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Although genome sequencing has become increasingly popular, the simulation of
individual genomes is still important. This is because sequencing a large number of
individual genomes is costly and genome data with extreme and boundary conditions,
such as fatal genetic defects, are difficult to obtain. Privacy and legal barriers also
prevent many applications of real data. Large sequencing projects in recent years have
provided a deeper understanding of the human genome. However, there is a lack of
tools to leverage known data to simulate personal genomes as real as possible. Here, we
designed and developed PGsim, a comprehensive and highly customizable individual
genome simulator, that fully uses existing knowledge, such as variant allele frequencies
in global or world main populations, mutation probability differences between protein-
coding regions and non-coding regions, transition/transversion (Ti/Tv) ratios, Indel
incidence, Indel length distribution, structural variation sites, and pathogenic mutation
sites. Users can flexibly control the proportion and quantity of known variants, common
variants, novel variants in both coding and non-coding regions, and special variants
through detailed parameter settings. To ensure that the simulated personal genome has
sufficient randomness, PGsim makes the generated variants more real and reliable in
terms of variant distribution, proportion, and population characteristics. PGsim is able to
employ a huge volume database as background data to simulate personal genomes and
does not require SQL database support. Users can easily change the variant databases
used as needed. As a Perl script, there is no obstacle to running PGsim on any version
of the MAC OS or Linux systems, and no libraries, packages, interpreters, compilers, or
other dependencies need to be installed in advance. The PGsim tool is publicly available
at https://github.com/lrjuan/PGsim.

Keywords: personal genome, genome simulation, variant simulation, genome variation, computational tools

INTRODUCTION

Although personal genome sequencing has become increasingly popular, the simulation of
individual genomes remains important. Sequencing a large number of individual genomes remains
a costly procedure. Several international projects have sequenced genomes on a large scale.
However, many complex diseases lack sufficient whole-genome sequencing samples. Some typical
familial inherited diseases are also unable to be sequenced using the new technologies.

High-throughput sequencing technology still has several disadvantages in terms of
individual genome sequencing. For example, it is difficult to obtain large structural variations
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(SV) and extreme examples and boundary conditions. Fatal
genetic defects often lead to miscarriage and stillbirth and thus
cannot be sequenced. There are also privacy and legal barriers to
the application of many real data.

On the other hand, the large sequencing projects of recent
years have provided a deeper understanding of the human
genome, facilitating the simulation of individual genome data.
In addition to the known basic genetic laws and general human
genome sequences, the advancement of large projects, such
as the 1000 genomes project (KGP) (Sudmant et al., 2015),
have made the human variation databases more complete.
Representative individuals of different populations have been
determined. A large number of genome-wide analysis studies
(GWASs) have identified millions of disease-related variants.
Databases such as ClinVar (Landrum et al., 2015) and HGMD
(Stenson et al., 2012) have been established. Fully leveraging these
data and information, individual genome data that meet a variety
of research needs can be simulated.

Hundreds of genome simulation methods and tools have
been developed (Peng et al., 2018), which can be divided into
three broad groups: (1) coalescent simulators for population
genomes evolving under particular evolutionary models
(Carvajal-Rodríguez, 2008), such as GENOME (Liang et al.,
2007), GeneEvolve (Tahmasbi and Keller, 2017), and SFS_CODE
(Uricchio et al., 2015); (2) simulation tools for case–control
GWAS data, such as simGWA (Yang and Gu, 2013), simGWAS
(Fortune and Wallace, 2018), GWAsimulator (Li and Li,
2007), and TraidSim (Shi et al., 2018); and (3) simulators
for various types of genome variants and sequences, such as
FIGG, simuG, VST, VarSim, Xome-Blender, and SVEngine.
FIGG generates large numbers of whole genomes with known
sequence characteristics based on the direct sampling of
experimentally known or theorized variations (Killcoyne and
del Sol, 2014). simuG simulates SNPs, Indels, CNVs, Inversions,
and Translocations for different organisms (Yue and Liti, 2019).
Simulome can also simulate genome sequences and variants
for prokaryotic pseudo-genomes (Price and Gibas, 2017). VST
provides a forward-time simulation engine that simulates real
nucleotide sequences of the human genome using DNA mutation
models (Peng, 2015). VarSim synthesizes diploid genomes with
germline and somatic mutations based on a realistic model
for assessing alignment- and variant-calling accuracy in high-
throughput genome sequencing tools (Mu et al., 2014). SVEngine
simulates structural variants in silico and provides variants with
different allelic fractions and haplotypes (Xia et al., 2018). Xome-
Blender generates synthetic cancer genomes with user-defined
features such as the number of subclones, the number of somatic
variants, and the presence of copy number alterations (Semeraro
et al., 2018). Sim1000G is an R package for simulating variants
in genomic regions among unrelated individuals or families
using KGP data (Dimitromanolakis et al., 2019). Finally, a
logistic regression method has been developed for simulating
realistic genomic data with rare variants based on the KGP data
(Xu et al., 2013).

