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Purpose: This study aimed to develop a prognostic indicator based on

epithelial-mesenchymal transition (EMT)-related long noncoding RNAs

(lncRNAs) and explore the function of EMT-related lncRNAs in malignant

progression in lung adenocarcinoma (LUAD).

Materials and methods: A LUAD dataset was acquired from The Cancer

Genome Atlas (TCGA) to identify prognostic EMT-related lncRNAs via

differential expression analysis and univariate Cox regression analysis. Least

Absolute Shrinkage and Selection Operator (LASSO) Cox regression analysis

was utilized for variable selection and model construction. The EMT-related

prognostic index (ERPI) was calculated according to the model and served as a

classifier to divide LUAD individuals into high-ERPI and low-ERPI groups. A

nomogram incorporating ERPI and clinicopathological variables was

constructed. TCGA-LUAD, GSE50081, and GSE31210 were used to test the

predictive capacity of the ERPI and nomogram. The characteristics of the tumor

microenvironment (TME) were evaluated via the ESTIMATE, TIMER, and ssGSEA

algorithms. Gene set variation analysis (GSVA) and ssGSEA were used to

annotate the functions of the high-ERPI and low-ERPI groups. CCK8,

transwell assay, wound-healing assay, and clone formation assay were

conducted to clarify the biological functions of prognostic EMT-related

lncRNAs.
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Results: Ninety-seven differentially expressed EMT-related lncRNAs were

identified, 15 of which were related to overall survival (OS). A prognostic

signature was constructed based on 14 prognostic EMT-related lncRNAs to

calculate the ERPI of each patient, and the predictive ability of ERPI was verified

in TCGA, GSE50081, and GSE31210. The low-ERPI group survived longer and

had a lower percentage of patients in advanced stage than the high-ERPI

group. The nomogram had the highest predictive accuracy, followed by

ERPI and stage. Patients with low ERPI had higher infiltration degree of

immune cells and stronger immune responses than those with high ERPI. A

series of in vitro experiments demonstrated that knockdown of LINC01138

dampened variability, proliferation, and motility of A549 and H460 cells.

Conclusion:Our study developed a prognostic classifier with robust prognostic

performance and clarified the biological functions of LINC01138 in LUAD, aiding

in making individual treatments for patients with LUAD and dissecting the

mechanism of oncogenesis.

KEYWORDS

epithelial-mesenchymal transition, lncRNA, lung adenocarcinoma, prognosis, tumor
microenvironment

Introduction

Lung cancer is not only the second most frequently

diagnosed cancer but also the primary cause of cancer-related

death worldwide, which accounts for 18% of cancer-related

deaths (Sung et al., 2021). Although the survival of lung

cancer has been extended in recent years due to advances in

detection and treatment, only 22% of patients with lung cancer

can survive 5 years or longer (Siegel et al., 2022). Lung cancer can

be classified into diverse histological subtypes, and LUAD is the

most common histological subtype, accounting for

approximately 40% of lung cancer cases (Ganti et al., 2021).

EMT is known to play a fundamental role in embryogenesis,

tissue regeneration, and malignant progression (Thiery et al.,

2009; Pastushenko and Blanpain, 2019). EMT is characterized by

the repressed expression of E-cadherin and increased expression

of vimentin and can lead to changes in morphology, loss of cell

polarity, reorganization of the cytoskeleton, and disassembly of

cell-cell junctions. EMT is modulated by transcription factors,

including the ZEB family, SNAIL, and TWIST1, which repress

expression of epithelial markers and activate expression of

mesenchymal markers. Interactions between TME and EMT

are critical mechanisms in malignant progression.

Constituents of TME can induce EMT by activating

expression of EMT-related transcription factors or effector

molecules, which in turn promote accumulation of

immunosuppressive cells and expression of

immunosuppressive molecules (Dongre and Weinberg, 2019).

During the process of EMT, carcinoma cells enter a

mesenchymal state and acquire malignant properties,

including motility capacity, invasive behavior, metastasis,

cancer stemness, and resistance to antitumor therapies

(Pastushenko and Blanpain, 2019). A number of studies have

underscored the significance of EMT in the development of lung

cancer (Salazar et al., 2020; Yin et al., 2020; Deng et al., 2021).

Characterized as transcripts longer than 200 nucleotides,

lncRNAs are important components of the transcriptome

(Kopp and Mendell, 2018). Although lncRNAs are not

translated into proteins, they regulate gene expression and

control diverse cellular processes (Dangelmaier and Lal, 2020).

