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ABSTRACT
Resolving the origin of intratumor heterogeneity has proven to be one of the central challenges in cancer
research during recent years. Two theoretical models explaining the emergence of intratumor
heterogeneity have come to dominate cancer biology literature: the clonal evolution model and the
hierarchical/cancer stem cell model. Recently, a plastic model that combines elements of both the clonal
and the hierarchical model has gained traction. Basically, this model proposes that cancer stem cells
engage in bidirectional interconversion with non-stem cells, thereby providing the missing link between
the 2 conventional models. Confirming bidirectional interconversion as a hallmark of cancer is a crucial
step in understanding tumor heterogeneity and has important therapeutic implications. In this review,
current methodologies and theoretical and empirical evidence regarding bidirectional interconversion will
be discussed.

Abbreviations: CSC, cancer stem cell; iPSC, induced pluripotent stem cell; NSCC, non-stem cancer cell; TME, tumor
microenvironment
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Introduction

Our understanding of the molecular mechanisms underlying
the biology of cancer has steadily increased over the last decades
and, with it, the development of rationally designed targeted
anticancer therapeutics. Unfortunately, the identification of
potential therapeutic targets is hampered by the extensive het-
erogeneity observed between tumors (intertumor heterogeneity)
and within tumors (intratumor heterogeneity). Currently, 2
models are used to explain intratumor heterogeneity: the clonal
evolution model and the cancer stem cell (CSC) model.

The clonal evolution model, also referred to as the stochastic
model, was first proposed in 1976 by Peter Nowell. He postu-
lated that tumor development is a Darwinian process driven by
the accumulation of spontaneous (epi-) genetic mutations fol-
lowed by successive selection of clones.1,2 According to this the-
ory, every cell is equally capable of becoming a cancer cell as
long as it has acquired a competitive advantage over its neigh-
bors. Ultimately, the cell population best suited for survival and
proliferation is expected to dominate a tumor. Heterogeneity
within this model is often attributed to microenvironmental
influences and the presence of genetically distinct subclone
populations.3 However, histologic analyses have revealed that
tumors are often organized in a hierarchical fashion, a property
that cannot be explained by the stochastic model. Therefore, a
theory has emerged suggesting that only a subset of cells within
a tumor is capable of tumor initiation and maintenance, and
that these cells employ characteristics of healthy stem cells.

Accordingly, these cells have been dubbed “cancer stem cells”
(CSCs). Such cells have been identified in both leukemic and
solid cancers.

The cancer stem cell model proposes that, much like normal
tissue, tumors are organized in a hierarchical fashion, with rare
multipotent and immortal CSCs at the top of the hierarchy, and
transient, terminally differentiated non-stem cancer cells
(NSCCs) forming the bulk of the tumor.4–6 According to this
model, much of the observed tumor heterogeneity is the result of
stable (epi)genetic regulation that is subjected to extensive intrin-
sic and extrinsic regulation.7,8 Currently, the CSC theory is seen
as the prevailing model for tumor development as it most accu-
rately explains the heterogeneity observed within tumors. In addi-
tion to contributing to heterogeneity, CSCs are suggested to be
responsible for tumor progression, resistance to conventional
chemotherapy, and increased invasiveness, and are therefore an
interesting target for therapy. However, it is important to realize
that the clonal and CSC models are not mutually exclusive in
tumorigenesis: CSCs are able to undergo clonal expansion and
selection and there is a clear role for the tumor microenviron-
ment.9–11 Additionally, it is possible that only part of the tumor is
organized hierarchically, while other sections are patterned by
clonal evolution.3 Overall, however, the current models do not
fully explain the observed heterogeneity, and the level of complex-
ity might be greater than suspected.

Recently, a new type of model describing tumor heterogene-
ity has gained traction: the plastic CSC model. The plastic
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model combines elements of both stochastic and CSC theories.
In agreement with the CSC model, it proposes that tumor het-
erogeneity is the result of hierarchical organization of pheno-
typic cell states. However, in contrast to the CSC model, it
proposes that tumor populations behave in a dynamic fashion
in which CSCs can differentiate into more mature progeny,
and that differentiated cells may “dedifferentiate” back into
stem-like cells, a process collectively referred to as bidirectional
interconversion. Bidirectional interconversion is consequently
linked to the clonal evolution model that proposes that non-
tumorigenic cell fractions can in principle reacquire tumori-
genic potential.