In recent years, a large number of individual genomes have
been sequenced. Genomics and population genetics studies
benefit from advanced technology and further deepen the

understanding of the human genome. Knowledge such as
variant allele frequencies in global or world main populations,
mutation probability differences between protein-coding regions
and non-coding regions, transition/transversion (Ti/Tv) ratios,
SV sites, and pathogenic mutation sites have been continuously
investigated. Existing tools are not yet able to take full advantage
of such rapidly increasing genomic knowledge in individual
genome simulations, however.

In this paper, we developed PGsim, a comprehensive and
highly customizable personal genome simulator, by integrating
the above information. By setting parameters, users can flexibly
simulate individual genomes. Options such as variant number,
variant type, and percentages of variants generated from different
sources can be configured. Users can also incorporate SVs and
disease-related variants in the simulated personal genome based
on known SV databases and disease-related variant databases.
The numbers of these two types of variants can be set on demand.

PGsim first plans an individual genome simulation by a series
of parameters specified by the user and automatically analyses
the multiple databases that are required for the simulation. Then,
according to the planning results, PGsim extracts known variants
that meet the user’s needs from the databases and randomly
generates new mutations that comply with mutation laws. PGsim
ensures that there is no overlap or conflict between variants from
different sources, and the user-requested number of variants is
guaranteed. Finally, PGsim generates diploid personal genome
sequences and other auxiliary information files based on the
simulated personal genome variants and the reference genome.
The simulator requires variant databases in VCF format, and
Bgzip/Tabix compressed/indexed VCF files are recommended.

In the following section, we first describe the overall
workflow of PGsim. Then, the specific strategy for each step
in the personal genome simulation is introduced. Databases
are analyzed next, followed, sequentially, by a discussion of
parameter configurations and an explanation of implementation
methods. Finally, the time consumption of PGsim with typical
parameters is studied.

MATERIALS AND METHODS

Overall Workflow
According to the parameters specified by the user, PGsim
comprehensively considers type, source, location, allele frequency
(AF), Ti/Tv ratio, and other information about genomic variants
and randomly extracts them from known variant databases or
generates them randomly based on the user configuration. As
shown in Figure 1, PGsim consists of three components: (1)
personal genome planner (PG_planner), (2) personal genome
simulator (PG_simulator), and (3) personal genome generator
(PG_generator).

Personal Genome Planner
Personal genome planner plans the personal genome simulation.
It reads the detailed parameter settings input by the user, analyses
the variant databases, and calculates several internal parameters
based on the input parameters and the database analysis results.
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FIGURE 1 | The overall workflow of PGsim.

For known and common variants in the databases, we
calculate an AF correction factor so that, subsequently, these
variants can be selected in a manner that is relatively consistent
with their AF in the background population. For rare or unknown
variants, a series of genomic coordinates are randomly generated
as mutation positions. The generated positions are prevented
from falling into unmeasured regions near the telomeres or
centromeres. Moreover, considering the different mutation
laws between protein-coding regions and non-coding regions,
PG_planner allows users to set a specific number of coding
region mutations, which is independent from the mutations
in the non-coding region. PG_planner also randomly extracts
the user-specified numbers of structural variants and disease-
related variants.