Recent efforts have revealed the role of lncRNAs in tumorigenesis

and malignant progression (Slack and Chinnaiyan, 2019; Wang

et al., 2021a; Kim et al., 2021). Understanding the multiple

functions of lncRNAs provides clues to dissect the mechanism

of oncogenesis and aids in developing new strategies in cancer

treatment. Many studies have indicated that lncRNAs can be

potential prognostic predictors and therapeutic targets for

patients with cancer (Wang et al., 2021a; Wu et al., 2021;

Tang et al., 2022). The process of EMT can be regulated by

lncRNAs such as H19, MALAT1, and MEG3 (Yang et al., 2020a;

Hu et al., 2020; Ji et al., 2020;Wang et al., 2020; Ye et al., 2020; Liu

et al., 2021), and EMT-related lncRNAs have been demonstrated

to be prognostic indicators in cancer (Tuo et al., 2018; Xu et al.,

2020; Wang et al., 2021b). However, the prognostic

potential of EMT-related lncRNAs in LUAD still remains to

be explored.

The objective of this study was to identify prognostic EMT-

related lncRNAs in LUAD and develop a classifier that can

predict outcomes for patients with LUAD. The LUAD dataset

in TCGA was acquired to identify prognostic EMT-related

lncRNAs and construct a prognostic model, and three LUAD

cohorts were used to validate the prognostic value of the model.

In vitro experiments were conducted to explore the role of

LINC01138 in the development of lung cancer.
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Materials and methods

Data acquisition and processing

Three LUAD cohorts, including the TCGA-LUAD dataset,

GSE50081 and GSE31210, with transcriptomic data and

clinicopathological information were acquired from the TCGA

(https://gdc-portal.nci.nih.gov/) database and Gene Expression

Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/)

(Okayama et al., 2012; Yamauchi et al., 2012; Der et al., 2014).

The TCGA-LUAD dataset consists of 535 LUAD samples and

59 peritumoural normal samples. After those followed up for less

than 30 days or without complete clinicopathological information

were removed, a total of 822 LUAD samples were used in our study,

including 469 samples from the TCGA-LUAD dataset, 127 samples

from GSE50081, and 226 samples from GSE31210. The

clinicopathological parameters of the above datasets are provided

in Supplementary Table S1. A total of 1594 EMT-related genes were

obtained from the Gene Ontology website (http://geneontology.org/

), Epithelial-Mesenchymal Transition Gene Database (http://dbemt.

bioinfo-minzhao.org/download.cgi), Molecular Signatures Database

(https://www.gsea-msigdb.org/), GeneCard database (https://www.

genecards.org/), and OMIM database (https://omim.org/). Pearson

correlation analysis was used to determine the correlation between

the expression of lncRNAs and EMT-related genes, and lncRNAs

that met the threshold of correlation coefficient |r| > 0.3 and p < 0.

001 were considered EMT-related lncRNAs. All the EMT-related

genes and EMT-related lncRNAs are listed in Supplementary Tables

S2, S3, respectively.

Differential expression analysis

The expression of all samples in the TCGA cohort was

normalized, and the genes with a mean expression less than

5 in all samples were discarded. Differential expression analysis

was carried out using the “edgeR” package to identify all the

differentially expressed genes (DEGs) based on the threshold of

false discovery rate (FDR) < 0.05 and |log2-fold change (FC)| > 1

(Robinson et al., 2010; McCarthy et al., 2012; Chen et al., 2016).

Next, the genes from DEGs, EMT-related lncRNAs, GSE50081,

and GSE31210 were intersected by the “VennDiagram” package

to obtain differentially expressed EMT-related lncRNAs. The

“ggplot2” and “pheatmap” packages were used to create volcano

plot and heatmaps, respectively, to present the differential

expression of the EMT-related lncRNAs.

Construction of an EMT-related lncRNA
signature

The prognostic EMT-related lncRNAs were acquired from the

differentially expressed EMT-related lncRNAs by univariate Cox

regression analysis using the “survival” package. Lasso Cox

regression analysis was executed using the “glmnet” package to

screen prognostic EMT-related lncRNAs for model construction

(Tibshirani, 1996; Friedman et al., 2010). A prognostic EMT-related

model was constructed in the TCGA cohort based on candidate

EMT-related lncRNAs and corresponding coefficients obtained in

Lasso Cox regression analysis. Each patient with LUAD could obtain

a score according to the prognostic model, which was named EMT-

related prognostic index (ERPI). LUAD individuals in TCGA-

LUAD, GSE50081, and GSE31210 were classified into high-ERPI

and low-ERPI groups according to the median ERPI.

Evaluation of the prognostic performance
of ERPI

The predictive capacity of ERPI was validated in the TCGA

cohort, GSE50081 and GSE31210. Principal component analysis

(PCA) was utilized to confirmwhether the high-ERPI and low-ERPI

groups could be separated based on the prognostic EMT-related

lncRNAs. Differences in the overall survival rate between the high-

ERPI and low-ERPI groups were evaluated by Kaplan–Meier

survival curves. The effect of the ERPI on survival was delineated

via univariate and multivariate Cox regression analyses. The

“survival” package was utilized to conduct the above survival

analyses. (Therneau et al., 2000). The proportion of survivors in

the high-ERPI and low-ERPI groups was calculated, and the ERPI

between the surviving and nonsurviving patients was compared. The

time-dependent receiver operating characteristic (ROC) curves were

created using the “timeROC” package to show the predictive

capacity of ERPI (Blanche et al., 2013). A nomogram based on

the ERPI and clinicopathological variables was established to predict

the survival probability of patients with LUAD. The C-index and

area under the curve (AUC) were calculated to assess the predictive

accuracy of the nomogram.