Bidirectional interconversion and dedifferentiation have
been studied in many organisms and organ systems.12,13 In
Drosophila melanogaster, differentiating germ cells can readily
and stably revert into functional stem cells within the ovary.14

In mammals, this phenomenon has been described in organ
systems such as the intestines,15 lungs,16 breast,17,18 and the
heart.19 Dedifferentiation of committed progeny mostly occurs
after tissue damage and implies that differentiated cells can
function as a reserve to compensate for the loss of stem cells.20

This concept not only provides the basis for regenerative medi-
cine, but also has major implications for cancer research. In
particular, it affects our definition of what makes a stem cell. If
bidirectional conversion contributes to tumorigenesis, it is
essential to reassess our current models of tumor heterogeneity.
In this review, we will discuss the principles of tumor plasticity
and evaluate the involvement of bidirectional interconversion
in tumor development.

Considerations regarding the plastic model

Critics of the plastic model argue that by introducing plasticity
into conventional CSC models, the debate is at risk of becom-
ing a purely semantic one. After all, if NSCCs can readily con-
vert to CSCs, what is the use of drawing a functional
distinction between the two?21,22 It is important to address
some of the seemingly paradoxical properties of plastic models.
Consider this: If a NSCC can in principle become a CSC, can a
NSCC still be considered a mortal, non-tumorigenic cell?
Would the boundary between NSCC and CSC become an arbi-
trary one? Instead, would it not be more practical to regard
stemness as a cell property, where CSCs reside at the apex of
the hierarchy and all other NSCCs lay on a spectrum of stem
cell potential (Fig. 1)? One of the main arguments supporting
this assumption is the inability to demonstrate phenotypically
distinct CSC populations: purified CSC populations have
always remained phenotypically heterogeneous, regardless of
the selection criteria used.23,24 In principle, it can be envisioned
that it is possible to use an ever more stringent and expansive
set of criteria to allow for more phenotypically homogenous
CSC populations;25 however, such criteria would most likely
differ for each individual stem cell compartment. When viewed
from the perspective of the plastic model, it makes less sense to
search for a phenotypically distinct CSC population, as each
individual cell is phenotypically fluid and will meet different
criteria at different times. Instead, it might be more beneficial
to define the parameters that govern the level of stemness in
individual cells and assess how these can be influenced.

Although regarding stemness as a varying set of phenotypes
is a compelling view, it should be noted that it is conceptually
possible to accurately distinguish CSCs from NSCCs; however,
it is wholly dependent on how we choose to functionally char-
acterize CSCs. One could argue that the absolute minimal
properties of a CSC are longevity and the capacity to divide
asymmetrically.26,27 These features might apply to the whole
stem cell compartment, but are more context dependent in the
case of individual stem cells.28,29

The dynamic relationship between CSC
and NSCC populations

Within a tumor, cancer cells exist in various phenotypic states
such as CSCs and NSCCs, and these states can influence the
functional properties of the cell.30 It has become clear that these
cell states are not static, but rather dynamic entities that are
constantly remodeling. Although dynamic, the CSC/NSCC cell
states are tightly regulated and restricted to a phenotypic equi-
librium to ensure stable proportions of CSCs and NSCCs
within a tumor.31 Evidently, when the proportion of CSCs/
NSCCs is out of balance, the equilibrium can be restored by
adapting the relative proliferative rates of the subpopula-
tions.31,32 Stem cells have 2 possible modes of division: sym-
metric division, in which 2 daughter cells identical to the
parent cell are produced, and asymmetric division, which cre-
ates a daughter with a stem cell fate and a cell destined for ter-
minal differentiation.33 During asymmetric division the
number of stem cells remains equal, whereas symmetric divi-
sion results in an increase of the stem cell population relative to
the total CSC/NSCC population.34,35 Symmetric stem cell divi-
sion has been observed during development, and can persist
into adulthood in normal tissue.33 Interestingly, bias toward
symmetric division as a result of disrupted regulation of asym-
metric division is associated with the formation of tumors.36–38

