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Abstract
Fruit ripening is a genetically programmed process. Transcription factors (TFs) play key

roles in plant development and ripening by temporarily and spatially regulating the transcrip-

tion of their target genes. In this study, a total of 159 TFs were identified from a spontaneous

late-ripening mutant 'Fengwan' (C. sinensis L. Osbeck) sweet orange (MT) and its wild-type

counterpart ('Fengjie 72–1', WT) along the ripening period via the Transcription Factor Pre-

diction of PlantTFDB 3.0. Fifty-two differentially expressed TFs were identified between MT

andWT; 92 and 120 differentially expressed TFs were identified in WT and MT, respec-

tively. The Venn diagram analysis showed that 16 differentially expressed TFs were identi-

fied between MT andWT and during the ripening of WT and MT. These TFs were primarily

assigned to the families of C2H2, Dof, bHLH, ERF, MYB, NAC and LBD. Particularly, the

number of TFs of the ERF family was the greatest between MT andWT. According to the

results of the WGCNA analysis, a weighted correlation network analysis tool, several impor-

tant TFs correlated to abscisic acid (ABA), citric acid, fructose, glucose and sucrose were

identified, such as RD26, NTT,GATA7 andMYB21/62/77. Hierarchical cluster analysis and
the expression analysis conducted at five fruit ripening stages further validated the pivotal

TFs that potentially function during orange fruit development and ripening.

Introduction
Transcription factors (TFs) play key roles in plant development and stress responses through
the temporary and spatial regulation of the transcription of target genes [1]. Many fruits
develop from carpels (true fruit) or other floral-associated tissues (false or accessory fruit).
During fruit development and ripening, TFs act as pivotal regulators. Several classes of tran-
scription factors have defined functions in Arabidopsis and tomato carpel and fruit tissues,
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including HD-Zip, KNOX, HB, SBP, BHLH, RAVB3, YABBY and AP2/ERF [2, 3]. Screens for
such regulators of fresh fruit ripening are important, and additional players remain elusive.

TFs are typically classified into different families based on their DNA-binding domains
(DBDs); generally, TFs belonging to the same family have similar functions. Recent studies
have indicated that an increasing number of TFs have been identified as having functions dur-
ing fruit development and ripening in climacteric and non-climacteric fruit. For example, the
overexpression of VvABF2, a bZIP family transcription factor, in grape cells resulted in the
up-regulation and/or modification of groups of genes associated with abscisic acid (ABA)
responses and enhanced responses to ABA treatment and changes in the synthesis of phenolic
compounds and cell wall softening [4]. Silencing of PacMYBA, an R2R3-MYB transcription
factor from red-colored sweet cherry cv. Hong Deng (Prunus avium L.), resulted in sweet
cherry fruit lacking red pigment [5]. Another R2R3-MYB transcription factor, FaMYB10, has
been identified as playing a major role in the regulation of flavonoid/phenylpropanoid metabo-
lism during ripening of strawberry fruit [6]. In tomatoes and bananas, NAC transcription fac-
tors, such as NAC1/NAC2, may be involved in fruit ripening via interactions with ethylene
signal components [7, 8].

The AP2/ERF gene family encodes plant-specific transcription factors that respond to
developmental and environmental stimuli, and many of these factors function downstream of
the ethylene, biotic, and abiotic stress signaling pathways [9]. In tomatoes, LeERF2 is an impor-
tant regulator of ethylene biosynthesis [10], and SlAP2a and SlERF6 are negative regulators of
fruit ripening. The RNAi repression of SlAP2a and SlERF6 results in fruits that over-produce
ethylene, ripen early and modify carotenoid accumulation [11, 12].

Cys2/His2 (C2H2)-type zinc finger proteins (ZFPs) are one of the largest families of tran-
scriptional regulators in plants, which are important components in the regulation of plant
growth, development, hormone responses, and tolerance to biotic and abiotic stresses [13, 14].
Previous studies have shown that C2H2-type zinc finger protein ZFP36 is a key regulator
involved in abscisic acid-induced antioxidant defense and oxidative stress tolerance in rice [15]
and that Arabidopsis C2H2 proteins AZF1 and AZF2 function as transcriptional repressors
involved in the expression of abscisic acid-repressive and auxin-inducible genes under abiotic
stress conditions [16]. The bHLH family has also been implicated in a range of functions in
plants, frequently in conjunction with MYBs; the MYB-bHLH-WD40/WDR (MBW) regula-
tory complex is involved in regulating the biosynthesis of anthocyanins, which are important
for coloration during fruit ripening [17]. The highly conserved N-terminal DOF region of the
plant-specific DNA-binding-with-one-finger (Dof) family TF acts as a DNA-binding domain
and corresponds to a conserved DNA cis-element (A/T)AAAG or its complementary inverse
sequence [18]. Numerous studies have shown that Dof transcription factors are involved in
various biological processes during plant growth and development, such as carbon and nitro-
gen metabolism, which can influence sugar accumulation in fruit [19], the light response,
which is a significant regulatory factor for fruit ripening [20], flower and pollen development
[21], and seed germination and development [22].

