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Abstract. Cancer tissues harbor a large microbiome. There is 
growing evidence that the tumor microbiome is significantly 
correlated with the prognosis of cancer patients, but the exact 
underlying mechanisms have remained elusive. Although the 
tumor mycobiome is less abundant than the biome of bacteria, 
it is prevalent in most cancers in humans. The present review 
describes in detail the impact of the tumor mycobiome on 
cancer pathogenesis. The tumor mycobiome promotes tumor 
progression and metastasis by affecting the human immune 
system, maintaining a pro‑inflammatory environment, 
producing aflatoxins, attenuating cell adhesion mechanisms 
and fungal‑bacterial interactions. Furthermore, the tumor 
mycobiome likewise has great potential for cancer prevention, 
diagnosis and treatment.
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1. Introduction

Cancer is not only a major public health problem world‑
wide, but also one of the leading causes of human mortality. 
Host‑microbe immune interactions profoundly influence cancer 
development, progression and treatment outcomes (1‑11). 
Fungi and bacteria co‑colonize the mammalian skin epithe‑
lium, respiratory tract, gastrointestinal tract and reproductive 
organs, forming a complex ecosystem of microbe‑microbe 
and host‑microbe interactions that significantly impact human 
health (12‑21). Although only ~0.1% of microbial DNA is 
present in the gut (22), fungal infections cause more than 1.5 
million deaths worldwide each year (23).

There is growing evidence linking the human microbiome 
(bacteria, fungi and viruses) to cancer and cancer outcomes (24,25). 
In recent years, several bacteria have been observed to be associ‑
ated with cancer development and progression. Helicobacter 
pylori infection is the strongest risk factor for the development 
of malignant tumors in the stomach, and epidemiologic studies 
have determined that the attributable risk of gastric cancer due to 
Helicobacter pylori is ~75% (26). At the same time, in the lower 
gastrointestinal tract, genotoxic Escherichia coli, Bacteroides 
fragilis, Streptococcus bovis and Fusobacterium nucleatum are 
associated with the pathogenesis of colorectal cancer (27). Among 
these cancer‑associated bacteria, they can modulate host immu‑
nity and cause chronic inflammation, which is thought to have 
oncogenic effects. Recent reports have also shown that bacterial 
DNA circulating in the blood of cancer patients can be used as a 
predictive biomarker for tumors (28,29) and intracellular bacteria 
have been found in numerous tumor types (30).

In recent times, scientists have been exploring the link 
between cancer and bacteria and viruses, but few studies 
have focused on the relationship between fungi and cancer. 
Although the human fungal biome is less abundant than 
the bacterial group, it can still significantly affect human 
health (31‑33). Previous studies have demonstrated that fungal 
DNA is present in most human cancer tissues. However, the 
role and impact of the tumor mycobiome on cancer pathogen‑
esis remain largely unknown.

2. Presence of tumor mycobiome within the tumor tissue

Narunsky‑Haziza et al (34) statistically characterized the 
tumor mycobiome in 17,401 tissue, blood and plasma samples 
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from four independent cohorts of 35 cancer types using 
internal transcribed spacer sequencing and whole‑genome 
sequencing methods. Statistics revealed that 5 fungi, including 
Malasseziomycetes, Saccharomycetes, Diothideomycetes, 
Sordariomycetes and Candida, were significantly enriched 
in all types of cancer (lung, breast, melanoma, osteosarcoma, 
ovarian, gastric, colorectal and head and neck tumors). 
By contrast, certain specific fungi (Microbotryomycetes, 
Wallemiomycetes, Agaricomycetes, Tremellomycetes) were 
only found in specific cancer sites, so the tumor mycobiome is 
prevalent in most cancers in humans (35).

3. Differences in fungal biome composition in cancer 
patients compared to healthy controls

Fungal biome imbalance was found in patients with gastric 
cancer. The fungal biome characteristics of patients with 
gastric cancer differed significantly from controls, with 
reduced diversity and enrichment of Candida and Alternaria 
in gastric cancer tissues (36). Colorectal fungi were altered 
in patients with colorectal cancer compared to normal 
subjects. Patients with colorectal cancer had increased 
Malasseziomycetes, decreased Saccharomycetes and a 
distorted ratio of Basidiomycota to Ascomycota (37). The 
distribution of the fungal genera Aspergillus, Malassezia, 
Rhodotorula, Pseudogymnoascus, Kwoniella, Talaromyces, 
Debaryomyces, Moniliophthora, Pneumocystis and Nosemia 
was altered in colorectal cancer, as verified in independent 
Chinese and European cohorts (38).