An alternative mechanism governing the CSC/NSCC equi-
librium is bidirectional interconversion, which controls cell
states by (de)differentiation of one state into the other. Evi-
dence in favor of bidirectional interconversion is based on the
appearance of CSCs in marker-sorted NSCC populations.
However, there are some factors that need to be considered
when studying bidirectional interconversion, such as the
imperfect correlation between CSC markers and actual CSCs.24

For instance, CD133 has long been considered a colorectal CSC
marker, but also appears to be expressed on differentiated prog-
eny.39 The poor prognosis linked to increased CD133 expres-
sion is, in fact, related to hyperactivation of the MAP kinase

Figure 1. Stem cell potential hypothesis. Every cell is considered to possess a
degree of stemness that is inversely correlated to its differentiation stage. This
hypothesis predicts that non-stem cancer cells (NSCCs) with a high stemness
potential are more likely to dedifferentiate into cancer stem cells (CSCs) than their
more differentiated counterparts.
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pathway.40 Additionally, populations enriched for CSCs using
molecular markers typically remain phenotypically heteroge-
neous and could also contain progenitors.23,24 Conversely,
NSCC fractions could therefore also include CSCs. Indeed, in
most studies using marker profiles to identify CSC populations,
presumed NSCC fractions retain some degree of clonogenic
and/or tumorigenic potential.25,41-44 Evidently, this imperfect
correlation can be diminished by using an ever-increasing
number of CSC markers.25,45

Additionally, gene expression noise can explain the
appearance of CSCs in the NCSS population. Genes can
switch between active and inactive states through intrinsi-
cally random transcriptional “bursts”, resulting in extensive
variability in protein levels in clonal cell populations.46 Iso-
genic populations have been demonstrated to exhibit a wide
variability in protein levels as a result of cell intrinsic gene
expression noise.47 Therefore, a snapshot of gene expression
levels in a large cell population—for example in FACS anal-
ysis—is expected to show a wide distribution of cells dis-
playing high and low protein levels, irrespective of any
hierarchical organization of phenotypic states within the
population.48 Theoretically, if the transition between active
and inactive transcriptional states of a gene is highly ineffi-
cient, mRNA and protein levels can become highly variable,
resulting in a bimodal distribution of intracellular protein
concentration at the population level.48,49 Single-cell analysis
has revealed that gene expression noise does not control
individual genes, but functions transcriptome-wide and
reflects metastable states of reversible molecular lineage
bias.50,51 Interestingly, a recent study has found that bimodal
distributions of proteins at the population level can arise not
only through inefficient transition between active and inac-
tive transcriptional states, but also due to the collective spa-
tial behavior of cell populations.52 Thus, in principle,
transient gene expression stochastics and cell population
effects can generate substantial fluctuations in the CSC/
NSCC ratio that can mistakenly be interpreted as dedifferen-
tiation. Therefore, when assessing bidirectional interconver-
sion, these factors should be taken into account.

Importantly, it should be noted that proliferative expansion
and bidirectional interconversion are not mutually exclusive
mechanisms for CSC/NSCC dynamics; both may contribute to
fluctuations in CSC population levels.53 Provided the plastic
model is correct, it will be necessary to determine the relative
contributions of both mechanisms to tumor development and
recurrence. Additionally, it is essential to consider the draw-
backs of marker-based experimental methods when studying
phenotypic plasticity.

Phenotypic plasticity, the factors that act on it, and its
regulators

The concept of cellular plasticity has become reality ever since
Yamanaka and colleagues generated induced pluripotent stem
cells (iPSCs) from terminally differentiated somatic cells.54

Activation of just 4 transcription factors—Sox2, Oct-3/4, c-
Myc, and KLF4—in murine fibroblasts could transform them
into cells resembling embryonic stem cells (ESCs). Since the
publication of this landmark paper, many variations on the

“Yamanaka factors”, such as related transcription factors, miR-
NAs and small molecules, have been reported to dedifferentiate
committed progeny into stem-like cells. It has become clear
that the processes of regeneration and dedifferentiation are
based on reactivation of developmental programs that are sub-
jected to both genetic and epigenetic regulation. Importantly, it
has been reported that reactivating developmental genes such
as c-Myc and KLF4 can lead to oncogenic transformation.55