Evaluation of the association between
ERPI and clinicopathological parameters

The distribution of clinicopathological subtypes between the

high- and low-ERPI groups was compared using the chi-square

test, which is presented in the form of a heatmap. Then, patients

were divided into diverse subgroups according to the

clinicopathological characteristics, and the ERPI between these

subgroups was compared by using the Wilcoxon test.

Assessment of the TME characteristics in
the two ERPI groups

A number of studies have reported interactions between

EMT and the TME. Thus, we evaluated the relationship
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between TME characteristics and ERPI. The ESTIMATE

algorithm was utilized to calculate the stromal score, immune

score, and tumor purity, which represent the infiltration degree

of stromal cells, immune cells, and tumor cells, respectively

(Yoshihara et al., 2013). The infiltration degree of the major

subtypes of immune cells in the TME was acquired via the

TIMER and ssGSEA algorithms (Subramanian et al., 2005;

Hänzelmann et al., 2013; Li et al., 2020). ssGSEA was also

used to identify the related immune functions of the high-

and low-ERPI groups. A study conducted a comprehensive

analysis in 33 cancer types in the TCGA database to identify

six immune subtypes associated with the immune environment

and survival of patients with cancer (Thorsson et al., 2018). We

assessed the link between the ERPI and the immune subtypes

via the chi-square test, ggalluvial, and Kaplan–Meier survival

curves.

GSVA

GSVA was applied to identify the pathways and hallmarks

that are associated with the ERPI by using the “GSVA” package

(Hänzelmann et al., 2013). Enrichment scores were compared

between the ERPI groups via the “Limma” package (Ritchie et al.,

2015; Phipson et al., 2016). The pathways and hallmarks meeting

the screening criterion of FDR <0.05 were considered to be

differentially enriched between the two ERPI groups.

Cell culture and transfection

The lung cancer cell lines A549 and H460 were purchased

from the China Center for Type Culture Collection and cultured

in RPMI-1640 medium (HyClone, United States) with 10% FBS

(Gibco, United States) at 37°C with 5% CO2.

The siRNA of LINC01138 was transfected into lung cancer

cells using Lipofectamine 3,000 (Invitrogen, United States). The

siRNA target sequence for LINC01138 was as follows: 5′-CCU
CCUCUUCAGCCUACUU-3′.

qRT-PCR

Total cell RNA was extracted using an RNA extraction kit

(TaKaRa, Japan) and reverse transcribed using Hi Script II QRT

SuperMix (Vazyme, China). Next, the qRT-PCR was run with a

Real-Time PCR System (7900HT, Applied Biosystems, United

States). The primers used in this study were as follows:

LINC01138, 5′-TATTTACGAAAGCTGAAAGCG-3’
(forward) and 5′-CTGCATGGGATAGGAGAAAC-3’
(reverse); GAPDH, 5′-GACAGTCAGCCGCATCTTCT-3’
(forward) and 5′-GCGCCCAATACGACCAAATC-3’ (reverse)
(Zhang et al., 2018).

CCK8 assay

A total of 3,000 cells/well were seeded into 96-well plates

overnight, and then the medium with 10% CCK8 (MedChem

Express, United States) was incubated in each well for 1–2 h at

different time points. OD values (wavelength of 450 nm) were

detected by a microplate reader (BioTek, Winooski, VT,

United States) to evaluate cell viability.

Clone formation assay

A total of 1,000 cells/well were seeded in 6-well plates. After

approximately 2 weeks, cell clones were fixed with methanol,

stained with 1% crystal violet and photographed.

Wound healing assay

Cells were seeded in 12-well plates, cultured for 12 h to 100%

density, and then scratched with 10 μL pipette tips to create

wounds. At 0 h and 48 h, images of wounds were captured, and

the wound healing area was calculated using ImageJ software.

Transwell assay

A total of 2 × 104 cells were seeded in the upper chambers

with 200 μL serum-free medium, and 600 μL medium with 20%

FBS was added to the lower chambers. Twenty-four hours later,

the migrated cells were fixed, stained and photographed.

Statistical analysis

All analyses were completed using R software (version 4.1.0).

Survival differences were compared by the log-rank test in

Kaplan–Meier survival analysis. The Wilcoxon test was utilized

to evaluate the difference in continuous variables between the two

groups. Differences in the distribution of categorical variables

between two groups were compared via the chi-square test.