Citrus is one of the most important fruit crops worldwide and has a non-climacteric fruit
maturation character [23]. During the ripening process of citrus, the expressions of a large
number of genes are changed, up-regulated or down-regulated [24]. As transcriptional expres-
sion regulators, TFs play pivotal roles in this process. Recently, we examined 'Fengjie 72–1' and
'Fengwan' during the ripening period at the transcriptomic level [24]. 'Fengwan' sweet orange
(MT) is a spontaneous late-ripening mutant from the ‘Fengjie 72–1’ orange (Citrus sinensis L.
Osbeck) (WT) [24]. The mechanisms involved in the ripening of citrus fruit remain unclear,
and only a few regulators have been reported. 'Fengjie 72–1' and 'Fengwan' have provided a
promising platform to reveal the transcription factors involved in citrus fruit development and
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ripening. In this study, we created a protein sequence database of differential expression genes
(DEGs) including the DEGs between MT andWT and DEGs of MT and WT during fruit rip-
ening. This database was used to identify TFs in the Plant Transcription Factor Database v3.0
(PlantTFDB 3.0) [1]. Numerous TFs were identified, and we employed coexpression network
analyses using the R package WGCNA [25] and qRT-PCR to identify the most credible and rel-
evant TFs for citrus fruit ripening.

Materials and Methods

Plant materials and RNA preparation
Fruit samples of ‘Fengjie 72–1’ orange (C. sinensis L. Osbeck) (WT) and its spontaneous late-
ripening mutant ‘Fengwan’ (MT), which were both cultivated in the same orchard (N31°
03'35", E109°35'25") (Fengjie, Chongqing City, China), were harvested at 150, 170, 190, 210,
and 240 d after flowering (DAF). Twelve representative fruits were sampled from each tree at
each developmental stage. After separating the pulp from the peel, the pulp was sliced. The
sliced WT pulp samples were combined (as for the MT samples), rapidly frozen in liquid nitro-
gen and stored at -80°C [26, 27]. A portion of the samples was used for extracting total RNA,
as described previously [28]. Another aliquot was used for the determination of ABA, sugar
and organic acid composition and concentration.

Transcription factors isolation, identification and analysis
TheWT andMT fruit pulps harvested at 170, 190 and 210 DAF were subjected to RNA-seq
using an Illumina HiSeq™2000 at the Beijing Genomics Institute (Shenzhen). The RNA-seq data
of these six fruit pulp samples of MT andWT, obtained in a previous study [24], were used in
the present study, and the data of RNA-seq were submitted to the Gene Expression Omnibus
(www.ncbi.nlm.nih.gov/geo/), accession number GSE69432. The gene expression levels were
calculated using the RPKM (Reads Per kb per Million reads) method according to Zheng et al.
[29]. Referring to the previous studies [29, 30], the Poisson model provides a natural framework
for identifying differentially expressed genes. Denoting the number of unambiguous clean reads
from a given gene as x, and considering that the expression of every gene occupies only a small

part of the library, p(x) would closely follow the Poisson distribution,P xð Þ ¼ e�llx

x!
(λ is the real

transcripts of the gene). A strict algorithm was used to identify differentially expressed genes
between the two samples. The total clean read number of sample 1 is N1, and the total clean
read number of sample 2 is N2; and gene A holds x reads in sample1 and y reads in sample2.
The probability of gene A expressed equally between the two samples can be calculated as

2
Pi�y

i ¼ 0 pðijxÞ or 2ð1�
Pi�y

i ¼ 0 pðijxÞÞ(if
Pi�y

i ¼ 0 pðijxÞ > 0:5Þ;P yjxð Þ ¼ N2
N2

� �y ðxþyÞ!
x!y! 1þN2

N1ð Þxþyþ1. The

p-value corresponds to the differential gene expression test. FDR (False Discovery Rate) is a
method used to determine the threshold of P-value in multiple tests [31]. ‘FDR� 0.001 and the
absolute value of log2Ratio� 1’ was used as the thresholds to judge the significance of differ-
ences in gene expression. The values of fold-change with their respective P-values and FDR val-
ues for all genes were listed in S1 Table. A total of 18879 genes of WT andMT (S2 Table), 628
differential expression genes (DEGs) betweenMT andWT, 1036 DEGs between different ripen-
ing stages inWT and 1406 DEGs between different ripening stages in MT were used as original
databases for transcription factor identification [24]. The protein sequences of these genes
were isolated from the citrus genome (http://citrus.hzau.edu.cn/). The protein sequences of
identified TFs were aligned against the GO database and KEGG pathway database using
KOBAS 2.0 (http://kobas.cbi.pku.edu.cn/) [32] to perform enrichment analysis. The corrected
P-value< 0.01 was set as cutoff for enrichment. REVIGO [33] was used to visualize and
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summarize the terms corresponding to biological processes and molecular functions identified
using KOBAS 2.0.

The Arabidopsis TFs database of PlantTFDB 3.0 [1] was used as the reference TF database.
The Transcription Factor Prediction algorithm, in which HMMER 3.0 [34] was used to identify
TFs and assign these genes to different families [1], was performed to identify TFs. The best
BLAST hits had maximal e-values of 1e-10. A cluster analysis was performed on the TF cluster
of MT vs WT according to Eisen et al. [35] using Cluster 3.0. The log2 of RKPM for each TF
was used for hierarchical clustering analysis.