Personal Genome Simulator
Personal genome simulator simulates individual genome
variants based on the planning scheme output by PG_planner.
PG_simulator merges variants simulated from different sources,
including ones randomly selected from known variant databases
and ones randomly generated by PG_planner. The simulated
variants are output in VCF format, and their genotypes are
also determined.

For known variants in the databases, the PG simulator will
sample them one by one according to the AF of the background
population. When the random number obtained from the
sampling of a variant is less than its corrected AF, the variant
will be selected; otherwise, it will be skipped. Each autosomal
variant or the X chromosomal variant of female individuals will
be sampled twice as the genotype on the diploid genome.

For newly generated variants, PG_simulator further
determines the length, type, and other information based
on the mutation laws. The features of the variants, including the
Ti/Tv ratio, Indel rate, and frame shifting rate of coding variants,
are set by the input parameters, while the necessary randomness
is kept. The novel variants are all assigned as heterozygous
variants on a random haploid genome.

Structural and disease-related variants can only be extracted
from known databases and added directly to the generated
personal genome. They are also heterozygous.

Personal Genome Generator
Personal genome generator produces the diploid sequence of the
simulated individual genome based on the reference genome data
and the individual genome variants generated by PG_simulator.
PG_generator loads the data from both variants data and the
reference genome, and then replaces the base of the reference
genome sequence at the mutation position with the mutated base,
including Indels and SNVs. The result is output in FASTA format.
PG_generator produces a FASTA file for each haploid.

Because most known SVs lack the necessary, detailed
sequence-level information, the PG_generator will ignore the SVs
in the input personal genome variant data. The PG_generator will
also generate a set of coordinate mapping data for comparing
the coordinates between both haploid genome sequences and
the reference genome sequence. Such coordinate differences are
caused by Indels.

Databases
For personal genome simulation, PGsim not only needs to
seek authenticity but also should satisfy randomness as much
as possible. We used six sequence and variant databases
in the individual genome simulation process: (1) reference
genome sequences, (2) protein-coding regions, (3) known variant
databases, (4) common variant databases, (5) SV databases, and
(6) disease-related variant databases (Table 1).

PGsim employs these data in the form of files without the
need to set up a SQL database. Users can easily select and replace
the data files. Among them, the reference genome sequence data
are stored in a single file in the FASTA format. To save disk
space, PGsim can directly read gzip-compressed FASTA data.
The coding region information should be in non-overlapping
BED format. Only the first three columns are required. The
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TABLE 1 | Databases of variant sources.

Database Format Candidates

Reference genome FASTA GRCh38, GRCh37/hg19. . .

Coding regions BED RefSeq Gene, knownGene,
ensemblGene, GENCODE. . .

All known variants VCF dbSNP151, KGP.phase3, ExAC

Common variants VCF Common SNP 151,
KGP.phase3

Structural variations VCF dbVar, DGVa. . .

Disease-related variants VCF Clinvar, HGMD. . .

coding region annotations can be derived from RefSeq, known
Gene, GENCODE, etc.

Variant data are stored in VCF format files, including common
variant and known variant databases. The common variant
database should contain the AF information of the user-specified
background population. This information is generally located in
the INFO field of the VCF files.

The background population can be the entire human
population, a sample cohort of a certain sequencing projects,
or a specific population/super population. Users can change
the parameters to set the background AF used in the
simulation process and then obtain the simulated personal
genome that matches the genetic characteristics of the specified
population. Not all variants in the common variant database are
naturally considered common variants; only those variants with
corresponding allele frequencies greater than a certain threshold
(default 0.01) will be considered common variants in the specific
background population context.

The known variant database should contain all known
variations that users expected to occur in the simulated individual
genome. Unlike the common variant database, PGsim does not
require variants in this database to carry corresponding AF
information. All variants have equal probability to be selected.

By default, the known variant database may include common
variants, but PGsim only selects non-common variants from
it. The common variants will be selected from the common
variant database. In the database setting of the parameter

configuration, users can set the common variant database and
the known variant database to be the same file. In this case,
variants with corresponding allele frequencies greater than
a threshold value will be considered common variants. The
other variants will be considered as non-common variants.
We recommend dbSNP and common SNP as the databases
of known variants and common variants, respectively. Users
can also choose the variant collection from a large sequencing
program, such as KGP or GSP, as the background data
for known variants.