Pearson correlation analysis was used to evaluate the

correlation between numeric variables. P values were two sided,

and a p value < 0.05 was considered statistically significant.

Results

Construction of a prognostic model in the
TCGA cohort

Differential expression analysis in the TCGA cohort

identified a total of 8507 differentially expressed genes
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FIGURE 1
Construction of a prognostic signature based on the expression of EMT-related lncRNAs. (A) Venn diagram of differentially expressed EMT-
related lncRNAs in GEO and TCGA cohorts. (B) Volcano plot of differentially expressed EMT-related lncRNAs. (C)Heatmap of differentially expressed
EMT-lncRNAs. (D) Forest plot of prognostic EMT-related lncRNAs. (E) Identification of key prognostic EMT-related lncRNAs via variable selection in
LASSO Cox regression.
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(DEGs), among which 97 DEGs were EMT-related lncRNAs

that could be found in the GEO datasets (Figure 1A). Ninety-

seven differentially expressed EMT-related lncRNAs

included 79 lncRNAs that were upregulated in LUAD and

18 lncRNAs that were downregulated in LUAD (Figures

1B,C). Fifteen differentially expressed EMT-

related lncRNAs were found to be related to OS in

univariate Cox regression analysis (Figure 1D), among

which 14 lncRNAs (FENDRR, EP300-AS1, LINC00857,

TMPO-AS1, LINC00460, LINC01138, PLAC4, SYNPR-AS1,

LINC00996, MIR31HG, LINC01116, CASC15, ATP13A4-

AS1, LINC01133) were selected by LASSO Cox regression

analysis to construct a prognostic signature (Figure 1E).

Expression of the 14 lncRNAs was displayed in

FIGURE 2
Validation of the ERPI in the TCGA dataset. (A) Distribution of high- and low-ERPI groups in PCA based on the expression of 14 EMT-related
lncRNAs in the prognostic model in TCGA. (B) Survival curves of the high- and low-ERPI groups in TCGA. (C) Proportion of dead and living patients in
the high- and low-ERPI groups in TCGA. (D) ERPI of the dead and living patients. (E) Effect of ERPI and clinicopathological parameters on survival in
univariate Cox regression analysis in TCGA. (F) Effect of ERPI and clinicopathological parameters on survival in multivariate Cox regression
analysis in TCGA. (G) Time-dependent ROC curves of ERPI in TCGA.
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Supplementary Figure S1. The prognostic model was

presented as a formula, and the ERPI of all LUAD

individuals was calculated based on the expression of

14 prognostic lncRNAs and the corresponding regression

coefficients in LASSO Cox regression analysis

(Supplementary Table S4).

FIGURE 3
Validation of ERPI in GSE50081 and GSE31210. (A)Distribution of high- and low-ERPI groups in PCA based on the expression of 14 EMT-related
lncRNAs in the prognostic model in GSE50081. (B) Distribution of high- and low-ERPI groups in PCA based on the expression of 14 EMT-related
lncRNAs in the prognosticmodel in GSE31210. (C) Survival curves of the high- and low-ERPI groups in GSE50081. (D) Survival curves of the high- and
low-ERPI groups in GSE31210. (E) Proportion of dead and living patients in the high- and low-ERPI groups in GSE50081. (F) ERPI of the dead and
living patients in GSE50081. (G) Proportion of dead and surviving patients in the high- and low-ERPI groups in GSE31210. (H) ERPI of the dead and
surviving patients in GSE31210.
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Validation of the prognostic model in
multiple datasets

The predictive capacity of ERPI was validated in the TCGA-

LUAD dataset which was used as the discovery cohort. The

results of PCA demonstrated that the high-ERPI and low-ERPI

groups could be separated based on the expression of

14 prognostic EMT-related lncRNAs (Figure 2A). The survival

rate of the low-ERPI group was higher than that of the high-ERPI

group (p < 0.001) (Figure 2B). The proportions of survivors in the

high- and low-ERPI groups were 57% and 69%, respectively

(Figure 2C). Compared to the survivors, the nonsurviving

patients had an elevated ERPI (p < 0.001) (Figure 2D).

Univariate (HR = 3.122, 95% confidence interval (CI):

2.446–3.985, p < 0.001) and multivariate Cox regression

analyses (HR = 2.752, 95% CI: 2.150–3.523, p < 0.001)

FIGURE 4
Validation of ERPI in GSE50081 and GSE31210. (A) Effect of ERPI and clinicopathological parameters on survival in univariate Cox regression
analysis in GSE50081. (B) Effect of ERPI and clinicopathological parameters on survival in univariate Cox regression analysis in GSE31210. (C) Effect of
ERPI and clinicopathological parameters on survival in multivariate Cox regression analysis in GSE50081. (D) Effect of ERPI and clinicopathological
parameters on survival in multivariate Cox regression analysis in GSE31210. (E) Time-dependent ROC curves of ERPI in GSE50081. (F) Time-
dependent ROC curves of ERPI in GSE31210.
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revealed that ERPI was an independent prognostic factor

affecting survival adversely (Figures 2E,F). Time-dependent

ROC curves demonstrated the high sensitivity and specificity

of ERPI in predicting survival for patients with LUAD. The

AUCs at 1, 3, and 5 years were 0.741, 0.684, and 0.647,

respectively (Figure 2G).