Gene Network Construction
TheWGCNA (v1.42) package in R was used to construct coexpression networks [25]. A total
of 18879 genes (S2 Table) with RKPM higher than 0.3 were used for WGCNA unsigned coex-
pression network analysis. The modules were obtained using the automatic network construc-
tion function blockwiseModules with default settings, except that the maxBlockSize was 19000,
the TOMType was unsigned, the minModuleSize was 30, and the mergeCutHeight was 0.25.
Once the network modules were identified, we validated their membership using a permuta-
tion procedure according to a previous study [36]. When the modules truly showed statistical
and potentially functional relevance, the average TO (topological overlap) should be higher
than that of random groups of genes of similar size. The eigengene value was calculated for
each module and used to test the association with each sample. The total connectivity and
intramodular connectivity (function softConnectivity), kME (for modular membership, also
known as eigengene-based connectivity), and kME-P value were calculated for the 18879 genes
clustered into 32 modules. The module eigengenes to relate consensus modules to physiological
data and the 16 TFs identified in all three clusters DEGs of MT, WT and MT vs WT were also
performed via WGCNA. These physiological data were measured in a previous study [24],
which included malic acid, citric acid, quinic acid, fructose, glucose, sucrose and abscisic acid
(ABA). In the present study, we used the RPKM of these 16 TFs and the physiological data of
three ripening stages (170, 190 and 210 DAF) of WT and MT for the WGCNA analysis. A cor-
relation coefficient (the absolute value) of more than 0.8 and p-value< 0.05 was used as the
cutoff criteria for identifying the significance between physiological traits/TFs and modules.

RNA Isolation and real-time quantitative PCR analysis
Total RNA were extracted from the samples of MT andWT harvested at 150, 170, 190, 210,
and 240 DAF, as previously described [37]. The sequences of the primer pairs designed using
Primer Express 3.0 (Applied Biosystems, Foster City, CA, USA) listed in S3 Table. The
qRT-PCR analysis was conducted using an ABI 7900HT Fast Real-time system (Applied Bio-
systems) with the GAPDH gene as the reference [38], as previously described [24]. Real-time
PCR was conducted with three replicates for each sample, and the data are indicated as the
means ± standard error (SE) (n = 3).

Results

Identification of differentially expressed transcription factors during citrus
fruit ripening
In a previous study [24], the transcriptomes of fruit pulps of MT andWT at the ripening stages
170, 190 and 210 DAF were analyzed. In the present study, a total of 18879 genes in these six
transcriptomes were used to identify TFs (S2 Table). A total of 934 TFs were identified in WT
and MT, 922 TFs were identified in MT and 929 TFs were identified in WT (S4 Table). These
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934 TFs were assigned to 57 different families, the top three families of which were bHLH (71
TFs), NAC (64 TFs) and ERF (58 TFs) (S1 Fig).

We used a stringent value of FDR� 0.001 and P value< 0.05 as the threshold to judge the
significant differences in the gene expressions. A total of 1036 and 1406 genes differently
expressed (� 2-fold) in WT and MT during fruit ripening, respectively. The protein sequences
of these two cluster DEGs were used as the original database for transcription factor searching.
The Arabidopsis TF database of PlantTFDB 3.0 [1] was used as the reference TF database. The
Transcription Factor Prediction algorithm [1] was performed to identify TFs. A total of 144
TFs were identified including 92 TFs in the DEG cluster of WT and 120 TFs in the DEG cluster
of MT (S5 Table; Fig 1A). According to the Venn diagram analysis, 68 TFs were identified in
both WT and MT DEG clusters (Fig 1A; S5 Table).

As shown in Fig 1B and 1C, TFs were assigned to different families: 28 families in WT and
30 families in MT. The top three families of WT, containing the greatest number of TFs, were
C2H2 (10 TFs), ERF (9) and Dof (8) (Fig 1B), and the top three families of MT were bHLH
(14), C2H2 (10), Dof (9) and MYB (9) (Fig 1C). Notably, the C2H2 and Dof families were con-
sistently in the top three families in both WT and MT.

Function analysis of TFs identified in both MT andWT during fruit
ripening
To gain a better understanding of the role of TFs in fruit ripening, GO-based term classification
and KEGG-based pathway enrichment were performed. Using a cutoff of corrected P-
value< 0.01, 68 TFs, which were differentially expressed in both MT and WT during fruit rip-
ening, were enriched to 37 biological processes and 14 molecular functions after summarizing
the GO terms by removing redundant GO terms using REViGO [33] (S6 Table). In biological
processes, several hubs, including response to gibberellin, gene expression, regulation of multi-
cellular organismal process, biological regulation, heterocycle metabolic process, nitrogen
compound metabolic process and biosynthetic process, were significantly enriched (Fig 2A).
Nucleic acid binding transcription factor activity, sequence-specific DNA binding transcription
factor activity, sequence-specific DNA binding, protein dimerization activity, chromatin bind-
ing, and heterocyclic compound binding were significantly enriched in molecular function (Fig
2B). However, there was only one enrichment KEGG pathway to been identified (data not
shown). One GRAS family transcription factor GAI (Cs2g16940) and one ARR-B family gene
ARR12 (Cs7g06180) were enriched in the plant hormone signal transduction pathway.

