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Abstract

Cerebral autoregulation refers to the physiological mechanism that aims to maintain blood flow to the brain approx-

imately constant when blood pressure changes. Impairment of this protective mechanism has been linked to a number of

serious clinical conditions, including carotid stenosis, head trauma, subarachnoid haemorrhage and stroke. While the

concept and experimental evidence is well established, methods for the assessment of autoregulation in individual

patients remains an open challenge, with no gold-standard having emerged. In the current review paper, we will outline

some of the basic concepts of autoregulation, as a foundation for experimental protocols and signal analysis methods

used to extract indexes of cerebral autoregulation. Measurement methods for blood flow and pressure are discussed,

followed by an outline of signal pre-processing steps. An outline of the data analysis methods is then provided, linking the

different approaches through their underlying principles and rationale. The methods cover correlation based approaches

(e.g. Mx) through Transfer Function Analysis to non-linear, multivariate and time-variant approaches. Challenges in

choosing which method may be ‘best’ and some directions for ongoing and future research conclude this work.
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Introduction

Cerebral Autoregulation (CA) refers to the ability of

the brain to maintain approximately constant blood

flow in response to changes in blood pressure.

Assessing CA remains a major challenge, with multiple

methods and approaches having been described in the

literature. Given the still limited understanding of the

physiological processes and the construct of autoregu-

lation, defining an index that seeks to quantify how

well autoregulation is functioning in an individual sub-

ject is not a simple task. It is thus not surprising that

still no gold-standard approach for assessing autoregu-

lation has emerged, neither for research nor for clinical

use. The current paper is the third in a series of papers

published by the Cerebral Autoregulation Research

Network (CARNET, www.car-net.org) to support col-

laborative research in CA. In line with this goal, in

2016 a new project entitled INFOMATAS

(Identifying New targets FOr Management

And Therapy in Acute Stroke) was launched with the
objective of moving the extensive research in CA
towards enhanced clinical benefit for patients after
stroke. The first two papers outline the underlying
physiology and integrative physiological assessment
of cerebral hemodynamics in acute stroke, and this
paper focuses on the assessment of cerebral
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autoregulation from physiological measurements.
Subsequent papers focus on trials and interventions
in stroke.

Two distinct aspects of autoregulation have been
extensively studied in the literature: static and dynamic
autoregulation. Static cerebral autoregulation1,2 (sCA)
refers to changes in blood flow in response to changes
in blood pressure in the ‘steady state’ (i.e. where mean
blood pressure changes to a new level and is held there
for minutes or hours) (Figure 1). In dynamic cerebral
autoregulation,2 the transient responses of blood flow
to changes in blood pressure are studied (Figure 2),
with changes occurring within a few seconds being con-
sidered. This dCA can be observed during induced fluc-
tuations in blood pressure (e.g. using a pressurised
thigh cuff and its release) or with the small fluctuations
that occur spontaneously in arterial blood pressure
(BP) and cerebral blood flow (CBF) (as shown in
Figure 2). Dynamic CA has become the focus of
most current research and clinical assessment of CA
in stroke,3 and will thus be the main focus of this
review.

Figure 3 shows an example of a (fairly typical)
experimental set-up for assessing dCA, with a
Finometer (Finapres Medical Systems, The
Netherlands) for measuring BP, bilateral transcranial
Doppler Ultrasound (TCD) probes (Dopplerbox,
DWL, GmbH, Singen, Germany), nasal prongs for
measuring end-tidal CO2 (as a non-invasive measure
of PaCO2; CapnocheckVR , Smith Medical, Ashford,
UK), ECG leads for measuring heart-rate (ECG100C
BIOPAC Systems Inc, Goleta, CA, USA), as well as
(for this particular series of experiments) cuffs around
the legs to induce transient changes in BP (developed at

Leicester Royal Infirmary, UK). Quantifying the rela-
tionship between BP and CBF (or more commonly
CBF velocity – CBFV – as obtained from TCD) is by
definition at the core of all measures of autoregulation.
We will give a brief description of methods currently
used in the literature, including protocols for collecting
and pre-processing signals, mathematical models that
underpin analysis and method for estimating indices
that quantify autoregulation.

All methods considered in this work4 are based on
simultaneous recordings of BP and CBF (and some-
times more variables) taken under a range of different
protocols, usually for periods from a few minutes to a
few hours. There is also a substantial body of work that
uses an alternative concept of autoregulation based on
the relationship between blood pressure and intracra-
nial pressure (ICP),4 focused on the PRx index. Given
that this index requires invasive recordings of ICP,
which are not usually available in patients after a
stroke, this review will not expand on this approach.
Other alternatives use tissue oxygenation level and the
TOx index,5 based on Near Infrared Spectroscopy
(NIRS), or a surrogate measure of intracranial
volume6 and a Volume Reactivity Index (VRx), but
these have also not been widely adopted in stroke stud-
ies.7 We will focus primarily on data collection meth-
ods for blood flow that can be used at the bedside, as
these are most appropriate for patients following a
stroke, but for the sake of completeness, we will also
mention some alternatives, including MRI. The most
direct ways of estimating CA is to impose changes in
blood pressure and autoregulation can then be imme-
diately observed (and quantified by simple parameters)
from the responses in blood flow; however, some of

Figure 1. Static Autoregulation curve, redrawn after Paulson et al.1 The region where blood flow remains approximately constant
inspite of increasing pressure shows active autoregulation, achieved by progressively increasing vascular resistance. This breaks down
at the lower and upper limits of the autoregulatory range.
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these protocols are only suitable for relatively fit vol-

unteers and only a few are suitable for vulnerable

patients after a stroke. More complex signal analysis

methods are required when evidence of autoregulation

is less obvious, for example during smaller fluctuations

in blood pressure, including spontaneous variability in

BP. Two main approaches have been considered in

such cases, quantifying 1) how strong the relationship

between blood flow and blood pressure is – with a

tighter linear coupling (higher correlation and coher-

ence – see later sections) when autoregulation is

impaired8,9 or 2) specific features of that relationship

(e.g. gain or phase – see later sections). The latter are

usually based on some predetermined mathematical

structure to model that relationship (e.g. linear,10

non-linear,11 wavelets, Wiener Laguerre, empirical

modes,12 etc.) and a range of mathematical and com-

putational tools to estimate parameters from the sig-

nals. The current review is focused on CA assessments

carried out at specific times (point measurements),

rather than continuous monitoring of CA. The latter

is becoming a common practice in patients after

trauma,13,14 but currently not in stroke.
The main goal of the current paper is to shed some

light on this complex topic. It aims to assist conceptual

understanding of method and approaches, rather than

giving detailed technical information. We hope it will

help readers to better understand the literature and to

make informed choices in developing their own

research.