Next, the results of survival analyses in the external

cohorts GSE50081 and GSE31210 further confirmed the

predictive power of ERPI. The expression of the

prognostic EMT-related lncRNAs in the low-ERPI group

was significantly different from that in the high-ERPI

group in GSE50081 (Figure 3A) and GSE31210 (Figure 3B).

The low-ERPI group survived longer than the high-ERPI

group in both GSE50081 (p < 0.001) (Figure 3C) and

GSE31210 (p < 0.001) (Figure 3D). In GSE50081, the

proportion of survivors in the high- and low-ERPI

groups was 37% and 67%, respectively (Figure 3E). In

GSE31210, the proportion of survivors in the high- and

low-ERPI groups was 77% and 94%, respectively

(Figure 3G). The survivors had lower ERPI than the

nonsurvivors in both GSE50081 (p = 0.0073) (Figure 3F)

and GSE31210 (p < 0.001) (Figure 3H). ERPI is an

indicator of unfavorable survival for patients with LUAD in

GSE50081 (HR = 4.648, 95% CI: 1.892–11.418, p < 0.001)

FIGURE 5
Establishment and validation of the nomogram. (A) Nomogram incorporating ERPI and clinicopathological variables. (B) Calibration curves of
the nomogram. (C) C-indexes of the nomogram, ERPI, and clinicopathological variables. (D) ROC curves of the nomogram, ERPI, and
clinicopathological variables at 1 year. (E) ROC curves of the nomogram, ERPI, and clinicopathological variables at 3 years. (F) ROC curves of the
nomogram, ERPI, and clinicopathological variables at 5 years.
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(Figure 4A) and GSE31210 (HR = 2.907, 95% CI: 1.770–4.774,

p < 0.001) (Figure 4B). Additionally, the prognostic value of

ERPI was not affected by clinical variables in GSE50081 (HR =

4.609, 95% CI: 1.766–12.024, p = 0.002) (Figure 4C) and

GSE31210 (HR: 2.058, 95% CI: 1.173–3.610, p = 0.012)

(Figure 4D). The AUCs at 1, 3, and 5 years in

GSE50081 were 0.652, 0.711, and 0.682, respectively

(Figure 4E). The AUCs at 1, 3, and 5 years in

GSE31210 were 0.815, 0.736, and 0.709, respectively

(Figure 4F).

Clinicopathological variables and ERPI are all prognostic

factors that can predict survival, so we established a nomogram

incorporating ERPI and clinicopathological variables to develop

a tool for survival prediction with high predictive accuracy

(Figures 5A,B). C-index and ROC curves demonstrated that

the nomogram had the best prognostic performance and

highest predictive accuracy, followed by ERPI and stage

(Figures 5C–F).

High ERPI was associated with tumor
progression

Compared to the low-ERPI group, the high-ERPI group had

an elevated proportion of male patients and patients with large

primary tumors or lymph node metastasis (Figure 6A). Most of

FIGURE 6
Relationship between ERPI and clinicopathological variables. (A) Clinicopathological variables between the high- and low-ERPI groups. (B–G)
ERPI between subgroups divided by clinicopathological variables.
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FIGURE 7
TME characteristics in the high- and low-ERPI groups. (A–D) ESTIMATE score, tumor purity, stromal score, and immune score between the
high- and low-ERPI groups. (E) Abundance of immune cell subsets acquired via TIMER between the high- and low-ERPI groups. (F) Abundance of
immune cell subsets acquired via ssGSEA between the high- and low-ERPI groups.
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the patients in advanced stage were distributed in the high-ERPI

group, indicating that ERPI was related tomalignant progression.

Meanwhile, when the patients were grouped according to the

clinicopathological variables, increased ERPI was observed in

male patients and patients in an advanced stage (Figures 6B–F).

Although ERPI was correlated with large primary tumors and

lymph node metastasis, no association was observed between

ERPI and distant metastasis (Figures 6A,G).

The high- and low-ERPI groups had
different TME characteristics

Compared to the high-ERPI group, the low-ERPI group had a

significantly higher proportion of stromal cells and immune cells

and a lower proportion of tumor cells in the TME (Figures 7A–D).