4. The tumor mycobiome is less abundant than the bacterial 
one, and both have a symbiotic relationship in tumors

Analysis of the tumor mycobiome in various body parts 
showed a maximum of 1 fungal cell per 10,000 tumor 
cells (39). In The Cancer Genome Atlas (TCGA) primary 
tumors, the average relative abundance of bacteria and fungi 
was 96 and 4%, respectively, which confirms the lower abun‑
dance of fungi compared to bacteria (34). It has been found 
that there is a symbiotic rather than competitive ecological 
interaction between fungal and bacterial biomes in the tumor 
microenvironment (35). However, this differs from the mani‑
festation of alternating fungal and bacterial populations in the 
gastrointestinal tract (9,40).

5. The tumor mycobiome promotes cancer progression and 
metastasis

The tumor mycobiome not only resides in tumors but also 
promotes tumor progression and metastasis and spreads 
systemically by affecting the human immune system, main‑
taining a pro‑inflammatory environment, producing aflatoxins, 
attenuating cell adhesion mechanisms and fungal‑bacterial 
interactions (Fig. 1).

The tumor mycobiome affects the surveillance of cancer by 
the human immune system. As numerous cancer patients 
are immunosuppressed, they are more susceptible to fungal 
infections, which may further aggravate their condition (41). 
It has been demonstrated that fungal‑driven pancreatic cancer 

occurs through complement cascade activation and IL‑33 
secretion (35). Aykut et al (31) have shown that Malassezia 
can secrete hydrolases to release host lipids and activate the 
C3 complement mannose‑binding lectin pathway to promote 
an immunosuppressive tumor environment in pancreatic 
cancer. The tumor mycobiome activates dectin‑1‑mediated 
Src‑Syk‑caspase recruitment domain family member 9 
(CARD9) signaling in the pancreas, leading to IL‑33 secre‑
tion and tumor growth, and thus, this may be the mechanism 
by which the tumor mycobiome promotes pancreatic cancer 
progression (42).

The Colorectal Cancer Risk Factor Assessment report 
indicated that the human body has an inadequate immune 
response to fungi, such as inflammatory bowel disease (43) and 
ulcerative colitis (12). Antifungal treatment has been reported 
to exacerbate colitis and colorectal cancer, while colonic 
fungi enhance azoxymethane/dextran sodium sulfate‑induced 
inflammatory vesicle activation in colitis (44).

The tumor mycobiome maintains a pro‑inf lammatory 
environment and promotes cancer progression. There are 
numerous hypotheses about tumor pathogenesis, among 
which the theory of an inflammatory mechanism is a 
widely accepted hypothesis. Inflammation is usually the 
basis for resistance to harmful stimuli, accelerating wound 
recovery and maintaining normal tissue function, and its role 
involves endothelial cells, immune cells and inflammatory 
factors (45).

Self‑limiting acute inflammation benefits the healing 
process (46). However, when it gets out of control, it may 
develop into chronic inflammation that induces tissue lesions 
and predisposes to cancer (47), including tumorigenesis, 
progression and metastasis (48). Only a small percentage of 
cancers are attributed to germ cell lineage mutations, while 
90% of cancers are associated with somatic mutations and 
environmental hazards, and the latter is always associated 
with chronic inflammation or infection (49). Epidemiological 
surveys have shown that inflammation is strongly associated 
with the development of ~20% of cancers (50). Available 
evidence suggests that hypoxia‑associated inflammatory 
cytokines or chemokines, such as IL‑1, IL‑6 and TNF, are 
significantly elevated in the tumor microenvironment (51). 
Cancer patients may benefit from anti‑inflammatory drugs, 
such as TNF blockers and non‑steroidal anti‑inflammatory 
drugs (52,53).