Considering the complexity of SVs, PGsim does not provide
randomly generated SVs. Instead, we only extract SVs from a
known SV database. PGsim ensures that the randomly extracted
SVs neither overlap with each other nor conflict with other
variants simulated from other sources. We recommend dbVar as
the SV database.

PGsim extracts the user-specified number of disease-
related variants from the disease-related variant database and
incorporates them into the simulated personal genome data.
Only variants with “Pathogenic” and “Likely pathogenic” clinical
significance have the chance to be selected. We recommend that
users select ClinVar as the disease-related variant database.

Variant Simulation
Variants are the key feature of an individual genome. Thus,
variant simulation is the essential step of personal genome
simulation. PGsim provides various highly customized
parameters for realistic, reliable, and flexible simulations of
individual genomic variants.

As shown in Table 2, there are two parameters that globally
control the simulation process of individual genome variants:
gender and overall variation rate (OVR). Gender determines
the sex chromosome composition of the simulated individual
genome. It can be set to male, female, or any. The overall
variation rate determines the total number of variants on a
haploid of the simulated individual genome. This parameter can
be set as an interval.

To ensure that the size of the generated personal genome
variants meets user requirements, PGsim randomly selects or

TABLE 2 | User-controlled parameters.

Parameter Type Form Range/examples Default value

Gender String Value Male/female/any Any

Overall variation rate Numeric Min, max 0 ≤ OVR ≤ 1 0.001

Known variation rate Numeric Min, max 0 ≤ KVR ≤ 1 0.9

Common variation rate Numeric Min, max 0 ≤ CVR ≤ 1 0.8

Background population String Value AF, CAF, EUR_AF. . . CAF

Number of novel coding variants Numeric Min, max 0 ≤ CDN ≤ 10,000 200

Novel Indel rate Numeric Min, max 0 ≤ NIDR ≤ 1 0.1

Maximum novel Indel length Numeric Value 2 ≤ NIDL ≤ 200 50

Ti/Tv ratio Numeric Min, max 1 ≤ TiTv ≤ 5 2.0, 2.1

Ti/Tv ratio in coding region Numeric Min, max 1 ≤ TiTvC ≤ 5 2.8, 3.0

Frame shifting rate Numeric Min, max 0 ≤ FSR ≤ 1 0.2, 0.3

Number of structural variations Numeric Min, max 0 ≤ SVN ≤ 1,000 0

Number of pathogenic variants Numeric Min, max 0 ≤ PVN ≤ 1,000 0
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generates variants in different ways. According to the sources,
the simulated variants can be divided into three types: known
variants, novel variants, and special variants. Known variants
are those that have already been detected from real individuals
and already exist in known variant databases or common variant
databases. Novel variants are randomly generated by PGsim.
Special variants are variants from the SV database or disease-
related variant database. Regarding authenticity, the number
of special variants is much smaller than the known and novel
variants, usually numbering up to a few hundred. If the variants
from different sources conflict, PGsim preferentially incorporates
special variants into the simulated personal genome, followed
by known variants and finally the novel variants with the
lowest priority.

PGsim employs different methods to simulate variants from
the three sources. For known variants, we make a random
sampling based on the corrected AF. For novel variants, we
randomly generate a series of genome position coordinates
based on user parameters, mutation laws, the reference genome
sequence, and coding region data. For special variants, we
randomly select the given number of records from the databases.

Known Variant Simulation
With the advancements of many large-scale genome sequencing
projects and cohort sequencing, a fairly comprehensive
understanding of human genome variation has been gained. In
the real human individual genome, most variants are known
variants, and most of the known variants are common variants.
Therefore, the simulated personal genome should generally
contain a considerable proportion of known and common
variants, especially variants that fit the characteristics of the
assumed population.

PGsim determines the proportion of known variants among
all simulated variants through the known variation rate (KVR)
parameter. The common variation rate (CVR) parameter
determines the proportion of common variants among the
known variants. The background population parameter
determines which population’s AF is used by PGsim as a basis
for randomly selecting common variants. This parameter should
be set to the tag of the corresponding AF in the INFO field
of the VCF file.

