these, the miRNAs hsa-miR-182-5p, hsa-miR-183-5p, hsa-miR-200 family, hsa-miR-21-5p,
hsa-miR-7-5p, hsa-miR-96-5p, hsa-miR-125b-5p, hsa-miR-139-5p, hsa-miR-497-5p, hsa-miR-99a-5p,

https://string-db.org/
http://pantherdb.org/
http://www.oncolnc.org/
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and hsa-miR-486-5p were altered in BC and modulated by diet and exercise interventions while
the miRNAs hsa-miR-484, hsa-miR-185-5p, hsa-miR-340-5p, hsa-miR-146a-5p, hsa-miR-195-5p,
hsa-miR-139-5p, and hsa-miR-331-3p were specific for the prediction of the survival of patients. These
data suggest that diet and exercise exert a double protective role in cancer through the modulation of
epigenetic factors and the well-documented positive regulation of gene expression.

The in silico results here obtained represent the starting point for the in vivo validation that will
be performed in liquid biopsy samples collected from BC patients. In particular, future validation
studies will benefit from our clinical trial DEDiCa, where the expression levels of miRNAs identified
in the current in silico study will be analyzed in liquid biopsy samples obtained from BC patients
treated with a lifestyle treatment by using specific ddPCR probes for the selected miRNAs. The miRNA
expression results will be further compared with the clinical-pathological features of patients and the
data obtained from food and physical activity diaries in order to establish the effectiveness of DEDiCa
treatment in reducing the risk of BC recurrence and in improving the general health and quality of life
of patients.
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