Immune cells are fundamental components of the TME and can be

classified into diverse subtypes that have different roles in tumor

progression and antitumor immunity. We analysed the relationship

between immune cell subsets and the ERPI via the TIMER and

ssGSEA algorithms. The low-ERPI group had not only higher

abundance of CD8+ T cells, CD4+ T cells, B cells, and dendritic

cells (DCs) but also higher infiltration degree of activated CD8+

T cells, B cells, and DCs than the high-ERPI group (Figures 7E,F).

These results revealed that the infiltration and function of immune

cells in the TME were suppressed in the high-ERPI group. Then, we

analysed the immune subtypes identified in another study to further

elucidate the relationship between ERPI and tumor immunity.

C3 accounted for the majority of the low-ERPI group, whereas

C1 and C2 were the most common immune subtypes in the high-

ERPI group (Figures 8A,B). The survival rate of C3 was the highest

among all the immune subtypes (Figure 8C).

FIGURE 8
Correlation between ERPI and immune subgroups. (A) Percentage of immune subgroups in the high- and low-ERPI groups. (B) Distribution of
immune subgroups in the high- and low-ERPI groups. (C) Survival curves of the immune subgroups.
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FIGURE 9
Functional annotation of the ERPI groups. (A) Differences in hallmarks between the high- and low-ERPI groups in GSVA. (B) Differences in
pathways between the high- and low-ERPI groups in GSVA. (C)Differences in immune processes between the high- and low-ERPI groups in ssGSEA.
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FIGURE 10
Knockdown of LINC01138 repressed viability, proliferation, and migration of A549 and H460 cells. (A) Expression of LINC01138 in A549 and
H460 cells after its knockdown. (B,C) CCK-8 assay results showing viability of A549 and H460 cells after LINC01138 knockdown. (D,E) The
proliferation of A549 and H460 cells evaluated using colony formation assay. (F–H)Migration capacity of A549 and H460 cells tested using wound-
healing assay. (I,J) Migration capacity of A549 and H460 cells tested using Transwell assay. The scale bars represent 200 μm.

Frontiers in Molecular Biosciences frontiersin.org14

Xiao et al. 10.3389/fmolb.2022.976878

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.976878


Functional annotation of ERPI groups

GSVA in hallmarks revealed that the high-ERPI group was

associated with the activation of hallmarks such as oxidative

phosphorylation, DNA repair, MYC targets, glycolysis, E2F

targets, and mTORC1 signaling (Figure 9A). Regarding

pathways, DNA replication, p53 signaling pathway, and

mismatch repair were upregulated in the high-ERPI group,

while the B-cell and T-cell receptor signaling pathways and

pathways related to cell adhesion were enriched in the low-

ERPI group (Figure 9B). The ssGSEA results indicated that

immune processes, including the interferon response,

parainflammation, chemokine receptor, T-cell co-inhibition,

human leucocyte antigen, and antigen presenting cell co-

inhibition, were activated in the low-ERPI group (Figure 9C).

The ssGSEA results suggested that the low-ERPI group had a

stronger immune response than the low-ERPI group.

LINC01138 promotes progression of lung
cancer cells

Among these key signature lncRNAs, LINC01138 was

reported to promote tumor progression in liver cancer, gastric

cancer, glioma and kidney malignancy; however, whether

LINC01138 promotes lung cancer progression remains

unclear. Therefore, we investigated the effects of LINC01138

on malignant behaviors of lung cancer cells through

transfection with its specific siRNA, and the interfering

efficiency was assessed by RT-qPCR (Figure 10A). Then, we

checked the effect of LINC01138 on the proliferation of lung

cancer cells through CCK8 and clone formation assays. The

results of the CCK8 assay showed that silencing

LINC01138 dramatically decreased the viability of lung cancer

cells (p < 0.001) (Figures 10B,C). In addition, the clone formation

assay also indicated that silencing LINC01138 significantly

suppressed clone formation of lung cancer cells (p < 0.01)

(Figures 10D,E). These results suggested that silencing

LINC01138 could inhibit lung cancer cells’ proliferation. Next,

we further explored the role of LINC01138 in tumor metastasis

through wound healing and transwell assays. The results showed

that silencing LINC01138 markedly reduced wound healing

ability of lung cancer cells (p < 0.01) (Figures 10F–H) as well

as the migration capability (p < 0.01) (Figures 10I,J). The results

demonstrated that silencing LINC01138 represses lung cancer

metastasis in vitro. Altogether, the above results suggested that

LINC01138 accelerates progression of lung cancer cells.

Discussion

The 5-year survival rate of patientswith lung cancer is 22%,which

is as low as 6% in the case of distant metastasis (Siegel et al., 2022).

Lung cancer consists of divergent histological subtypes, among which

LUAD is the most frequently diagnosed subtype. Powerful tools for

survival prediction are necessary to make precise clinical decisions

and individual treatment strategies for patients with LUAD. EMT is a

critical cellular program in malignant progression, and EMT-related

lncRNAs have been proven to regulate the development of cancer.