For each common variant in the database, PGsim performs
random sampling once. When the random number is less than
the AF of the given background population, the variant is selected
as a genome variant of the simulated individual. To meet the
user configuration parameters of the variant amounts such as
OVR, KVR, and CVR, we calculated a correction factor, the
practical AF coefficient, paC, through the input parameters and
databases statistics,

paC =
Requested number of common variants

Expected number of common variants
=

GLN ·OVR · KVR · CVR
ecvNum

(1)

where GLN denotes the total length of the reference genome,
OVR denotes the overall variation rate, KVR denotes the known

variation rate, CVR denotes the common variation rate, and
ecvNum denotes the expected number of common variants, i.e.,
the sum of the non-reference allele frequencies of the common
variants in the background population.

OVR, KVR, and CVR are user-controlled parameters. GLN,
ecvNum, and paC are calculated by PGsim based on the
user configuration and database statistics, namely, “internal
parameters.” The internal parameter CVT (default CVT = 0.01)
determines the minimum AF threshold of common variants. All
internal parameters are illustrated in Table 3.

The practical AF coefficient corrects the common variant
allele frequencies of the background population in simulation.
As shown in Figure 2, this strategy enables PGsim to select
a specific number of common variants while preserving their
relative probabilities of occurrence.

Non-common variants are randomly selected from the known
variant database with the same probability, i.e., the practical
average AF, or paAF. The internal parameter is also calculated
based on user input parameters and databases statistics,

paAF =
GLN ·OVR · KVR.(1− CVR)

varNum− cvNum
(2)

where GLN denotes the total length of the reference genome,
OVR denotes the overall variation rate, KVR denotes the known
variation rate, CVR denotes the common variation rate, varNum
denotes the number of records in the known variant database,
and cvNum denotes the number of records in the common
variant database. The internal parameters varNum and cvNum
are obtained from databases statistics.

Novel Variant Simulation
Due to biochemical principles and selection pressure, the
mutations that actually occur in the human genome are not
completely random but follow certain rules, such as the Indel
incidence and the Ti/Tv ratio. In the process of simulating an
individual genome, these rules should be followed as closely as

TABLE 3 | Internal parameters.

Parameter Variable Calculation method

Threshold of allele frequency of common
variants

CVT Default CVT = 0.01

Power law ‘alpha’ of Indel length distribution PLalpha Default PLalpha = 1.8

Length of the reference genome GLN Scan reference genome

Number of ‘N’s in the reference genome nGLN Scan reference genome

Length of protein-coding regions modLen Scan gene model

Number of known variants in database varNum Scan known variants
database

Number of common variants in database cvNum Scan common variants
database

Expected total AF of common variants ecvNum Scan common variants
database

Practical AF coefficient of common variants paC Eq. 1

Practical average AF of non-common variants paAF Eq. 2

Practical number of novel variants pnvNum Eq. 3

Expected overlap rate of known and novel
variants

eoR Eq. 4
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FIGURE 2 | Selecting a specific number of common variants while preserving their relative occurrence probabilities.

possible. Our method for simulating known variants basically
retains the relative differences between allele frequencies and
thus naturally follows the corresponding laws. However, the
simulation of novel variants must carefully consider the influence
of these factors.

The above rules are fairly different between protein-coding
regions and non-coding regions. Therefore, PGsim simulates
novel variants in coding and non-coding regions. Non-coding
region variants are randomly selected from the while genome
according to a uniform distribution. If the total number of
non-coding region variants is pnvNum, then,

pnvNum = GLN ·OVR · (1− KVR) · (1+ eoR)·

GLN
GLN− nGLN−modLen

(3)

where GLN denotes the total length of the reference genome,
OVR denotes the overall variation rate, KVR denotes the known
variation rate, nGLN denotes the length of “N”s in the reference
genome, modLen denotes the length of the coding region, and
eoR denotes the expected rate of novel variants overlapping with
known variants. The internal parameter eoR is calculated by the
following equation:

eoR =
OVR · KVR

1−OVR · KVR
(4)

where OVR denotes the overall variation rate and KVR denotes
the known variation rate.

pnvNum is greater than the number of novel variants set by
the users through the OVR and KVR parameters. This is because
during the process of merging simulated variants from different
sources, novel variants have lower priority and may be discarded
for a variety of reasons. The total number will be insufficient after
discarding these novel variants. For example, some novel variants
may conflict with the extracted known variants.