This implies that similar mechanisms might be involved in
tumorigenesis as in transformation of iPSCs.56 Indeed, genomic
analysis of tumor samples often reveals mutations in genes
encoding the Yamanaka factors or their downstream pathways,
thereby altering intrinsic transcription regulation.57–60

For years, phenotypic plasticity during tumor development
was by default attributed to the accumulation of (epi)genetic
aberrations. This Darwinian model of mutation and selection
follows a strict one-to-one genotype to phenotype pattern,
where a certain genetic mutation results in a distinct pheno-
type. A mutation-induced dedifferentiated clone can subse-
quently be selected for. However, by doing so the Darwinian
evolution model ignores the enormous variability of cell pheno-
types that can be generated from a single genome and it is
exactly this flexibility that enables reversible interconversion
between differentiated and stem-like states in the absence of
mutations.61,62 For instance, cancer cells in breast, lung, pros-
tate, ovarian, and melanoma cancers are demonstrated to alter
their gene expression profiles and transform into cell types that
are not part of their original lineage.61 In addition, recent evi-
dence suggests that mutations and subclones can accumulate in
a neutral fashion without selective Darwinian sweeps.63 Muta-
tions are then carried along and follow a more Lamarckian
response, in which a better adapted phenotypic state is
instructed by external stimuli.64 This concept is supported by
observations of multiple subclones co-existing and reappearing
within a tumor that according to Darwinian laws would have
been outcompeted.65 Here, we will discuss external stimuli that
influence cellular reprogramming and pressure cells to engage
in bidirectional interconversion.

The tumor stroma

Tumor development and progression is often closely associ-
ated with, and dependent on, its tumor microenvironment
(TME). The TME comprises various cell types that support
tumorigenesis by promoting tumor growth, angiogenesis,
inflammation, and metastasis.66 In response to signals from
the TME or tumor cells, healthy fibroblasts can transform
into cancer-associated fibroblasts (CAFs).67 CAFs express
growth factors including insulin like growth factor-II (IGF-
II), hepatocyte growth factor (HGF), and vascular endothe-
lial growth factor (VEGF), through which they increase
tumor proliferation and support stemness in a Wnt- and
Notch-dependent matter.68 In contrast to normal homeosta-
sis in which Wnt and Notch signaling is strictly regulated
and confined to the stem cell niche, TME-directed signaling
can affect both CSCs and NSCCs. Since these signaling
pathways regulate stemness, they can facilitate dedifferentia-
tion of NSCCs into CSCs.69 For instance, HGF secreted by
the TME can induce a more immature phenotype in
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differentiated intestinal tumor cells, including the expression
of stem cell markers.32 Furthermore, HGF and other cyto-
kines such as osteopontin (OPN) and stromal-derived factor
1a (SDF-1) are demonstrated to induce stem cell-associated
glycoprotein CD44v6 expression in differentiated progeny.70

CD44v6 is associated with increased invasiveness and cell
migration as a co-receptor of the HGF receptor MET, prop-
erties often attributed to CSCs.71 In addition, expression of
TGF-b has been linked to dedifferentiation and epithelial-
to-mesenchymal transition (EMT).42 Furthermore, mesen-
chymal cells within the TME can also promote stemness by
expression of inflammatory chemokines and cytokines that
result in activation of the NF-kB pathway.72

Inflammation

Chronic inflammation is implicated in all steps of tumor
development, from initiation and progression all the way to
metastasis.73 In addition to the already heterogeneous infil-
tration of stromal cells, inflammation leads to an additional
influx of immune cells. Pancreatic cancer is often preceded
by persistent inflammation that is correlated with high inva-
siveness and early metastases to the liver and lung.74 Buch-
holz and colleagues have recently observed ectopic
expression of NFATc1, originally identified as a T-cell tran-
scription factor, in the majority of pancreatic cancers, espe-
cially those embedded in inflammatory niches.75 In addition,
inflammation-induced NFATc1 forms chromatin complexes
with STAT3 and accelerates transformation in KrasG12D