Malassezia. In cancer patients, higher levels of Malassezia 
are associated with unfavorable prognosis (54). Malassezia also 
exhibits various pro‑inflammatory biological properties, such 
as disruption of the epithelial barrier, enrichment of inflamma‑
tory factors and degradation of the extracellular matrix, all of 
which can promote tumor formation and malignant progres‑
sion (54). Malassezia can activate NLR family pyrin domain 
containing 3 inflammasome via Dectin2/caspase recruitment 
domain family member 9 signaling and accelerate IL‑1β 
production to exacerbate inflammation (55). Zhang et al (56) 
also demonstrated that Malassezia could produce nanovesicles 
rich in allergens or proteins, which may trigger and maintain 
inflammation by activating the NF‑κB pathway and upregu‑
lating IL‑6 production in the immune microenvironment 
(Fig. 2).
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In addition, other mechanisms may be involved in 
Malassezia‑associated inflammatory cancer transformation 
processes, such as DNA lesion accumulation and imbalance 
of oncogenes and anti‑oncogenes. Inflammatory cells may 
induce DNA damage by releasing cytotoxic reactive oxygen 
species (57). A persistent inflammatory state may lead to 
increased and accumulated DNA damage in cells, which may 
promote genetic mutations, generate genomic instability and 
ultimately produce oncogenic effects (58).

Candida. Candida is functionally associated with a 
variety of cancers. Studies have shown that gastrointestinal 
cancers have different relative abundances of Candida and 
Saccharomyce, so gastrointestinal cancers can be classified as 
Candida‑ and Saccharomyce‑associated tumors (35).

Candida‑dominant tumors are associated with enhanced 
expression of IL‑1 pro‑inflammatory immune pathways 
and increased neutrophils, a major inflammatory cyto‑
kine that plays a crucial role in carcinogenesis and tumor 
progression (35). Candida increases inflammation, which 
promotes Candida colonization, thereby maintaining a 
pro‑inflammatory environment, leading to a vicious cycle 
that persists (35). Therefore, prevention and management of 
Candida infection and associated inflammation may help to 
block this destructive inflammatory state in cancer and may 
be a reasonable combination therapy option during cancer 
treatment.

Of note, there are interactions between Candida and 
different bacteria in gastric cancer. Candida was observed 
to be positively correlated with Lactobacillus and negatively 
correlated with Helicobacter pylori (35).

The tumor mycobiome produces aflatoxins that promote 
cancer progression. Colorectal cancer is the third most 
common cancer type worldwide, with >500,000 related 
deaths per year (59,60). The contribution of the intestinal 
flora to colorectal cancer progression has been widely 
recognized (61‑63). Intestinal fungi constitute a significant 
component of the human intestinal flora, but their role in 
colorectal cancer has remained elusive (64). Several studies 
have confirmed a correlation between intestinal fungi and 
colon cancer (38,44,65‑67).

Lin et al (64) conducted a meta‑analysis using shotgun 
metagenomics pooling 1,329 metagenomes from 8 cohorts 
(454 colorectal cancers, 350 adenomas and 525 healthy 
subjects) to evaluate the lesser bias of the gut fungal biome on 
colorectal cancer. Statistical analysis of the intestinal fungal 
biome composition showed that Aspergillus rambellii was 
identified as the most abundant fungal species. Seven of the 
eight cohorts showed a consistent association of Aspergillus 
rambellii with colorectal cancer. Further studies showed that 
Aspergillus rambellii promoted colorectal cancer cell growth 
in vitro and tumor growth in xenograft mice (64).

Aspergillus rambellii has been shown to have the ability 
to produce multiple aflatoxins (e.g., aflatoxin B, aflatoxin G 
and the aflatoxin precursor sterigmatocystin) (68‑70). The 
association of Aspergillus spp. of fungi with cancer has been 
frequently reported (71). Aflatoxins are toxins of fungal origin 
classified as carcinogens and mutagens, exemplified by their 
powerful liver cancer‑promoting effects (62). For instance, 
long‑term consumption of foods containing aflatoxins was 
determined to be associated with a significantly increased risk 
of liver cancer (72). Because aflatoxins can damage macro‑
phages and dendritic cells by activating Toll‑like receptors, 
they can induce immune dysregulation and promote tumor 
progression (73,74) (Fig. 3).