Plant hormones are important for fruit development and ripening. In the present study, 8, 9
and 10 TFs were enriched in the biological processes of ‘response to gibberellin’, ‘response to
salicylic acid’ and ‘response to ethylene’, respectively (S6 and S7 Tables). Some TFs were
enriched in different biological processes, for example, GAI (Cs2g16940) was enriched in
‘response to gibberellin’, ‘response to salicylic acid’ and ‘response to ethylene’ andMYB77
(Cs3g23950) was enriched in ‘response to salicylic acid’ and ‘response to ethylene’ (S7 Table).

Differentially expressed transcription factors between MT andWT
In a previous study [24], a total of 628 genes were differently expressed (� 2-fold) between MT
andWT. The protein sequences of this cluster DEGs were used as the original database for
transcription factor searching. A total of 52 differentially expressed TFs between MT and WT
were identified, the TF cluster MT vs WT (Fig 1A and Table 1). MT is a later-ripening bud
mutant of WT; therefore, the extensive analysis of these 52 TFs will identify important TFs
involved in later-ripening trait formation.
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As shown in Fig 1D, these 52 TFs were assigned to 22 different families. The top three fami-
lies of the DEG cluster MT vs WT were ERF (7), Dof (6) and C2H2 (5). Thus, we focused on
the ERF family TFs, as the ERF family contained the greatest number of TFs in the DEG cluster
MT vs WT. The change fold of gene expression, the log2 ratio, between the MT and WT were
performed with hierarchical cluster analysis using Cluster 3.0 (Fig 3). As shown in Fig 3, six
clusters were identified. The TFs of cluster I were up-regulated in MT and TFs of cluster II
were down-regulated in MT. The number of down-regulated TFs was much more than that of
up-regulated TFs.

In cluster I, NAC61 (Cs8g14700) and GATA7 (Cs5g26470) were up-regulated more than
2-fold in MT at all three ripening stages; ERF4 (Cs1g07950) andWOX4 (Cs3g23280) were
up-regulated more than 6-fold in MT at 170 DAF (Table 1). In cluster II, there were several
TFs down-regulated more than 6-fold in MT, such asMYB61/62 (Cs6g01750/Cs2g12700),
Cs3g21070 (Dof family TF), ERF1 (Cs5g29870) andHB40 (Cs1g23760) (Table 1). Other clus-
ters were TFs with a substantial change between MT and WT, such asMYB21/77 (Cs2g27940/
Cs3g23950) and OBP2 (Cs8g18320), which were down/up-regulated in the range of 0 to hun-
dreds fold (Table 1).

After removing redundant GO terms, these 52 TFs were enriched to 28 biological processes
and 9 molecular functions (P-value< 0.01) (S8 Table). According to the result of REViGO [33],
in biological process, most of TFs were assigned to ‘regulation of transcription, DNA-templated’,
‘response to ethylene’ and ‘nitrogen compound metabolic process’ (S2A Fig); in molecular func-
tion, most of TFs were assigned to ‘nucleic acid binding transcription factor activity’, ‘chromatin
binding’, ‘sequence-specific DNA binding transcription factor activity’, ‘transcription regulatory
region DNA binding’ and ‘heterocyclic compound binding’ (dispensability< 0.15) (S2B Fig).
Interestingly, some TFs were enriched in hormone-related processes, such as ‘response to ethyl-
ene’ (10 TFs), ‘response to jasmonic acid’ (10), ‘response to gibberellin’ (6), ‘response to auxin’
(9) and ‘ethylene-activated signaling pathway’ (7). These TFs involved in hormone related pro-
cesses might be candidate regulators for the formation of later-ripening trait, which were listed

Fig 1. The Venn Diagram analysis (A) and the families assignment of TFs of WT (B), MT (C) andMT vs
WT (D).MT vsWT indicate the TF cluster, which is differentially expressed between MT andWT.

doi:10.1371/journal.pone.0154330.g001
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Fig 2. Biological process (A) andmolecular function (B) enrichment analysis of the TFs differentially expressed during fruit ripening in both MT
andWT. Bubble color indicates the p-value; plot size indicates the frequency of the GO term in the underlying GOA database (bubbles of more general terms
are larger).

doi:10.1371/journal.pone.0154330.g002
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Table 1. Differential expression transcription factors (TFs) between MT andWT. 170, 190 and 210 indicate 170, 190 and 210 DAF, respectively. The
change fold is shown as a log2 ratio. Module colors were obtained from the analysis of WGCNA. Clusters were obtained from hierarchical clustering analysis
via Cluster 3.0.

GeneID Family Module
color

Cluster Fold change (MT/
WT)

Description

170 190 210

Cs9g16810 ERF lightyellow I -0.18 0.82 1.76 C-repeat-binding factor 4

Cs2g05620 ERF red I 1.18 0.54 1.49 ERF domain protein 9

Cs1g07950 ERF blue I 2.22 0.66 0.91 ethylene responsive element binding factor 4

Cs3g19420 ERF midnightblue I 1.05 0.92 1.50 Integrase-type DNA-binding superfamily protein

Cs1g11880 ERF lightgreen II -1.40 -0.32 -0.12 Integrase-type DNA-binding superfamily protein

Cs9g13610 ERF black II 0.09 -1.12 -0.25 Integrase-type DNA-binding superfamily protein