Nevertheless, few studies have explored the potential of EMT-related

lncRNAs in survival prediction in LUAD.

To explore novel survival predictors, we analysed TCGA-LUAD

data to identify prognostic EMT-related lncRNAs. A prognostic

signature was constructed based on the expression of 14 EMT-

related lncRNAs (FENDRR, EP300-AS1, LINC00857, TMPO-AS1,

LINC00460, LINC01138, PLAC4, SYNPR-AS1, LINC00996,

MIR31HG, LINC01116, CASC15, ATP13A4-AS1, and

LINC01133). FENDRR, EP300-AS1, SYNPR-AS1, LINC00996, and

ATP13A4-AS1 are tumor suppressor genes whose overexpression is

associated with favorable outcome, whereas the other genes in the

model are oncogenes. The results of the studies exploring the

functions of prognostic EMT-related lncRNAs in cancers were

consistent with our study. FENDRR was reported to be positively

correlated with survival in prostate cancer and renal cell carcinoma

(He et al., 2019; Liu et al., 2019). FENDRR has also been

demonstrated to impair the invasion capacity of non-small cell

lung cancer (NSCLC) and genitourinary system malignancies

(Zhang et al., 2019a; Zhang et al., 2019b; Zhu et al., 2020). One

study suggested that knockdown of LINC00857 suppressed the

viability of bladder cancer cells and sensitized bladder cancer

cells to cisplatin (Dudek et al., 2018). Silencing LINC00857

inhibited the malignant behaviors of colorectal cancer and

pancreatic cancer (Chang et al., 2021; Li et al., 2021; Meng et al.,

2021). Xia C et al. reported that LINC00857 enhanced EMT to

promote the invasion capacity of hepatocellular carcinoma (Xia

et al., 2018). LINC00460 acts as an oncogene in breast cancer and

gastric cancer, and its high expression is correlated with unfavorable

outcomes in patients with breast cancer (Zhang et al., 2019c; Zhu

et al., 2019). A number of experimental studies revealed that

LINC00460 promoted invasion and metastasis in various

malignancies. LINC00460 was reported to promote the viability

and migration of NSCLC (Zhao et al., 2019). Zhang J et al. observed

that LINC00460 controls radiation sensitivity of colon cancer by

modulating EMT (Zhang et al., 2020). Another study suggested that

LINC00460 promoted EMT and metastatic potential of esophageal

cancer (Cui et al., 2020). The role of LINC00460 as an oncogene was

also reported in hepatocellular carcinoma, pancreatic cancer, kidney

malignancy, and prostate cancer (Dong and Quan, 2019; Yang et al.,

2020b; Cheng et al., 2021). Overexpression of MIR31HG was

associated with malignant progression and high infiltration

degree of immune cells in thyroid cancer (Chen et al., 2022). A

meta-analysis suggested that overexpression ofMIR31HG predicted

poor survival and metastasis in respiratory system and digestive

system tumors (Wei et al., 2022).MIR31HG acted as a predictor of

survival and risk of recurrence for patients with colorectal cancer

(Zhang et al., 2019d; Eide et al., 2019). Additionally, increased
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expression ofMIR31HG has been demonstrated to promote tumor

progression and reduce the efficacy of gefitinib in NSCLC (Wang

et al., 2017; Ning et al., 2018; Dandan et al., 2019). MIR31HG also

exhibited oncogenic properties in breast cancer and esophageal

squamous cell carcinoma (Sun et al., 2018; Xin et al., 2021).

Studies have demonstrated that LINC01138 promotes

malignant behavior in liver cancer, gastric cancer, glioma, and

kidney malignancy (Li et al., 2018; Zhang et al., 2018; Dou et al.,

2019; Xu et al., 2021). However, nomechanistic exploration has been

made to clarify the role of LINC01138 in LUAD. In this study, we

found that LINC01138 was upregulated in LUAD and that

upregulation of LINC01138 was associated with poor survival by

analyzing expression data in TCGA. Then, we conducted in vitro

experiments to further clarify the exact role of LINC01138 in the

progression of lung cancer. Silencing LINC01138 repressed viability,

proliferation, and metastasis of A549 and H460 cells, indicating that

LINC01138was an oncogene in lung cancer. Our findings and other

studies suggest that the oncogenic properties of LINC01138may be

universal across cancers.