Figure 2. An example of arterial blood pressure (ABP), Cerebral Blood Flow Velocity (CBFV) showing spontaneous variations during
rest. A) Raw signals as recorded, together with beat-averaged (and interpolated) mean signals. B) Normalized ABP and CBFV signals
(shown as % relative to mean values). The left-shift of the CBFV with respect to ABP is clearly evident, with peaks in CBFV generally
occurring before the peaks in ABP, and CBFV returning to baseline generally more quickly than ABP does. This illustrates the effect of
dynamic autoregulation.
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Protocols for assessment of CBF

autoregulation

Assessment of CA requires simultaneous measure-
ments of CBF and BP. Ideally, the arterial partial pres-
sure of carbon dioxide (PaCO2) should also be

recorded given its very strong influence on CBF.15

Most studies derive these quantities using non-
invasive techniques, such as transcranial Doppler ultra-

sound (CBF velocity or CBFV), arterial volume
clamping of the digital artery (BP) (e.g. Finapres) and
end-tidal CO2 (etCO2, as an estimate of arterial CO2

levels, PaCO2).
16 Near Infrared Spectroscopy (NIRS)

has been used as an alternative to TCD in some studies,
including for stroke5,7,17 but TCD has remained the
predominant method and will therefore be the main

focus in this paper. There is some concern with NIRS
regarding the impact extracranial (scalp) blood flow
may have on measurements, and the susceptibility to

movement artefacts.7 It may be noted that most of the
modelling techniques described in this paper can be
applied to both TCD and NIRS. Despite many years

of research, the optimal protocols for studying CA,
either as a static (sCA) or dynamic (dCA) phenomenon
remain undetermined and the advantages/disadvan-

tages of different approaches continue to be hotly
debated.18,19 In this section we discuss the different
protocols that have been proposed, with an emphasis

on their suitability for assessment of CA in patients
with ischemic or haemorrhagic stroke. Greater detail
on experimental methods are provided in a companion
paper (‘Protocols for assessment of CBF autoregula-

tion’ section) in this series.

Static CA

Despite being superseded by dCA, sCA is still reported

in the literature and it is important to call attention to

its limitations, in most cases a direct result of the pro-

tocols adopted to induce changes in mean BP (MAP)

that should be maintained for several minutes.

Protocols based on only two levels of MAP have

been criticised due to the large experimental and

numerical errors involved.2 Multiple levels of MAP

should be observed in order to assess whether the

slope of the mean CBFV-MAP relationship should be

considered ‘flat’ (i.e. active sCA) or not.20 For this pur-

pose, drugs inducing either hypertension (e.g. phenyl-

ephrine) or hypotension (e.g. nitroprusside) have been

used.1,21,22 In addition to the invasiveness of the phar-

macological manipulation, an additional limitation is

the difficulty to control the stability and duration of the

MAP plateau levels achieved using either a bolus or

continuous infusion of these drugs.21

Other approaches to induce changes in MAP have

been tilting or changes in circulatory blood volume.23

Although these protocols have the advantage of avoid-

ing the use of pharmacological agents, it is still difficult

to control the amplitude of the resulting changes in

MAP, as well as its stability and duration. Moreover,

both manoeuvres can induce autonomic nervous

system activation that might interfere with the resulting

changes in CBF. In patients with ischemic or haemor-

rhagic stroke, therapeutic changes in mean BP might

give the opportunity to record parallel changes in CBF

to obtain estimates of sCA, but otherwise inducing

changes in BP is not recommended.
In addition to interventions to induce changes in

MAP, sCA has also been assessed, within the frame-

work of linear regression analysis, using spontaneous

fluctuations of MAP. This approach would be better
labelled as ‘quasi-static’ since in most cases no infor-

mation can be obtained about the speed of the

response. The Mx and Mxa indices are good examples

of this approach.8 Despite the advantage of being non-

interventional, a major limitation of using spontaneous

fluctuations is the lack of control over the range of

MAP values achieved which can affect the significance

of results derived by linear regression analysis.20

Dynamic CA

Assessment of dynamic CA relates the transient

response of CBF to relatively rapid changes in BP, ide-

ally taking place within 1–5 s. As listed in Table 1, sev-

eral different protocols have been proposed to induce a

single change or multiple changes in BP that can be

combined with different analytical techniques (see

below) to derive parameters reflecting the efficiency

Figure 3. Experimental set-up showing TCD (A), Finapres (B),
ECG (C), capnograph (nasal prongs) (D), and inflatable thigh-cuffs
(E) (photograph taken with permission at Southampton General
Hospital). The figure also shows the dedicated device for com-
puter-controlled inflation/deflation of thigh cuffs and corre-
sponding laptop for controlling and monitoring this process.78,79
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of dCA. On the other hand, spontaneous fluctuations

in BP have also been extensively used for this purpose

since the natural variability in BP usually contains
beat-to-beat changes that can be regarded as sufficient

to stimulate a dynamic CA response. The advantages

and limitations of either approach (spontaneous vs

induced) have received considerable attention.18,19 In
summary, spontaneous fluctuations afford assessments