Cs5g29870 ERF blue II -2.47 0.57 0.37 ethylene response factor 1

Cs1g23230 Dof turquoise I 1.05 1.01 0.75 OBF binding protein 1

Cs7g03670 Dof red I 1.08 -0.42 0.98 cycling DOF factor 2

orange1.1t01261 Dof purple II -1.22 -1.19 -0.10 Dof-type zinc finger DNA-binding family protein

Cs5g01740 Dof brown II -0.08 -1.07 -0.83 Dof-type zinc finger DNA-binding family protein

Cs3g21070 Dof lightgreen II -3.19 -0.26 -0.39 Dof-type zinc finger DNA-binding family protein

Cs8g18320 Dof brown IV -0.32 -2.13 -10.36 Dof-type zinc finger DNA-binding family protein

Cs8g17960 C2H2 cyan I 1.04 0.26 0.65 C2H2-type zinc finger family protein

Cs7g01850 C2H2 turquoise I 0.57 1.03 0.75 C2H2-type zinc finger family protein

Cs8g04280 C2H2 yellow II -1.23 -0.28 0.15 salt tolerance zinc finger

Cs3g02080 C2H2 blue II -0.48 -1.11 -0.33 indeterminate(ID)-domain 5

Cs7g21900 C2H2 red III -7.18 -2.94 -2.64 C2H2-type zinc finger family protein

Cs7g19870 bHLH turquoise II -1.27 -0.15 -0.08 bHLH DNA-binding superfamily protein

Cs9g13930 bHLH turquoise II -0.58 -1.01 -0.23 bHLH DNA-binding superfamily protein

Cs1g02580 bHLH tan II -1.08 -0.17 -0.05 bHLH DNA-binding superfamily protein

Cs6g21120 bHLH yellow VI 0.05 10.97 -7.16 bHLH DNA-binding family protein

Cs6g21530 MYB turquoise I 1.06 0.66 -0.35 myb domain protein 16

Cs2g12700 MYB green II -2.41 0.38 0.00 myb domain protein 62

Cs6g01750 MYB cyan II -2.72 -1.37 -0.68 myb domain protein 61

Cs3g23950 MYB yellow V 0.06 2.07 9.66 myb domain protein 77

Cs8g02020 MYB_related saddlebrown II -0.71 -0.63 -1.19 myb-like HTH transcriptional regulator family protein

Cs7g31610 MYB_related turquoise II -1.09 0.26 0.15 Duplicated homeodomain-like superfamily protein

Cs2g27940 MYB_related red III -6.21 -2.84 -2.18 myb domain protein 21

Cs8g14700 NAC red I 1.74 1.49 1.88 NAC domain containing protein 61

Cs1g06760 NAC yellow II -1.23 -0.38 -0.05 NAC (No Apical Meristem) domain transcriptional regulator
superfamily protein

Cs5g29650 NAC green II -1.40 -1.85 -0.23 NAC domain containing protein 74

Cs2g13920 NAC brown II 0.11 -1.94 -2.55 NAC domain containing protein 84

Cs8g04300 LBD blue II -1.34 -1.66 0.42 LOB domain-containing protein 38

Cs7g30620 LBD yellow II -3.12 0.12 0.20 Lateral organ boundaries (LOB) domain family protein

Cs7g26710 LBD blue II -2.17 -0.03 -1.66 LOB domain-containing protein 41

Cs8g15030 bZIP lightgreen II -1.90 -0.10 -0.13 bZIP transcription factor family protein

Cs5g32400 ARF yellow II -1.27 -0.12 -0.37 auxin response factor 1

Cs5g26420 G2-like brown IV 0.05 -1.84 -8.70 Homeodomain-like superfamily protein

Cs5g26470 GATA turquoise I 1.22 1.06 1.04 GATA transcription factor 7

Cs1g23790 GRAS turquoise II 0.12 -1.27 1.26 GRAS family transcription factor

Cs6g15330 GRF green II -0.25 -1.74 -0.24 growth-regulating factor 4

(Continued)
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in S9 Table. Thereinto,MYB16 (Cs6g21530),MYB21 (Cs2g27940) and ERF4 (Cs1g07950) were
assigned to different hormone response processes, indicating that these TFs might play a wide
range of regulatory roles during citrus fruit ripening. In addition, three TFs were identified to
enrich in plant hormone signal transduction pathway (data not shown). ERF1 (Cs5g29870),
ARF1 (Cs5g32400) and TGA9 (Cs8g15030) were assigned to ethylene, auxin and salicylic acid
signal transduction pathways, respectively.