The tumor mycobiome attenuates cell adhesion mechanisms 
and promotes cancer metastasis. In colon cancer, Candida not 
only predicts disease but is also associated with diminished 
cell adhesion mechanisms and tumor metastasis (35). Loss 
of epithelial barrier function and increased tight junction 
permeability are standard features of lower gastrointestinal 
cancers (75) and are high‑risk factors for tumor metastasis (76). 
Malassezia can promote cancer metastasis by disrupting the 
epithelial barrier (54). Dohlman et al (39) found that tumor and 
blood samples from the same patient had highly similar fungal 
DNA, suggesting that an increased abundance of Candida 
in advanced metastatic gastrointestinal tumors directly or 
indirectly leads to genetic dysregulation of cell adhesion, 
resulting in a weakened epithelial barrier and translocation of 
fungal DNA from the primary tumor site into the bloodstream, 
promoting tumor metastasis.

Figure 1. The tumor mycobiome promotes tumor progression and metastasis by affecting the human immune system, maintaining a pro‑inflammatory environ‑
ment, producing aflatoxins, attenuating cell adhesion mechanisms and fungal‑bacterial interactions.
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Tumor fungal‑bacterial biome interactions promote cancer 
progression. Through extensive genomic analysis, tumor 
fungal‑bacterial biome interactions can promote colorectal 
carcinogenesis through the upregulation of D‑arginine and 
D‑ornithine metabolic pathways and stimulation of the butanoate 
metabolic pathway (77). Liu et al (77) demonstrated that two 
marker genes, oraS and oraE, in the D‑arginine and D‑ornithine 
metabolic pathways were upregulated in colorectal cancer. The 
butanoate metabolic pathway, which is strongly activated in 
colorectal cancer but less studied, has also been identified (78). 
Tumor fungal‑bacterial biome interactions promote colorectal 
cancer progression through upregulation of bdhA and bdhB 

gene expression in the butanoate metabolic pathway (77). 
Therefore, butanoate in the butanoate metabolic pathway is 
crucial in supporting the tumor microenvironment (79). Tumor 
fungal‑bacterial biome interactions are being explored as an 
effective means of maintaining homeostasis in the gut.

6. The tumor mycobiome may be used as a marker for 
cancer diagnosis

Numerous studies have indicated the potential of bacteria 
as biomarkers for the diagnosis of colorectal cancer (64). 
Wirbel et al (80) and Thomas et al (81) performed meta‑analyses 

Figure 2. Malassezia can activate NLRP3 inflammasome via Dectin2/CARD9 signaling and accelerate IL‑1β production to exacerbate inflammation. CARD9, 
caspase recruitment domain family member 9; NLRP3, NLR family pyrin domain containing 3.

Figure 3. Aspergillus rambellii induces immune dysregulation and promotes tumor progression by producing aflatoxins (e.g., aflatoxin B, aflatoxin G), which 
in turn activate Toll‑like receptors that damage macrophages and dendritic cells.
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to identify several bacteria enriched in colorectal cancer with 
utility as diagnostic biomarkers for colorectal cancer.

By contrast, with the study of the tumor microbiome, 
fungi, in addition to bacteria, may be used as biomarkers for 
the noninvasive diagnosis of tumor patients. In TCGA cohorts, 
fungal biome richness varied significantly among cancers (35). 
For instance, Candida, Saccharomyces cerevisiae and 
Cyberlindnera jadinii are highly abundant in the gastroin‑
testinal tumor fungal organism community and Blastomyces 
and Malassezia are highly abundant in lung cancer and breast 
cancer, respectively (39).

A further study performed qualitative and quantita‑
tive analyses of 20 different fungal DNAs released into the 
bloodstream and the results suggested that they may be used 
to distinguish patients with cancer from healthy individuals, 
even in early‑stage disease (35). This suggests that the tumor 
fungal biome has utility in cancer diagnosis.

In the study conducted by Lin et al (64), the average areas 
under the receiver operating characteristic curves (AUC) of 
pure bacterial biomarkers was only 73%, while the combi‑
nation of fungal and bacterial mixed biomarkers showed a 
significant improvement in diagnostic performance with an 
average AUC of 83% and an increase in the relative change 
in AUC of 1.44‑10.60% (64). This suggests that the combina‑
tion of fungal and bacterial biomarkers is more accurate than 
the combination of pure bacterial species in differentiating 
patients with colorectal cancer from healthy individuals, thus 
highlighting the potential use of the tumor mycobiome in 
clinical diagnostic applications.