at rest without any disturbances of physiological con-

ditions, thus being ideal for clinical applications, par-

ticularly in patients following a stroke or otherwise

critically ill, but the relatively small amplitude of BP
fluctuations lead to less reliable estimates of dCA

parameters. Induced changes in BP, on the other

hand, lead to better signal-to-noise ratios and challenge

CA more strongly, given the larger excursion of BP,
but the corresponding effects on the underlying physi-

ological conditions can generate additional ‘inputs’ to

CBF signal thus distorting dCA estimates.18 Moreover,

many of these protocols are not suitable for stroke

patients, either due to safety concerns or limitations
in the patients’ mental or physical ability to follow

the protocol.
Choosing which protocol to adopt is not straightfor-

ward, unless there is an obvious association with the

research question being addressed, such as the study of

dCA during exercise, or clinical studies where patients

cannot tolerate any protocols apart from spontaneous

fluctuations in BP. Given the lack of reference values
(‘gold standard’) for dCA parameters, inter-method

comparisons cannot provide a definitive answer as to

which protocols should be preferred; they can provide

complementary information, such as reproducibility
and feasibility in different groups of individuals.

Ultimately, only comparative studies of diagnostic/

prognostic performance might indicate the relative

superiority of some protocols in particular groups of
patients. In the absence of this information, some char-

acteristics of different protocols are worth noting.

First, the amount of information available in the liter-

ature is very uneven, as indicated in Table 1, with some

of the protocols being used in only a handful of studies.
For obvious reasons, the limitations of the different

protocols need close scrutiny. Protocols that yield con-

tinuous data, mainly due to repetitive manoeuvres (sit-

to-stand, squat-stand, random repetitive thigh cuff
manoeuvres, fixed breathing), can be analysed by

transfer function analysis (TFA), assuming that the

data are stationary (see ‘Data preparation’ section 3).

However, for manoeuvres inducing a single transient
change in BP (single thigh cuff deflation, cold stress

test, carotid artery occlusion, sit-to-stand manoeuvre

etc.), other analytical techniques need to be employed

and these are much less well-established than TFA.

MAP is given by the product of peripheral vascular
resistance (Rp) and cardiac output (CO). Since CO in
turn is the product of stroke volume (SV) and heart
rate (HR), MAP¼ (SV.HR).Rp. This relationship is
useful to highlight the fact that it is not possible to
induce changes in MAP without affecting one or
more of these parameters, which may lead to con-
founding when attempting to assess changes in vascular
resistance or CBF in response to changes in MAP. For
the protocols where ‘exercise’ is given as a limitation in
Table 1, one can expect all three parameters (SV, HR,
Rp) to be affected, with the involvement of the sympa-
thetic nervous system. Many other protocols also stim-
ulate sympathetic nervous activity (SA in Table 1),
either as the main pathway to MAP change (e.g. cold
stress test), or as a response to the primary physiolog-
ical changes induced (e.g. lower body negative pres-
sure) or pain (e.g. thigh cuff manoeuvre). On the
other hand, some manoeuvres are more specific. For
example, leg elevation increases MAP due to increases
in SV resulting from increased venous return. The
single thigh cuff manoeuvre reduces Rp due to hyper-
aemia downstream to the cuffs,24 but when looked into
in more detail, it also involves changes in PaCO2 and
HR.25,26

As highlighted by a recent review from Xiong
et al.,17 both ischemic and haemorrhagic stroke present
a particular challenge for assessment of CA. As in any
clinical studies, the first consideration is the safety
implications of different protocols, followed by wheth-
er patient cooperation is needed or not (Table 1).
Although some protocols in Table 1 that require coop-
eration could be performed by many stroke patients
(e.g. periodic breathing), unless the manoeuvre can be
used in all patients, there is the risk that patient recruit-
ment, already a major challenge in these studies, might
be further jeopardised. Until further evidence is provid-
ed that demonstrates the superiority with regard to fea-
sibility, safety and diagnostic/prognostic accuracy of a
specific protocol for inducing BP changes in stroke
patients, our recommendation is the use of spontane-
ous fluctuations, associated with TFA.10

Data preparation

Visual inspection is required to select good quality data
free from major artefacts. Pre-processing to further
reduce noise in the signals, followed by the extraction
of beat-averaged signals is usually also required. These
steps will be outlined in the current section. For CBF,
only illustrations with CBFV from TCD signals will be
shown, as these are most commonly used. Further
details have been presented in Claassen et al.10

Visual inspection should be carried out on the raw
CBFV and BP signals, prior to filtering and beat-

416 Journal of Cerebral Blood Flow & Metabolism 42(3)



averaging (see Figure 2(a)), as pre-processing steps can
hide artefacts. Good quality signals for CBFV and BP
should show clear pulse-waves that are quite repeatable
between beats, as shown in Figure 4. A clearly noted
dicrotic notch in the downstroke after systole is a fur-
ther indication of good quality (though this may not
always be clearly visible in data that is otherwise
acceptable). Figure 4 also shows some examples of typ-
ical artefacts in recorded signals. The most common
artefacts in the TCD signal are due to relative move-
ment between participant and probe, and are typically
observed as a decrease in pulsatility, large spikes, or a
more noisy (random) appearance of the signal. A gen-
eral decrease in amplitude is also often seen to coincide
with this. A comparison between changes in BP and

CBFV can be helpful to assess if ‘surprising’ changes
in the signals are physiological or not. Another
common artefact of TCD is irregular spikes in the sig-
nals, arising from poor choice of thresholds (or chang-
ing signal strength) for the ‘maximum frequency
envelope’ set on the Doppler device. The resulting arte-
facts can be reduced by median filtering27 or interpo-
lation25 (or both), provided that they only occur
sporadically.