Coexpression Network Analysis with WGCNA
TFs can regulate a large number of target genes, as these genes are characterized based on net-
work regulation. Therefore, a weighted correlation network analysis tool, WGCNA, was
adopted [25]. The WGCNA R software package is a systems biology approach whose purpose
is to understand networks instead of individual genes. In the present study, coexpression
networks were constructed based on pairwise correlations between the genes in common
expression trends across all 18879 genes in all samples, including all three ripening stage tran-
scriptomes of MT and WT (S2 Table). The modules are defined as clusters of highly intercon-
nected genes, and genes within the same module are highly correlated with one another. The
weighted correlation network analysis resulted in 32 distinct modules, labeled with different
colors (Fig 4A). After validation using a permutation procedure according to a previous study
[36], 24 modules displayed TO that was higher than what is expected for random groups of
transcripts (S3 Fig); the modules of cyan, darkorange, darkturquoise, lightcyan, lightyellow,
magenta, pink and royalblue had no truly statistical relevance. As shown in Fig 4A, each tree
branch constitutes a module, and each leaf in the branch is one gene. Each module contained
different numbers of genes. The turquoise module contained 3985 genes, which was the largest
cluster of genes; the smallest module, violet module, only contained 41 genes (Fig 4B). The
module eigengene is the first principal component of a given module and can be considered a
representative of the gene expression profile of that module (S4 Fig). The TFs identified in the
present study were assigned to different modules. As shown in S5 Fig, most TFs were assigned
to turquoise, yellow, brown and blue modules. The turquoise module eigengene exhibited
down-regulated expression during fruit ripening in WT and MT. In contrast, the yellow
module eigengene was up-regulated expression during the fruit ripening of WT and MT.

Table 1. (Continued)

GeneID Family Module
color

Cluster Fold change (MT/
WT)

Description

170 190 210

Cs1g23760 HD-ZIP green II -2.95 -1.11 -0.67 homeobox protein 40

Cs4g13650 HRT-like brown II 0.24 -1.24 -0.64 effector of transcription2

Cs9g07650 HSF turquoise II -1.30 0.09 -0.15 heat shock transcription factor A6B

Cs4g14590 HSF yellow II -1.16 -0.36 -0.16 heat shock transcription factor A2

Cs7g11810 MIKC purple I 0.58 1.01 -0.11 K-box region and MADS-box transcription factor family protein

Cs5g17820 MIKC blue II -2.15 -1.42 -0.69 K-box region and MADS-box transcription factor family protein

Cs7g10990 SBP turquoise I 1.31 1.09 0.95 Squamosa promoter-binding protein-like (SBP domain)
transcription factor family protein

Cs3g23280 WOX turquoise I 3.54 1.38 0.00 WUSCHEL related homeobox 4

Cs2g02790 WRKY yellow II -1.11 -0.32 0.02 WRKY family transcription factor

Cs6g21230 ZF-HD turquoise I 1.27 0.17 -0.12 mini zinc finger 2

doi:10.1371/journal.pone.0154330.t001
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Interestingly, the expression patterns of brown and blue module eigengenes were different
between WT and MT (S4 Fig).

In our previous study [24], we measured the content of soluble sugar, organic acid and
abscisic acid (ABA) of WT andMT fruits at different ripening stages. These physiological
trait data were used in the present study to perform a correlation network analyses with gene
expression trends (Fig 4B). As shown in Fig 4B, malic acid was highly positively correlated with
the greenyellow module (r = 1, p = 3e-05), and citric acid and quinic acid were all highly posi-
tively correlated with the turquoise module. For soluble sugars, fructose and glucose were all
positively correlated with red, yellow and black modules, while sucrose was correlated with light-
green, purple and black modules; ABA is a significant hormone for citrus fruit ripening, and in
the present study, this hormone was highly positively correlated with the gray60 module.

Fig 3. Hierarchical cluster analysis of the TF differential expressed betweenMT andWT.

doi:10.1371/journal.pone.0154330.g003
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Fig 4. Hierarchical cluster tree with dissimilarity based on topological overlap showing coexpressionmodules identified byWGCNA (A). Each leaf
in the tree is one gene. The major tree branches constitute 32 modules labeled by different colors. Module colors were determined in the single-block
analysis. B, Module-physiological traits association. Each row corresponds to a module. The number of genes in each module is indicated on the left. Each
column corresponds to a physiological trait. The color of each cell at the row-column intersection indicates the correlation coefficient between the module and
the physiological trait, and the numbers in each cell indicate correlation coefficient R and P value, respectively.

doi:10.1371/journal.pone.0154330.g004
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Sixteen TFs were identified in all three cluster DEGs, including MT, WT and MT vs WT
(Fig 1A). These 16 TFs may play important roles in the citrus fruit ripening process. Thus, we
conducted a correlation analysis between these 16 TFs and gene modules (Fig 5). As shown in
Table 2 and Fig 5,MYB77 (Cs3g23950) andMYB62 (Cs2g12700) belonged to the yellow and
green modules, respectively; however, these genes were all high positively correlated with the
gray60 module, which was positively correlated with ABA. RD26 (Cs1g06760) andWRKY42
(Cs2g02790) belonged to the yellow module and also had the highest positive correlation with
the yellow module, andMYB21 (Cs2g27940) was highly positively correlated with the red mod-
ule (Table 1 and Fig 5). These findings showed that RD26,WRKY42 andMYB21/77 had a high
correlation with fructose and glucose. HAM4 (Cs1g23790), GATA7 (Cs5g26470) and NTT

Fig 5. Module-TF association. Each row corresponds to a module. The number of genes in each module is indicated on the left. Each column corresponds
to a TF. The color of each cell at the row-column intersection indicates the correlation coefficient between the module and the TF, and the numbers in each
cell indicate correlation coefficient R and P value, respectively.

doi:10.1371/journal.pone.0154330.g005
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(Cs7g01850) belonged to the turquoise module, which was high positively correlated with
citric acid and quinic acid (Table 2 and Fig 5). Additionally, 4 TFs, ET2 (Cs4g13650), Dof 4.6
(Cs5g01740),MYR2 (Cs5g26420) and OBP2 (Cs8g18320), were highly positively correlated
with the brown module, which was the largest cluster in these 16 TFs and had a positive
correlation with quinic acid (Fig 5). Two Dof family TFs were in the brown module (Table 2
and Fig 5).