mutant cells.76 NFATc1 activation during embryogenesis is
associated with EMT during lineage specification.77 Consis-
tent with these findings, NFATc1 drives EMT through Sox2-
mediated stemness (via upregulation of Snai1 and ZEB1)
and is counteracted by levels of p53.78 Dedifferentiation has
also been shown in murine prostate cancer models. Prostate
epithelium is composed of basal and luminal lineages, which
are self-sustained under normal conditions.79 Oncogenic
transformation of luminal cells is preferred over basal cells,
and it is proposed that basal cells can only generate tumors
when dedifferentiated into luminal cells.80 In accordance,
deletion of PTEN in K14-expressing basal cells results in
prostate cancer with a long latency. Dedifferentiation from a
basal to luminal phenotype is very rare and functions as a
protective barrier against oncogenic transformation.81 How-
ever, bacteria-induced acute prostatitis results in tissue dam-
age and promotes dedifferentiation of basal cells into
luminal cells and thereby accelerates prostate neoplasia in
the absence of PTEN.82 Inflammatory bowel disease (IBD),
both hereditary and spontaneous, is a predictor for early
development of colorectal cancer (CRC). NF-kB signaling is
often enhanced in patients with IBD and correlates with a
poor prognosis. Recently, Schwitalla and colleagues demon-
strated that increased NF-kB signaling shortens survival and
promotes dedifferentiation of epithelial intestinal cells by
enhancing Wnt activation in this NSCC population.83 In
melanoma cells, TNF-a secretion by macrophages promotes
active interconversion between differentiated and non-differ-
entiated cells in order to escape immune surveillance.84

Therapy

There is a direct relationship between stemness and the reac-
tion to stress stimuli. CSCs possess protective mechanisms and
are therefore often implicated in therapy resistance.85 Indeed,
an enrichment of the CSC population can be observed after
therapy that frequently leads to tumor recurrence.84,86 Recent
evidence suggests that, in addition to repopulation of the CSC
pool by symmetric division, NSCCs can dedifferentiate and
thereby also acquire resistance. One example is temozolomide
(TMZ) treatment of glioblastoma. Despite the aggressiveness of
this drug, relapse is often reported, presumably due to resistant
CD133C CSCs. Exposure of CSCs to TMZ leads to expansion
of the stem cell pool, and exposure of differentiated cells to
TMZ results in re-expression of CSC markers such as Sox2,
Oct4, and Nestin in vitro and in vivo. This indicates that
enrichment of the stem cell compartment is driven by both
dedifferentiation and stem cell proliferation.87 In acute myeloid
leukemia, vincristine treatment leads to epigenetic changes in
the promoter region of the MDR1 locus after chemotherapy.88

MDR1, or multidrug resistance protein 1, displaces a variety of
drugs from the cell, thereby contributing to therapy resis-
tance.89 Upregulation of MRD1 is considered to be a stem cell
trait.90,91 Single-cell monitoring of a clonally generated cell
population confirmed MDR1 expression in individual cells that
correlated with Wnt signaling upregulation and could be
reversed with b-catenin knockdown.92 In ovarian cancer cells,
cisplatin, paclitaxel, or both agents combined induce stem-like
characteristics and expression of CSC markers. These markers
correlate with increased expression of ERCC1 and b-tubulin
III, which are characteristic resistance proteins specific for plat-
inum and taxane-based chemotherapeutics.93,94 Injection of
these cells into the abdominal cavity of mice lead to a greater
tumor burden.95 In addition, radiotherapy can also enhance
expansion of the stem cell compartment by inducing a stem-
like phenotype in non-stem breast cancer and prostate cells
through Notch activation and upregulation of transcription fac-
tors such as Oct, Nanog, Klf4, and Sox2.96,97

Hypoxia

Hypoxia has been implicated as a mediator of dedifferentiation
in a number of solid tumors. In response to a lack of oxygen,
an array of transcriptional responses is elicited via the hypoxia
inducible factors (HIFs) HIF1-a and HIF-2a.98 In prostate can-
cer cells, hypoxic treatment resulted in stabilization of HIF1-a
and HIF-2a, as well as upregulation of several transcription fac-
tors, including Nanog and Oct3/4.99 Pancreatic cancer cells
show increased expression of Oct4 and c-Myc in response to
hypoxia.100 In glioblastoma, CSCs appear to be more respon-
sive to hypoxic conditions compared to NSCCs, with enhanced
expression of a number of genes including HIF-2a and its tran-
scriptional targets Oct4, Glut1, and Serpin.101 Hypoxic condi-
tions have been demonstrated to facilitate the generation of
iPSCs.102 Not only did hypoxic conditions yield a significant
increase in the total number of reprogrammed cells, but reprog-
ramming was achieved more quickly, increasing the percentage
of transformed cells from 0.01% to~40% after 9 days. The rapid
increase in reprogramming efficiency strongly suggests that the

e1098791-4 S. M. V. NEERVEN ET AL.