Common artefacts of BP are drift (very common in
finger plethysmographic devices) and a loss of pulsatil-
ity. Self-calibration (‘physiocal’), an automatic feature
of some of these devices, leads to a typical artefact
consisting of a series of steps in the signal (see
Figure 4(b)). If possible, these should be avoided by

Figure 4. Examples of signals showing (a) good quality, (b) typical artefacts in BP, (c) and (d) typical artefacts in CBFV. The signal
segments deemed inadequate for further analysis are indicated as gaps in the mean signals (red, bold). It may be noted that the CBFV
signals in D are not of high quality throughout, and on the right side, it is questionable if the beats around 740 seconds should be
included or not. This illustrates the challenge of compromise often required when ‘editing’ (selecting) segments of signal for further
analysis.
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switching off the self-calibration mode in short record-
ings. If present, they should be removed by interpola-
tion when editing the data, provided that the segments
eliminated are no longer than a few seconds in duration
and do not occur too frequently.28

Short segments of artefacts in TCD or BP, up to
about 3 beats long, can be removed by replacing
them with (linear) interpolation between the good qual-
ity data before and after the artefact.28 Sporadic ectop-
ic beats do not need to be removed, as they provide a
physiological challenge to autoregulation.29

In order to further remove high-frequency artefacts
and noise from the BP and CBF signals, low-pass fil-
ters, typically cutting off at 20Hz, are applied in the
next step. For dCA, the mean values of the signals are
of no interest but can be large (compared to the fluc-
tuations which are of interest), and are prone to drift
(especially for non-invasive BP). Therefore mean values
should be subtracted out of the signals, prior to

analysis (and prior to filtering).30 Detrending record-
ings with the removal of the underlying linear trend is
sometimes performed, but any more complicated
detrending is usually not justified. Given that dCA is
predominantly a low-frequency phenomenon, below
approximately 0.2Hz10,31 and especially at the very
low frequencies (below approximately 0.05Hz),
higher frequency fluctuations (especially those due to
heart-rate) should be removed prior to the assessment
of CA. This can be achieved by averaging across each
heartbeat (to calculate the beat-average value) of BP
and CBFV (see Figures 2 and 4). The beats are ideally
detected from the sharp R-wave in the ECG signal but
can also be found from the pulse-foot, steepest gradient
or peak of the BP signal. The samples thus obtained,
one for each heartbeat, then need to be interpolated
(for example linearly or by cubic splines) to obtain a
regularly sampled signal. Sampling rates used after this
step are typically 10Hz or lower.10 An alternative

Figure 4. Continued.
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approach is to low-pass filter the raw signals with a cut-
off frequency of around 0.2Hz, but this can lead to any

artefacts in the signal spreading more widely over time
(more than to the next beat). These beat-averaged (or
low-pass filtered) signals (shown in bold lines in
Figures 2 and 4) will be denoted by p(t) and v(t) (or
for simplicity, p and v) for BP and CBFV respectively

and form the input to the analytical methods described
in the remainder of this paper.

In some cases it is desirable to normalize these sig-
nals by their mean value, and express them as %
change relative to their mean.10 This is particularly
true for the CBFV, since it gives velocity (in cm/s)

rather than volume flow (in ml/s); but the two are pro-
portional when there is no change in diameter of the
insonated artery. In the absence of CA and with a rigid
vascular system, one might then expect a given percent-
age change in p to be accompanied by an equal per-

centage change in v. An additional concern is that the
pressure at the outflow of the brain is not zero, but has
been variously taken to be venous pressure,32 intracra-
nial pressure8 or critical closing pressure (the pressure

at which veins or venules collapse).33 It is therefore
often recommended that perfusion pressure (the pres-
sure drop across the cerebral circulation) be used when
considering the relationship between p and v.33–35 BP is

of course just an approximation to this and will not
reflect the true cerebral perfusion pressure in the pres-
ence of intracranial hypertension as observed in many
conditions such as severe head injury.8

Given the importance of hyper- and hypocapnia on
blood flow and CA, estimates of PaCO2 levels should
be obtained when possible. The most common estimator

are the Respiratory end-tidal CO2 levels (etCO2) from
capnography (see ‘Protocols for assessment of CBF
autoregulation’ section). These are usually obtained as
a continuous signal by linearly interpolating between the
maximum (end-tidal) CO2 values from consecutive

respiratory cycles – and again this signal needs then to
be interpolated to achieve a sampling rate compatible
with that of p and v. Further details on suggested signal
pre-processing can be found in literature.10 The output

of these processing steps then feed into the analysis and
extraction of parameters that quantify CA.

Single input, time-invariant, linear

modelling techniques for assessment of

CBF regulation

In this section we will progressively build up the differ-
ent linear approaches to assessing dCA. Table 2 pro-
vides a list of some of the more commonly-used indices

of autoregulation, and the next paragraphs aim to pro-
vide a conceptual framework that links these methods.

In its simplest form, one may approximate the linear
relationship between flow and pressure as

v½i� ¼ h:p½i� þ e½i� (1)

where v[i] is CBF(V), p[i] is BP (with p and v recorded
simultaneously), h is the gain or gradient and i refers to
the ith sample in the recording (i.e. equivalent to time,
but measured in samples rather than seconds). Note
that here both p and v are assumed to have a mean
value of zero (after pre-processing), and usually repre-
sent beat-averaged signals, or some smoothed (filtered)
version of these. e[i] is called the error or residual and
represents all the variations in v that cannot be
explained by p with this simple model, and thus
includes noise in measurements, delayed interactions
between p and v, non-linear or time-varying behaviours
in CA, additional inputs (such as PaCO2 or ICP) or
other related phenomena. In the case of normalized
signals (expressed as % change), h< 1 would indicate
some active autoregulation, as the change in v is less
than that in p. When flow and pressure measurements
are made repeatedly over relatively long time-intervals
with significant changes in pressure between them (e.g.
due to drug infusions), h represents static autoregula-
tion (sCA) (the gradient of the static autoregulation
curve). It may also be noted that in this model h is
invariant over time as h is assumed to be a constant
over the full length of the recording (see later section on
time-variant methods).