In addition, to identify TFs with high GS (Gene Significance GS is the correlation between
the gene and the trait) and MM (module membership MM is the correlation of the module
eigengene and the gene expression profile), we performed intramodular analysis via WGCNA.
A correlation coefficient (the absolute value) of more than 0.8 and P< 0.05 was used as cutoff
for identifying the significance between physiological traits and modules (Fig 4B). |GS|� 0.8
with P< 0.05, |MM|� 0.8 and P< 0.05 were used as cut-off criteria for identifying genes with
high GS and MM, which were listed in S10 Table. As shown in S10 Table, 4 TFs had a high pos-
itive correlation with ABA including two MYB TFs, one ERF TF and one ZIP TF; 16 TFs were
correlated with sucrose; 38 TFs were correlated with fructose (because the expression pattern
of fructose was almost the same as that of glucose, these 38 TFs were also correlated with glu-
cose); 31 TFs were correlated with quinic acid; 49 TFs were correlated with citric acid and 18
TFs were correlated with malic acid.

Expression analysis of the candidate TFs
In the present study, TFs were identified from the RNA-seq data of MT and WT at three ripen-
ing stages; therefore, we selected candidate TFs to perform expression analysis at five different
ripening stages to validate the expression of TFs. Fruits harvested at 150, 170, 190, 210, and 240

Table 2. Differential expression transcription factors (TFs) during fruit ripening of WT, MT and betweenMT andWT. 170, 190 and 210 indicate 170,
190 and 210 DAF, respectively. RPKM, reads per kb per million reads. E-value was calculated by BLAST.

Gene ID Gene
Name

Family moduleColor MT(RPKM) WT(RPKM) A. thaliana ortholog
gene

E value

170 190 210 170 190 210

Cs1g06760 RD26 NAC yellow 41.70 100.33 290.49 97.95 130.30 301.33 AT4G27410.2 1.00E-
136

Cs2g02790 WRKY42 WRKY yellow 3.05 9.34 26.03 6.56 11.66 25.68 AT4G04450.1 1.00E-
166

Cs3g23950 MYB77 MYB yellow 13.82 14.06 0.81 13.23 3.34 - AT3G50060.1 5.00E-58

Cs1g23790 HAM4 GRAS turquoise 9.43 2.54 1.95 8.70 6.11 0.82 AT4G36710.1 1.00E-
162

Cs5g26470 GATA7 GATA turquoise 33.37 7.76 2.76 14.32 3.73 1.34 AT4G36240.1 4.00E-36

Cs7g01850 NTT C2H2 turquoise 25.55 10.73 4.68 17.24 5.25 2.77 AT3G57670.1 1.00E-
125

Cs7g03670 CDF2 Dof red 12.55 6.24 7.28 5.94 8.32 3.69 AT5G39660.2 1.00E-95

Cs2g27940 MYB21 MYB_related red - 1.02 7.00 0.07 7.32 31.64 AT3G27810.1 9.00E-55

Cs3g19420 DREB26 ERF midnightblue 43.47 40.92 8.62 20.97 21.59 3.06 AT1G21910.1 4.00E-49

Cs2g12700 MYB62 MYB green 0.80 4.80 - 4.25 3.69 - AT1G68320.1 4.00E-97

Cs4g13650 ET2 HRT-like brown 15.29 4.39 1.64 12.92 10.37 2.56 AT5G56780.1 1.00E-93

Cs5g01740 Dof 4.6 Dof brown 12.95 6.02 2.66 13.67 12.64 4.72 AT4G24060.1 7.00E-73

Cs5g26420 MYR2 G2-like brown 4.56 1.56 - 4.41 5.61 0.42 AT3G04030.3 1.00E-
165

Cs8g18320 OBP2 Dof brown 4.41 1.07 - 5.50 4.71 1.31 AT1G07640.2 3.00E-63

Cs8g04300 LBD38 LBD blue 5.88 0.96 2.40 14.86 3.04 1.79 AT3G49940.1 7.00E-66

Cs7g26710 LBD41 LBD blue 8.10 2.67 0.68 36.38 2.73 2.17 AT3G02550.1 1.00E-79

doi:10.1371/journal.pone.0154330.t002
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DAF were selected. As expected, these 16 TFs were all differentially expressed between MT and
WT. There were six TFs with up-regulated expression in WT (Fig 6A) and five TFs with up-
regulated expression in MT (Fig 6B) and five TFs up/down-regulated in MT/WT (Fig 6C). For
the differential ABA accumulation in WT and MT during ripening and the maturation time
also delayed in MT [24], the analysis of ripening-related TFs revealed differential regulation
between both cultivars.