effects of hypoxia are not due to selective expansion of the
transformed stem cells, but the result of an intracellular tran-
scriptional response. Ma and colleagues reported increased col-
ony formation capacity in prostate cancer cells cultured under
hypoxic conditions for 48 h.99 Interestingly, proliferation rates
were similar under normoxia and hypoxia, whereas G0/G1
phase was extended in hypoxic cells, indicating more cells in a
quiescent state. Additionally, hypoxic treatment resulted in a
1.20- to 1.42-fold increase in ABCG2 transporters, and a 1.45-
to 1.5-fold increase in CD44 expression within 48 h. CD44high

cells were confirmed to display greatly enhanced clonogenicity
and sphere formation efficiency. Thus, the increase in CD44
expression and population stemness appears to be the result of
cellular dedifferentiation, rather than population dynamics.
Liang et al. found similar results in ovarian cancer cells, in
which hypoxic conditions extended the G0/G1 phase and
increased colony and sphere formation, accompanied by upre-
gulation of CD44 and CD133.103 Interestingly, hypoxic treat-
ment resulted in slower growth rates, whereas hypoxia
pretreatment for 48 h yielded a significant increase in prolifera-
tion. Hypoxia clearly mediates stem cell function in vitro, most
likely by cellular dedifferentiation rather than proliferative
expansion of rare stem cells.

Discussion

It is clear that the CSC/NSCC populations are not static within
tumors. Guided by intrinsic and external signals, both popula-
tions are constantly remodeling but remain restricted to an
equilibrium that is continuously restored. There are 2 mecha-
nisms responsible for restoration of the equilibrium: (i) inter-
cellular signals can modulate proliferation rates of distinct
populations, or (ii) CSC/NSCC populations can engage in bidi-
rectional interconversion.31 Although there is abundant evi-
dence demonstrating differential proliferation rates between
cell populations, the role of bidirectional interconversion is less
well defined. Unfortunately, the study of stem cell dynamics is
hindered by the inability to accurately separate the CSC and
NSCC populations. This can be attributed to noisy gene expres-
sion levels or, more importantly, the lack of specific CSC
markers. This implies that NSCC populations might contain
CSCs that will either re-express their stem cell markers or
express unidentified stem cell markers.

The paucity of accurate phenotypic markers, and therefore
the inability to identify “true” CSCs, is in agreement with the
plastic model that we have discussed. This model postulates
that stemness is a cellular property, whereby CSCs simply
reside at the peak of a hierarchical mountain of stem cell poten-
tial and NSCCs all possess a certain (but low) amount of stem-
ness.104,105 Phenotypic markers could therefore overlap
between CSCs and NSCCs with comparable stemness. The
plastic model also provides an explanation for the variability in
engraftment efficiency observed in tumor grafting studies,25 as
NSCCs with a high(er) stem cell potential are assumed to be
capable of grafting in experimental animals.106 Loh and Lim
emphasize that the balance between stem cells and non-stem
cells is delicate, and depends on competition of pluripotency
factors and differentiation factors.107 Indeed, loss of single plu-
ripotency factors often leads to differentiation to specific