This model also underlies the set of CA indices pro-
posed by Czosnyka et al. (including Mx or Mxa),8,17

where repeated measurements are obtained by averag-
ing continuous recordings of BP and CBFV over
approximately 5 second long contiguous intervals, and
then relating v and p over typically around 40 such
averages. The smoothing function used in their calcu-
lation, with samples taken every 5 seconds, means that
only quite low frequency variations in the signal (below
0.1Hz) can be analysed. Rather than calculating gain
however, they calculate the correlation coefficient, i.e. a
measure of how well this linear model fits the data (or
how small e[i] is, on average). The rationale is that
when CA is absent, the relationship between pressure
and flow is passive and thus linear, and correlation
should be high. In the presence of an active autoregu-
lation, this linear relationship breaks down and the
correlation coefficient will decrease. One might ques-
tion this approach by considering that the correlation
coefficient will also decrease if the data are noisy or
contain artefacts: this approach will thus only be
robust when data quality is relatively high, for example
in heavily sedated or unconscious patients. Mx or Mxa
have also been used in stroke,17 but have not become
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the predominant approach. One debate is whether

Cerebral Perfusion Pressure (CPP¼BP – ICP or

CPP¼BP – CrCP, where CrCP is the critical closing

pressure) should be used (leading to Mx), or whether

BP is a ‘good enough’ approximation36 (leading to

Mxa). It seems clear that CPP would be ideal, but

this may require ICP to be monitored, which is only

possible in some patient groups. An alternative is to

estimate CrCP from the recordings of v and p.33 This

estimation of CrCP has however so far not been very

widely adopted36 but investigations continue.37

The next more sophisticated model includes

‘memory’, i.e. the current measure of blood flow is

affected not only by the current value (sample) of

blood pressure, but also by a number of preceding

samples.

v i½ � ¼
XK

k¼0

h k½ �p½i� k� þ e½i� (2)

h[i] may now be considered as a set of ‘gains’ and

represents the ‘impulse response’ of the system. This

equation represents a linear filter. K is the length of

the impulse response (in samples; often called the

‘order’ of the filter) and corresponds to the length of

time over which a change in p is deemed to affect v.

Typically this would correspond to somewhere between

5 and 15 seconds, with h[i] decaying towards zero over

this period.
CA can then be assessed by first estimating h[i]

from recordings of v[i] and p[i]. The ‘best-fit’ h[i] is

obtained when e[i] is minimum, i.e. v[i] is explained as

much as possible by p[i] and the unexplained

component (e[i]) is thus minimized. Typically (for
ease of computation), the mean of the square value of
e[i] over the length of the recording is minimized
(least-mean-square estimate). When h[i] has been esti-
mated, it is possible to predict the response of the
(mathematical) system to alternative input signals (p),
such as an impulse, a step or sine waves at different
frequencies. The former lead to the estimation of the
impulse and step responses, respectively, much used in
the literature.38,39 The latter leads to the frequency
response.2,10,40,41 For active autoregulation, one
would expect the step response to show a peak at the
onset of the step and then a rapid decay towards zero,
as autoregulation brings the flow back towards base-

line (pre-step values). The analysis of the response in
the CBFV following an impulse, step or other transient
is called time domain analysis. When considering the
response to sine or cosine-waves of different frequen-
cies (using Fourier analysis), this is called frequency
domain analysis.

With the frequency response, for a unit-sized sinu-
soidal input at a given frequency, the amplitude of the
output signal represents the gain (or amplitude fre-
quency response), and the delay (or advancement) of
the output relative to the input gives the phase frequen-
cy response (see Figure 5). A delay of one complete

cycle of a sine wave corresponds to 360 degrees (or
2p rad). In the frequency response, the response of v
to low-frequency fluctuations in p should be more
strongly attenuated than that for high frequencies (as
CA is less effective in response to fast changes in BP).
This would imply that gain should increase with fre-
quency, and hence resemble a high-pass filter effect. A
low value of average gain in the low frequencies is

Figure 5. Transfer function analysis showing (from top to bottom), the gain, phase and coherence. The dotted lines indicate the
average value over selected frequency bands (very low, low and high). The dashed line in the coherence plot indicates the critical value
(95% confidence limit): if coherence falls below this level, then the corresponding frequencies should be excluded in calculating the
average phase or gain. Figure generated from TFA_demo.m, in CARNET software at http://car-net.org/content/resources.
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indeed commonly used as an indicator of active dCA.

In addition, one may expect that CA will suppress the

increase in v as pressure rises, leading to the peak of v

occurring before the peak in p, usually described as a

phase lead or a positive value in phase at that frequen-

cy. This phenomenon (though not with a pure sine

wave) can also be observed in the apparent left-shift

of v relative to p in Figure 2. A large phase lead

at low frequencies is thus used as an indicator

of active CA.
The frequency response is usually obtained by

applying the Fourier transform to the impulse

response, rather than explicitly inputting sine waves

into equation (2). Alternatively, and more commonly,

the frequency response is obtained by ‘Transfer

Function Analysis’ (TFA),2,10 with Fourier transforms

applied to the signals rather than the impulse response.

The mathematical model underlying TFA is very sim-

ilar to that in equation (2). One difference is that the

equation should be expanded with the sum becoming

v i½ � ¼
XN2�1

k¼�N
2

h k½ �p i� k½ � þ e½i� (3)

where N is the length of the window (in samples) used

in estimating the transfer function. This suggests that

v[i] is associated with future values of p[i] as well

as the past, as would occur if the interaction between

v[i] and p[i] is mutual, rather than simply causal,

with p[i] driving v[i]. Such apparent non-causal

behaviour can however also arise from the smooth-

ness of the signals.
Further details on recommended approaches to

TFA for the study of CA are given in literature.10 We

strongly recommend that for TFA, the procedures out-

lined in literature10 are followed, and for which

MatlabVR code has been provided at http://www.car-

net.org/.
The basic model in equation (2) can furthermore be

expanded as

v i½ � ¼
X1

k¼0

h k½ �p i� k½ � þ e i½ � (4)

where now the ‘impulse response’ h[i] is infinite (the

sum involves an infinite number of terms).