In the study of colorectal cancer conducted by Liu et al (77), 
a comprehensive analysis of different national microbiomes 
was performed using colorectal cancer metagenomic datasets 
of 8 different cohorts. They found that fungi, archaea and 
viruses were able to distinguish patients with colorectal cancer 
from healthy controls in multiple geographic cohorts (77). 
Coker et al (38) successfully distinguished 184 patients with 
colorectal cancer from 204 healthy controls by detecting 
fungal biomes in the stool.

Candida is transcriptionally active in gastrointestinal 
tumors (35). Enrichment of tumor‑associated Candida DNA 
was found to be significantly associated with reduced survival 
in patients with gastrointestinal tumors due to the association 
of Candida with gene expression for cytosolic DNA sensing, 
Toll‑like receptor signaling and Nod‑like receptor signaling 
in gastric cancer (39). This not only suggests that Candida 
increases the severity of gastrointestinal tumors but also that 
Candida may be a promising biomarker for predicting disease 
outcomes.

7. The tumor mycobiome has potential preventive or 
therapeutic value for cancer

The use of antimicrobial agents that target known pathogenic 
microorganisms effectively prevents the onset and progression 
of the disease. The use of targeted antifungal agents is helpful 
in the prevention or treatment of gastrointestinal cancers (37). 
In a mouse model of human pancreatic ductal adenocarci‑
noma, Malassezia infiltrates and accelerates the progression of 
human pancreatic ductal adenocarcinoma, a condition that can 
be reversed by antifungal treatment (31). Antifungal treatment 

targeting Malassezia resulted in a 40% reduction in the inci‑
dence of pancreatic cancer in mice (31). In a mouse model of 
esophageal cancer, the oral fungus Dictyostelium significantly 
increased the severity of esophageal squamous cell carcinoma, 
a condition that could be reversed by antifungal treatment (82).

In addition, the use of fungal probiotics can prevent and 
treat gastrointestinal cancers. Probiotics are microorganisms 
that improve health when consumed in the correct amounts. 
The most common probiotics are bacteria that have been 
shown to inhibit the proliferation of pathogenic intestinal 
microorganisms and to prevent carcinogenic inflammation 
in the esophagus, stomach, pancreas and colorectum (83‑85). 
By contrast, fungi can also be ingested as probiotics and 
have been reported to be used to alleviate gastrointestinal 
cancers (37). The Helicobacter pylori eradication rate 
improved when Saccharomyces boulardii was combined with 
Lactobacillus gasseri, Lactobacillus reuteri, Lactobacillus 
acidophilus, Streptococcus faecalis, Bacillus subtilis and 
Bifidobacterium (86).

The use of fungal probiotics in treating gastrointestinal 
cancers is of great importance. Because of their characteristic 
cellular structure, they can survive in the unfavorable environ‑
ment of the gastrointestinal tract (87,88). As more research on 
the efficacy and safety of fungal probiotics is conducted, they 
may directly or indirectly modulate the tumor microbiome to 
prevent and treat gastrointestinal cancers (37).

With the above summary and analysis, the fungal biome 
that targets and attacks tumors is likely to be a good way to 
treat cancer.

8. Conclusion and future perspective

This review provides a comprehensive summary of the impact of 
the tumor mycobiome on cancer pathogenesis. The tumor myco‑
biome promotes tumor progression and metastasis by affecting 
the human immune system, maintaining a pro‑inflammatory 
environment, producing aflatoxins, attenuating cellular adhesion 
mechanisms and fungal‑bacterial interactions. Furthermore, the 
tumor mycobiome also has tremendous potential for cancer 
prevention, diagnosis and treatment.

Although studies on the effect of the tumor mycobiome on 
cancer pathogenesis have become more frequent, the results 
are not uniform because of the differences between different 
populations and inconsistent standards for metagenomic data 
generation and processing. The future development of stan‑
dardized and low‑cost sequencing technologies and pipeline 
analysis methods to improve the quality of data collection and 
analytical processing, and the initiation of longitudinal studies 
with large sample sizes in different populations to clarify the 
specific mechanistic relationships, will be crucial for research 
in this field.
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