In addition, the coordinate positions of the novel variants
are randomly generated according to a uniform distribution,
which is basically suitable for non-coding regions. However, the
distribution of variation between the coding and non-coding
regions should obviously not be uniform. Therefore, PGsim
allows users to set the number of novel variants in the coding
region independently through the parameter CDN and then
randomly generate the user configured number of novel variants
in the coding region. Variants that fall into the coding region
during the global novel variant simulation are discarded. Finally,
novel variants that fall into the undetermined region of the
genome, that is, regions where the reference genome sequence
are “N”s, will also be considered invalid variants.

PGsim simulates both novel SNVs and novel Indels. The novel
Indel rate (NIDR) parameter controls the proportion of novel
Indels in all novel variants. NIDR applies to both coding and non-
coding regions. However, for the coding regions, a portion of the
frame shifting Indels may be discarded in the subsequent step.

PGsim allows the probability of the alternate allele selection
of the novel SNVs to meet the user-controlled parameters Ti/Tv
ratio (TiTv), and Ti/Tv ratio in the coding regions (TiTvC). The
two parameters are applied in the non-coding regions and the
coding regions, respectively.

Previous studies have shown that the Indel length distribution
on the human genome follows a power law distribution
(Cartwright, 2009). As shown in Figure 3, we analyzed the
Indel length distribution in the dbSNP database. Figure 3A
shows that the distribution of Indel length is basically consistent
at different AF levels and is basically symmetrical between
deletion (Indel length < 0) and insertion (Indel length > 0).
Figure 3B shows that the known Indel length distribution in
the database and the sampling results of a standard power law
distribution with parameter alpha = 1.8 are basically the same.
The distortion at the end of the figure may be due to the
insufficient capability of long Indel detection by existing high-
throughput sequencing technologies. The power law distribution
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FIGURE 3 | Indel distribution. (A) Number of known Indels for each length-AF pair. (B) Known dbSNP Indel length distribution and theoretical discrete power law
distribution. Both axes are in log2 scale. The labels of the axes are the corresponding exponents.

is a long-tailed distribution. Statistics show that 99% of Indels in
the dbSNP database are <20 nt in length. Here, we employ the
following power law distribution to simulate the length of Indels:

Indel length ∼ x
1

(1−PLalpha) (5)

where PLalpha denotes the parameter alpha of the power law
distribution. The default value of the internal parameter is 1.8.

The maximum length of novel Indels is determined by
the user-controlled parameter “maximum novel Indel length”
(NIDL). PGsim conducts random sampling from the discrete
power law distribution to determine the length of each Indel.
If the sampled value is larger than NIDL, the remainder of the
division of the length by NIDL will be used as the length of
the novel Indel.

For coding region Indels, the non-frameshifting Indels, i.e.,
novel Indels with a length of integer multiples of 3, are reserved.
Only a portion of the remaining frameshifting Indels are
reserved. The retention ratio is set by the frameshifting retaining
rate (FSR) parameter.

Special Variant Simulation
All special variants are extracted from the databases. The user
can set the number of special variants in the input parameters.
The number should not exceed the total number of non-
overlapping special variants in the database. For SV, PGsim
first scans the SV database to group overlapped SVs, then
randomly selects the given number of groups according to
the SV number (SVN) parameter, and finally randomly selects
a record in each group. For disease-related variants, PGsim
directly extracts the given number of records from the database
according to the pathogenic variants number (PVN) parameter.

These randomly selected special variants are extracted during
the planning phase of the personal genome simulation and
subsequently incorporated into the generated VCF file by the
order of the genome coordinates.

IMPLEMENTATION

PGsim is implemented in Perl and can be run directly on MAC
OS and Linux systems. PGsim consists of three components,
each of which is an independent script. PG_planner.pl reads
the parameter configuration file, scans the databases, and plans
the individual genome simulation. PG_simulator.pl produces
simulated individual genome variant data. PG_generator.pl
generates diploid personal genome sequence data.