Alternatively, with some constraints, this can be

expressed through a finite sum by recursion,

v i½ � ¼
XL

k¼1

a k½ �v i� k½ � þ
XK

k¼0

b k½ �p i� k½ � þ e i½ � (5)

–where v[i] is found from p[i] and now also previous
values of v[i] (representing the recursive component),
using parameters a[k] and b[k]. The ‘parametric’ esti-
mate of the transfer function42 is based on finding these
parameters as a first step in identifying the mathemat-
ical model linking p and v. This model is also the one
used in the ARMA-ARI method.38 When all parame-
ters a[k]¼0, this simplifies to the finite impulse
response system, as given in equation (2), with h[k]¼
b[k]. The parametric approach provides an alternative
to the conventional TFA method10 that has shown
some performance benefits.43

Following the same reasoning used in proposing
correlation analysis above, one can also use frequency
selective correlation (known as coherence) to assess
dCA. There are, however, currently two somewhat
contradictory interpretations in the literature. One
line of thought is that (as with correlation), low coher-
ence would suggest a non-linear system, and therefore
CA is active.44 The second line of thought is that trans-
fer function analysis should only be carried out when
coherence is relatively high (e.g. statistically signifi-
cant), otherwise estimates are unreliable.10,30 Putting
these two lines together suggests the phase or gain
should only be estimated when dCA is impaired (lead-
ing to high coherence). The assumptions in these inter-
pretations are however open to debate: low coherence
does not necessarily arise from active (non-linear)
autoregulation, but could also come from other phe-
nomena, including noisy signals or other time-varying
inputs (such as PaCO2, metabolic activity, ICP fluctu-
ations). Low coherence could thus reflect poor data,
rather than active CA. Secondly, while autoregulation
is clearly non-linear, a linear approximation (a high-
pass filter) may come close, with the error (e[i]) dom-
inated by the noise rather than non-linear effects. In
that case the frequency response can provide a good
indication of active autoregulation, provided that the
coherence is not so low (typically a threshold of 0.5 is
used – though this value is poorly supported by evi-
dence10) so as to make the estimates unreliable.
Alternative ways of estimating coherence using ‘wave-
lets’ rather than Fourier Transforms have also been
discussed.45–47

The parametric model given above also encompasses
the approach used in the ‘Autoregulation Index’ (ARI),
as proposed by Tiecks et al.22,38 Here ten sets of fixed
parameters (which can be used to find a[k] and b[k])
provide ten alternative impulse responses (and hence
step responses or transfer functions) that go from
absent autoregulation (passive response of CBFV to a
step-change in BP; ARI¼ 0) to excellent autoregulation
(ARI¼ 9). Rather than estimating h[k] (or a[k] and b
[k]), one can therefore just chose which of these ten
filters best fits the data (minimizing e[i]). The Tiecks
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model can thus be viewed as a constrained version of
Transfer Function Analysis, where only a small
number of parameter values (a[k] and b[k]) are tested.

The simple linear models discussed so far already
point towards the challenge of selecting and interpret-
ing indexes to quantify dCA. There is a plethora of
parameters that have been extracted from these math-
ematical models, all deemed to reflect CA, and with a
wide range of evidence that they do so. Some of these
are summarized in Table 2 (with the table completed
from parameters derived from more complex models
discussed in later sections of this paper). It should be
noted that agreement between different methods has
not always been found to be strong,36,48,49 and some-
times quite weak. It should also be pointed out that
implementation of different methods has not always
led to identical results from different research groups,
even when they thought they had used the same
method.50

In addition to the more widely used parameters
given in Table 2, there are a series of parameters
extracted for example from linear models and the esti-
mated step response (e.g.39,43). Visual inspection of
these responses is also extensively used to confirm
autoregulatory behaviours and validate results.51

Indeed, visual inspection of impulse, step and frequen-
cy responses is highly recommended in all of these anal-
yses to avoid extracting indexes from aberrant
responses. An automatic procedure based on critical
values of coherence (in the 0.15–0.25Hz range) and
the normalised mean squared error has also been pro-
posed for acceptance or rejection of the CBFV step
response.52

Alternative modelling approaches

In the previous section, we examined the use of single-
input (BP or CPP), linear, time-invariant modelling
techniques. We now turn our attention to alternative
approaches that attempt to relax these assumptions
about the model behaviour in the context of cerebral
autoregulation. Such methods have been used in
stroke, but currently are not very extensively applied.

Multivariate models

Early studies into dynamic autoregulation clearly
showed that the parameters recovered are dependent
upon the levels of blood gases, in particular changes
in CO2.

24,41,53 Rather than consider the effect of CO2

on these parameters, some more recent studies have
explicitly modelled the multivariate nature of cerebral
autoregulation. In these models typically equations (2),
(3), (4) or (5) above are extended to include other
inputs and their parameters (gains or impulse

responses). Multivariate transfer function analysis has

shown a significantly higher multivariate coherence

than univariate coherence in the frequency range

below 0.04Hz,54 with the multivariate gain also signif-

icantly higher than the univariate gain9,55 although

effects in the low frequency range are smaller. It is

now widely acknowledged that changes in PaCO2

should be taken into consideration when assessing cere-

bral autoregulation and multivariate analysis would be

strongly recommended if PaCO2 (or etCO2) shows

marked changes throughout a recording.

Non-linear models

Linear models, such as those given in equations (1) to

(4), view CBFV as a weighted sum of past and present

(and future, in the case of equation (3)) samples of BP.