lineages, suggesting a connection between pluripotency and
differentiation.108

It seems reasonable that genetic aberrations can disturb this
balance and induce dedifferentiation in NSCCs. In the case of
the plastic model, NSCCs with a high stem cell potential are
presumably more prone to dedifferentiation since they already
express a more stem-like phenotype than their low-stemness
neighbors. However, as tumor development is often associated
with the accumulation of mutations109 it cannot be ruled out
that more differentiated NSCCs can regain stem cell potential
in a stepwise manner, as long as the right mutations are con-
ferred. Besides mutation-induced interconversion, the TME
can also play a role in phenotypic plasticity. The TME aims to
provide the most optimal conditions for tumor development
and regulates stemness by enhancing developmental pathways
such as Wnt and Notch that can influence the differentiation
state of cells (Fig. 2; upper left panel).110 Currently, CSC prop-
erties are often studied in vitro, removed from their native
microenvironmental context. We should take into account that
the absence of TME can potentially affect cellular behavior and
tumorigenic potential.111 Moreover, the population equilibrium
must be maintained in vitro to correctly study cell plasticity. It
has been demonstrated that in the absence of stem cells differ-
entiated cells are pressured to dedifferentiate, and direct contact
with a single stem cell prevents this conversion.112 As a conse-
quence, monocultures might not reflect normal CSC/NSCC
population dynamics. Therefore, it will be important to study
interconversion and cell plasticity within the context of their
population equilibrium and the TME, for example in co-cul-
tures and in vivo experiments.113,114

Furthermore, there is an explicit role for cellular stress in
facilitating bidirectional interconversion that might provide a

Figure 2. Regulators of phenotypic plasticity. There are several factors that pro-
mote bidirectional interconversion via activation of stemness factors. (Upper left
panel) The TME and its accompanying cancer cells facilitate the transformation of
healthy fibroblasts into cancer-associated fibroblasts (CAFs), which secrete growth
factors that promote interconversion in a Wnt- and Notch-dependent matter.
(Upper right panel) Inflammation and infiltrating immune cells can activate the
NF-kB pathway in non-stem cancer cells (NSCCs) and thereby induce dedifferentia-
tion into cancer stem cells (CSCs). (Lower left panel) Hypoxia promotes a more
stem cell-like phenotype via enhanced activation of HIF-1a and HIF-2a factors.
(Lower right panel) Cellular stress induced by therapy can influence expression of
drug efflux pumps and results in therapy resistance in NSCCs characteristic of
CSCs, thereby indicating dedifferentiation. Numbers indicate relevant references.
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future therapeutic target.85 Bearing in mind the importance of
healthy stem cells in tissue homeostasis, stem cells are usually
well protected against intrinsic and extrinsic stress; they reside
in a protective niche and exhibit upregulated stress responses
and repair pathways compared to differentiated progeny.
Moreover, they are more resistant to toxins as they display an
increased drug transporter expression.115 In the case of stress
within a tumor, such as hypoxia or infiltration of antitumor
lymphocytes, stress stimuli can trigger dedifferentiation to pro-
vide NSCCs with a better stress response and thereby promote
survival (Fig. 2; upper right panel and lower left panel). Dedif-
ferentiation can also facilitate immunoescape, as interconver-
sion alters the cell membrane markers by which NSCCs are
recognized.116 Accordingly, bidirectional interconversion can
also induce resistance to adaptive T-cell therapy, for example in
melanoma.84 Similarly, phenotype plasticity can stimulate resis-
tance to conventional chemotherapy and radiotherapy (Fig. 2;
lower right panel). Therefore, it might be beneficial to reduce
cellular stress and thereby decrease the chance of dedifferentia-
tion, and thus therapy resistance. Indeed, reduction of inflam-
mation by daily administration of nonsteroidal anti-
inflammatory drugs (NSAIDs) can decrease tumor predisposi-
tion and incidence.117

To conclude, there is a clear involvement of bidirectional
interconversion in tumorigenesis that can be influenced by
both Darwinian and Lamarckian forces. At present, it is evident
that all 3 proposed models of tumor heterogeneity contribute to
tumor development. However, it remains unclear to what
extent the individual models contribute to this process. Fortu-
nately, recent advances in marker-free lineage techniques and
deep sequencing methods enable us to determine these contri-
butions and unravel clonal histories at a single-cell level. This
will provide valuable information concerning the key mutations
and environmental factors that influence cell plasticity. As cell
plasticity and tumor stemness are directly associated with a
poor prognosis, future challenges will be to develop more well-
considered personalized therapeutic strategies aimed to predict
and prevent bidirectional interconversion. Inhibition of cellular
plasticity might sensitize cells for conventional treatments and
subsequently reduce relapse.
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