The user should specify the file paths of the reference genome
and the variant databases in the configuration file. The reference
genome data should be stored in FASTA format or its gzip-
compressed file. The coding region information should be stored
in a BED-format file. The variant databases should be stored in
the standard VCF format files or their gzip-compressed files. The
databases can be easily replaced on demand. The INFO field of
the VCF file of the common variant database should contain AF
information for the background population specified by the user.

To achieve better randomness, most of the input parameters
can be set as an interval. During the planning phase of the
simulation, these parameters will be randomly determined as a
value within the interval according to the uniform distribution.
Users can input equal upper and lower bounds for the interval to
ensure that the parameter is set to a specific value.

PGsim is a single-threaded tool. However, if the databases are
stored in gzipped form, extra threads for uncompressing the data
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TABLE 4 | Average time consumption of PGsim.

Operation Major factor
influencing
performance

Value Average
time (s)

Reference genome
scanning and analysis

Length 3,088,286,401 109

Coding region scanning
and analysis

Records 211,255 2

Known variant
database scanning and
analysis

Records 660,146,174 7,299

Known variant
database scanning and
analysis

Records 37,302,978 305

Common variant
database scanning and
analysis

Records 37,302,978 1,045

Novel variants planning pnvNum ∼300,000 4

Variant simulation Known DB
records

660,146,174 10,702

Variant simulation Known DB
records

37,302,978 2,275

Personal genome
sequence generation

Genome length 3,088,286,401 286

in real time are needed by the gzip program. Multiple cores will
accelerate the overall performance. During the whole process,
PGsim generally does not occupy over 3 GB of memory, which
is the size of the human reference genome.

The time of a single run of PGsim is mainly related to the
size of the variant databases and less related to the number
of simulated variants. This is because PGsim will traverse the
variant database and conduct sampling for each known variant
to ensure that all variants have a chance to be selected. According
to repeated testing, if the entire dbSNP database is used as the
known variants database and the common variants in dbSNP151
are used as the common variants database, then the database
scanning time is ∼2 h, and the simulation time of the personal
genome is ∼3 h. In this case, a total of 660,146,174 known
variants are sampled, accounting for <20% of the whole genome
length. If 37,302,978 common variants in the common SNP
database are used for simulation, the database scanning time is
approximately 18 min. Table 4 lists the typical time consumption
of the major steps of PGsim in the individual genome simulation
process. Each value is the average of 10 experiments.

The database scanning process will only be performed when
the database is used for the first time. After scanning, PG_planner
will generate a statistical results file with the database file name
as the prefix and “pgstat” as the extension. When used again,
PG_planner detects whether this file exists. If so, it will directly
read the statistical results.

DISCUSSION

In this paper, we designed and developed a comprehensive and
highly customizable individual genome simulator, PGsim. The
majority of variants in human genomes are known variants,

and most of the known variants are common variants. The
AF of common variants varies among individuals of different
populations. PGsim can make full use of the real AF information
in the known variant database to simulate a personal genome
whose background population characteristics conform to the
user’s requirements.

Users can flexibly control the proportion and quantity of
known variants, common variants, novel variants in both
coding and non-coding regions, and special variants through
detailed parameter settings. Our method leverages the existing
knowledge of genomics and population genetics, such as the
Ti/Tv ratio, Indel incidence, and Indel length distribution, to
simulate individual genomes that are consistent with biochemical
principles and selection processes. To ensure that the simulated
personal genome has sufficient randomness, PGsim makes the
generated variants more real and reliable in terms of variant
distribution, proportion, and population characteristics.

PGsim is able to employ a very large-volume database as
background data to simulate personal genomes and does not
require SQL database support. Users can easily change the variant
databases used as needed. PGsim traverses the gzip-compressed
database file to minimize the memory and hard disk usage in the
personal genome simulation process. As a Perl script, there is no
obstacle to running PGsim on any version of the MAC OS or
Linux systems, and no libraries, packages, interpreters, compilers,
or other dependencies need to be installed in advance.
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