In the sums there are no squared or cubed (or other

non-linear) terms of BP, nor are there any ‘cross-

terms’, such as p[i-k]p[i-m]. This makes them linear

and greatly simplifies analysis. However, certain behav-

iours, such as responses to positive or negative steps in

BP being asymmetrical or the saturation of autoregu-

latory responses under very large changes in BP

(beyond the plateau), cannot be represented in these

simple models. Non-linear terms need to be included

to overcome these limitations of the linear models. The

autoregulation process, by its definition, cannot be

strictly linear. The question is whether the linear

approximation and simplification is sufficient for the

assessment of autoregulation in typical clinical and

experimental scenarios (i.e. over a relatively small

range of blood pressures). As indicated by the principle

of parsimony, the simpler linear models generally have

the advantage of being statistically more robust in esti-

mation, when the approximation can be justified.
There have been a number of studies into the non-

linearity of cerebral autoregulation (e.g.56-59), based on

the evidence for this cited (e.g.56-61): in particular by the

low values of coherence exhibited at very low frequen-

cies. However, the representation of a non-linear

system is dependent upon the method used to derive

it, which makes both comparing results across studies

and interpreting the results highly challenging. The

additional complexity of a non-linear model also

means that considerably more data are required to fit

such a model, which can be a major limitation on the

use of these methods. There is also the associated risk

of ‘overfitting’ (fitting the model accurately to the spe-

cific data recorded, including the noise, but not model-

ling the inherent behaviour of the system robustly),

which grows with the increasing complexity of the

model, and the associated growing number of free

parameters.
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The first study into the non-linear behaviour of cere-
bral autoregulation,56 used the quadratic Volterra-
Wiener kernel, which was calculated in addition to
the linear kernel, although over-fitting of the data
was found. This was extended by Mitsis et al.57 to
include both a fast and a slow component to autoregu-
lation (with the fast component being found to be sub-
stantially the larger of the two), using Laguerre-
Volterra networks. The reader is referred to these
papers for the mathematical details of these techniques;
it should be noted that extracting variables from these
models that relate to autoregulation is a non-trivial
task. Other non-linear models that have been proposed
include neural networks58 and Support Vector
Machines.59

Time-variant models

Equations (1) to (5) all assume that the model param-
eters (h[k], a[k], b[k] . . .) do not change over time,
and thus they all represent time-invariant models. The
most commonly used multivariate and non-linear
models are also time invariant. Time variant models
have been used to track changes in autoregulation
over time, as well as to assess the temporal variability
exhibited by autoregulation. The simplest way of doing
this is to use a sliding window (normally rectangular)
that passes across the time series and to analyse dCA in
successive windows, using the standard methods
described above. The changes in the dCA indexes can
then be tracked from the parameters obtained accord-
ing to the analysis method used (see above). There are
two choices to be made in the sliding window: the
length and the shape of the window function that are
used. The length of this sliding window leads to a com-
promise between time and frequency resolution, since
high temporal resolution is achieved only with low fre-
quency resolution and vice versa; shorter windows also
lead to reduced statistical robustness. A tapered
window allows more weight to be allocated to (usually)
the centre of the data window under analysis. Wavelets
give an alternative decomposition with temporal reso-
lution adapted frequency by frequency; however this is
more complicated to implement. The available non-
stationary techniques that have been used in the con-
text of cerebral autoregulation have been summarised
recently:62 these methods include ARMA models with
sliding windows, recursive least-squares, Laguerre-
Volterra networks, wavelet phase synchronization and
multimodal analysis. The non-stationarity of cerebral
autoregulation, as measured using phase shift, has been
clearly demonstrated.47

Time-varying filters have been used in the context of
cerebral autoregulation.63 The first method was based
on the Wigner-Ville distribution to calculate an

instantaneous transfer function, whereas the second

and third methods were based on an adaptive filter

and an ensemble Kalman filter respectively. Repeated

application of least squares methods have been used to

derive the coefficients of linear (infinite impulse

response – autoregressive moving average) filters,

based on windowed sections of data.38,66

Wavelet phase synchronization was proposed by

Latka et al.64 to quantify the variability in phase

angle between BP and CBFV. Once wavelets have

been used to calculate the instantaneous phase angle,

synchronization is calculated: the value of this param-

eter lies between 0 and 1, where 0 represents a uniform

random distribution over time and 1 a constant value

over time. The use of wavelets means that this param-

eter can be calculated as a function of scale/frequency.

In the very low frequency (high scale) range, this

parameter is found to be very low, which can be

taken as a measure of intact autoregulation (although

care always has to be taken in interpreting any finding

as a direct measure of autoregulation).
Finally, we mention the use of multimodal analysis,

which is based on the use of empirical mode decompo-

sition to break down the signal into intrinsic mode

functions.65 Although each mode is oscillatory, they

can have time-varying amplitude and frequency,

which allows them to map out non-stationarities in

the data. Through the use of the Hilbert transform,

the instantaneous phase of each mode can be calculat-

ed. The comparison between normal subjects and sub-

jects with stroke or hypertension has shown greater

repeatability in phase angle than in ARI,12,66 indicating

the value of this technique. On the other hand, the

selection of which mode functions to use is rather sub-

jective, which is a considerable limitation for the diffu-

sion and standardization of this approach.
Time-variant methods have thus shown some interest-

ing preliminary results, although the number of available

techniques means that choosing a method can be diffi-

cult, with each method involving a number of choices of

parameter values for a practical implementation. The

temporal variability that has been shown by the available

studies also remains to be quantified properly and its

physiological relevance identified. As concluded by

Panerai,60 “one key priority for future work is the devel-

opment and validation of multivariate time-varying tech-

niques to minimise the influence of the many co-variates

which contribute to . . . non-stationarity”.

Future perspectives, challenges and

pitfalls

The previous papers in this series of reviews on

autoregulation in the study of stroke have clearly
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shown the promise, but also the challenges in assessing
CA. There are very many different methods for assess-
ing CA in use, involving differences in the techniques
for measuring the physiological signals, a range of pro-
tocols and finally many options for the calculation of
indexes to quantify CA. This section will discuss some
of these challenges and identify key areas requiring fur-
ther research, focussing on dCA.