Each patient could obtain a score named ERPI, which served as

a classifier to distinguish patients with favorable prognosis from

those with poor prognosis. ERPI is a reliable survival predictor for

patients with LUAD, and the predictive capacity of ERPI is

independent of clinicopathological factors. High ERPI is

associated with advanced TNM stage, which also predicts poor

survival for patients. Given that clinicopathological variables are also

robust prognostic factors, we established a nomogram incorporating

ERPI and clinicopathological variables to further improve the

prognostic performance of these factors. The C-index and ROC

curves demonstrated that the nomogram improved the prognostic

performance of the ERPI and TNM stage. The nomogram can

become a simple tool with high predictive accuracy for survival

prediction in clinical practice. GSVA revealed the overactivation of

mTORC1 signaling and MYC targets in the high-ERPI

group. Dysregulation of mTOR signaling is associated with the

initiation and progression of cancer, and overactivated

mTORC1 signaling has been demonstrated to promote

malignant behaviors of cancer cells (Kim et al., 2017). MYC is an

oncogene supporting oncogenic processes and resistance to therapy

(Massó-Vallés et al., 2020). MYC deregulation has been proven to

accelerate oncogenesis and program stroma to induce immune

suppression in lung cancer (Kortlever et al., 2017). These

findings indicated that oncogenic processes are overactivated in

the high-ERPI group.

Recruitment of immune cells and activation of immune

processes are associated with not only tumor progression but

also the efficacy of immune checkpoint inhibitors (ICIs), which

are effective treatments for a subset of LUAD individuals (Quail

and Joyce, 2013; Thommen et al., 2018; Helmink et al., 2020;

Bagchi et al., 2021). Studies have suggested that EMT dampens

the functions of immune cells, induces immune evasion, and

promotes resistance to immunotherapy (Kudo-Saito et al.,

2009; Akalay et al., 2013a; Akalay et al., 2013b).

Mesenchymal carcinoma cells display increased resistance to

immune attack and induce formation of immunosuppressive

cells (Dongre et al., 2017). We analyzed the relationship

between the ERPI and TME characteristics. The low-ERPI

group had a higher percentage of immune cells and stromal

cells and lower tumor purity than the high-ERPI group. ERPI

was negatively related to the abundance of immune cells and

activated immune cells, including CD8+ cells, B cells, and DCs.

The abundance and function of these immune cell subsets are

associated with survival outcome and response to ICIs. For

example, single-cell sequencing analyses suggested that

exhaustion of T cells correlated with survival outcome in

LUAD individuals (Guo et al., 2018). One study identified a

CD8+ T-cell subset whose high abundance was proven to be

related to resistance to ICIs (Sanmamed et al., 2021). DCs are

critical mediators of antigen presentation, promoting T-cell

activity and immune control (Böttcher et al., 2018; Ahluwalia

et al., 2021). One study suggested that DC deficiency led to

dysfunction in immune surveillance (Hegde et al., 2020). DCs

were demonstrated to be crucial targets of ICI treatment,

dictating the efficacy of PD-L1 blockade (Mayoux et al.,

2020). NSCLC individuals treated with atezolizumab with a

high DC signature had improved OS compared with those with

a low DC signature (Mayoux et al., 2020). High abundance of

B cells was also reported to indicate favorable prognosis in

patients with LUAD (Cui et al., 2021). Immune-related

responses, including the IFN response and HLA, were

enhanced in the low-ERPI group and are critical processes in

antitumor immunity. Impaired HLA class I antigen processing

reduces responsiveness to ICIs in lung cancer (Gettinger et al.,

2017). Type I IFN responses can activate the immune system

and repress tumor progression (Gozgit et al., 2021). IFN

enhances the expression of immunomodulatory molecules to

augment the activities of CD8+ T cells and NK cells (Edwards

et al., 1985; Hervas-Stubbs et al., 2012; Zitvogel et al., 2015). IFN

can also induce the formation of antitumorigenic cells and

repress the accumulation of immunosuppressive cells (Duluc

et al., 2009; Sisirak et al., 2012). High abundance of immune

cells and highly activated immune processes may be one of the

reasons why the low-ERPI group showed survival advantage

over the high-ERPI group.

The present study has several limitations. The prognostic

signature was constructed and tested retrospectively based on

LUAD cohorts in public databases. A large and prospective

LUAD cohort is necessary to validate the prognostic

performance of ERPI and evaluate whether clinical application

of ERPI can help patients acquire survival benefits. ICIs are

effective treatments for a subset of patients with LUAD.

Although the high- and low-ERPI groups had different

characteristics of immune infiltration and immune response,

the relationship between ERPI and efficacy of ICIs in LUAD

was not explored due to lack of LUAD cohorts treated with ICIs.

In addition, only the function of LINC01138 was clarified in lung
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cancer, whereas the mechanisms underlying other prognostic

EMT-related lncRNAs have not been elucidated.

In conclusion, this study explored the prognostic EMT-

related lncRNAs in LUAD to identify a prognostic signature

that served as a classifier to predict outcome for patients with

LUAD. We also constructed a nomogram that could be used as a

simple tool for survival prediction. Additionally, our study

clarified the biological function of LINC01138 in

tumorigenesis, indicating that it could promote malignant

behaviors in lung cancer. Our study lays foundation for

stratification of LUAD individuals to achieve personalized

treatment and contributes to understanding the role of EMT-

related lncRNAs in LUAD.
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