We begin with measurement methods, where we are
still limited by what we can measure with current non-
invasive methods. However it is also not immediately
obvious what we would like to measure, even if we
could: flow (not just velocity) in major arteries, or per-
fusion of neuronal beds, oxygen supply or uptake; how
to measure (and define) perfusion pressure; should we
aim for local dCA in specific vascular beds (which may
miss impairment in regions not measured) or global
dCA (which may miss localized impairment in focal
strokes67) It has become customary to work with
mean (beat-averaged) CBF and BP signals, but there
is some indication that systolic values could provide
additional benefit.8,68,69

A number of recent studies have addressed the time-
varying behaviour of cerebral autoregulation,12,25,36,45–
47,60,66,67,73 with suggestions that some of the variability
is physiological change, in addition to ‘noise’ in the
data and consequent random errors in dCA estimates.
A recent consensus statement on management of severe
traumatic brain injury74 has recognised the importance
of continuous CA monitoring and time-varying
approaches might present an opportunity for timely
MAP adjustments to achieve more efficient and per-
sonalised care. There is also evidence of inter-
individual differences, even in healthy volunteers,
given the significant values of intra-class correlation
coefficients (ICC).75,76

The length of recording required has been under dis-
cussion for some time. Probably the most common
duration for dCA assessment is between 5 and
10minutes,70,77 with Claassen, Meel-van den
Abeelen10 recommending a minimum of 5minutes for
TFA from spontaneous variations in BP and CBFV.
The original work on the Mx parameter used two hours
of recording in each subject,8 and the calculation of the
Mx over successive 3 minute intervals, but 5 to
10 minute intervals seem now more common,36,70,77

with recordings typically upward of 20 minutes in dura-
tion; this allows either averaging to obtain a more
robust estimate, or tracking of time-varying CA. The
work both of Chi, Wang77 and Mahdi, Rutter78 has
suggested that 5–10minutes is an appropriate duration
of recording for individual estimates.

It has been repeatedly reported that the agreement
between different dCA indexes calculated from a
cohort of individuals is not always strong (and

sometimes absent),36,48,49 in spite of good evidence
that the different methods all reflect autoregulatory
behaviours. One interpretation of this result is that dif-
ferent methods provide complementary information
about the complex autoregulatory process. However,
results may also be confounded when correlations are
calculated using healthy individuals only, where the
range of dCA indices is narrow, such that any
random errors can rapidly reduce correlations.

Perhaps the biggest challenge we have is ‘bootstrap-
ping’ our field to obtain a gold-standard method to
assess dCA. This involves moving from a concept of
autoregulation to a method that can robustly quantify
the construct in a physiologically and clinically mean-
ingful manner. If we had a gold-standard (even one
that perhaps was not suitable for routine use in the
clinic or in research), it would be much easier to iden-
tify an optimized approximation. Until we have such a
gold standard, the many reasonable options for meth-
ods that are currently used to quantify CA add to the
difficulty of developing our field, because results from
different studies often cannot be readily compared. We
also have many possible criteria for comparing alterna-
tive approaches. These include the methods’ ability to
predict outcomes for patients or to classify patients/
subjects according to whether CA impairment might
be expected (e.g. by clinical condition or after inhala-
tion of CO2 which is known to temporarily impair CA).
Furthermore, consistency in repeated measurements
(repeatability), statistical robustness of estimates, con-
sistency within a ‘similar’ cohort, or agreement with
alternative (but sadly not gold-standard) measures pro-
vide alternative criteria in selecting CA measures (e.g.
CARNet’s multicentre studies50,79,80). How well a mea-
sure reflects our conceptual understanding of autore-
gulation has probably been the primary guide in the
initial (and probably often final) choice of preferred
approaches. The simplicity of methods, and the ability
to explain the concepts that underpin the calculations,
are further factors in preferring some approaches over
others.

Finally, we would like to indicate some priorities for
further research into dCA analysis.

There is currently no consensus on the ‘best’ method
(measurement, protocol and signal analysis) for the
study of stroke, and little evidence to indicate which
method should be broadly adopted. Such a consensus
would greatly facilitate linking studies between groups
to build up a more comprehensive picture of CA
impairment in stroke. There is promise that such a con-
sensus is possible, based on previous work on TFA,10

though this focussed only on this one method without
evidence that it was ‘optimal’ in the study of stroke.
CARNet (www.car-net.org) is currently in the early
stages of developing such a consensus.
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Further research priorities are:

• Improve understanding of specific impairments in
CA following stroke. Given the complexity of the
mechanisms and different vascular territories that
might be affected, the sometimes limited agreement
between analysis techniques might reflect different
aspects (features) of autoregulation that can be
affected in different cases. It may be that good/
impaired autoregulation cannot be quantified by a
single index, but requires multidimensional analysis,
which only some of these dimensions (indexes of
dCA) being affected in specific clinical conditions.

• Disentangle the effect of dCA from those of related
physiological control systems, including neurovascu-
lar coupling, cerebrovascular reactivity and
baroreflex.

• Assess whether dCA estimated from small fluctua-
tions in BP and CBFV is a good predictor of behav-
iours during large (and clinically more significant)
fluctuations.

• Improve understanding of time-varying behaviour
of cerebral autoregulation and the potential benefits
of continuous monitoring of dCA in the acute and
sub-acute phase following stroke.

• Identify which co-variates (pCO2, metabolic activity
etc.) need to be included in the estimation of dCA or
whether we need to take these into account in some
other way.

• On a more practical side, methods for (semi)auto-
mated editing of recorded signals are highly desir-
able, which would greatly reduce the time required
for dCA analysis and facilitate automated, bedside
technology for continuous patient monitoring. This
is particularly desirable in patient groups where it is
difficult to record extended signals of high quality.

• Provide not only an estimate for the dCA index, but
also confidence limits, or some other indication of
whether in a particular recording, the estimate is valid.

We look forward to new developments and further
progress in this challenging, exciting and evolving field
and achieving the benefits for patients that we are all
seeking.
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