Discussion
Fruit ripening is a genetically programmed, highly coordinated, and irreversible phenomenon
in which the physiology, biochemistry, and structure of the organ are developmentally altered

Fig 6. Expression analysis of TFs at five citrus fruit ripening stages. A, B and C indicate three expression patterns between MT andWT. 150, 170, 190,
210 and 240 indicate 150, 170, 190, 210 and 240 DAF, respectively. A single asterisk (*) represents a statistically significant difference (P < 0.05). Analyzed
using Student's t-test.

doi:10.1371/journal.pone.0154330.g006
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to influence appearance, texture, flavor, and aroma [39]. Although the ripening phenomena
varies among species, changes typically include color modification through the alteration of
chlorophyll, carotenoid, and/or flavonoid accumulation; the modification of sugars, acids, and
volatile profiles that affect nutritional quality, flavor, and aroma; and the modification of tex-
tural via alterations of cell wall structure and/or metabolism [3]. Transcription factors are a
group of proteins that control cellular processes by regulating the expression of downstream
target genes. TFs have been characterized as pivotal regulators in the ripening of different
fresh fruits [4, 11, 40, 41]. In the present study, a total of 159 TFs were identified and assigned
to different families. Some TFs might be significant regulators during citrus fruit ripening. The
systems approach in data mining via WGCNA was particularly fruitful in identifying physio-
logical traits, associated modules and genes for future functional studies. The hierarchical
clustering analyses performed on the differentially expressed TFs between MT and WT was
powerful in identifying different expression pattern TFs.

Identification of candidate TFs involved in the formation of late-ripening
trait
MT is a late-ripening mutant of WT. In the present study, 52 differentially expressed TFs
between MT andWT were identified. The ERF family contained the greatest number of TFs in
the DEG cluster MT vs WT (Fig 1D), indicating that the TFs of the ERF family might be key
regulators for the formation of late-ripening trait of MT. The result of the GO terms and
KEGG pathway enrichment analysis revealed several TFs involved in phytohormone related
biological processes (S9 Table). Particularly, the TFs related to ethylene might play much more
important roles. Combining the cluster analysis of gene expression, some candidate TFs, such
asMYB16 (Cs6g21530),MYB21/77 (Cs2g27940/ Cs3g23950), OBP2 (Cs8g18320) and ERF4
(Cs1g07950) were screened (Table 1 and Fig 3).MYB16 (Cs6g21530),MYB21 (Cs2g27940)
and ERF4 (Cs1g07950) were assigned to different hormone response processes indicating that
these TFs might play a wide range of regulatory roles during citrus fruit ripening (S9 Table).
ERF1 (Cs5g29870), ARF1 (Cs5g32400) and TGA9 (Cs8g15030) were assigned to ethylene,
auxin and salicylic acid signal transduction pathways, respectively. Therefore, these TFs might
be important regulators for the formation of late-ripening trait.

Identification of candidate TFs involved in citrus fruit ripening
In this study, a total of 144 TFs, which were differentially expressed during citrus fruit ripening,
were identified (S5 Table). According to the analysis of TF family distribution, the TFs of
bHLH, C2H2, Dof, ERF and MYB families might play significant roles during citrus fruit rip-
ening, particularly those of C2H2 and Dof families, which were among the top three families
identified in both WT and MT. To gain a better understanding of TF roles in fruit ripening,
GO-based term classification and KEGG-based pathway enrichment were performed. In the
present study, some important biological processes were identified, such as ‘response to gibber-
ellin’, ‘response to salicylic acid’ and ‘response to ethylene’ (S6 and S7 Tables). The GAI
(Cs2g16940), a TF of GRAS family, was enriched in ‘response to gibberellin’, ‘response to sali-
cylic acid’ and ‘response to ethylene’ and this TF was also enriched in gibberellin signal trans-
duction pathway.

During the citrus ripening process, the ABA signal pathway may act as a central regulator,
functioning in combination with other hormones, including ethylene and jasmonic acid (JA)
[24, 42]. ABA is an important phytohormone involved in fruit ripening and abiotic stress [43].
In recent years, considerable progress has been made in the understanding of ABA signal trans-
duction pathways in fruits. However, only a few TFs have been identified as important for fruit
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ripening, associated with the ABA response, such as VvABF2 [4],MYB10 [6],MYB30 [44]
and PacMYBA [5]. In the present study, several TFs, including ABR1 (Cs3g21660), RD26
(Cs1g06760), DREB26 (Cs3g19420),MYB77 (Cs3g23950),MYB61 (Cs6g01750),MYB62
(Cs2g12700), were implicated as having differential expression during citrus fruit ripening
(Table 1 and S5 Table).MYB77 andMYB62 exhibited high correlation with the gray60 module,
which was highly correlated with ABA (Figs 4 and 5). In previous studies, these TFs were
shown to respond to an ABA signal involved in abiotic stress [45], lateral root growth [46] and
stomatal aperture [47]. RD26 is an activator of ABA signal transduction, and Arabidopsis trans-
genic plants overexpressing RD26 were highly sensitive to ABA, and RD26-repressed plants
were insensitive [45]. In the present study, RD26 was up-regulated in WT during the entire rip-
ening stage. DREB26 can largely influence plant development, for which overexpression in
Arabidopsis resulted in deformed plants [48].MYB77 could directly interact with ABA receptor
PYL8 and activate auxin signal transduction involved in lateral root growth [46]; in the present
study, it was up-regulated in MT and showed a differential expression pattern in MT andWT
(Fig 6). However, the functions of these TFs in the fruit ripening are unknown; therefore, these
TFs may also have a similar function in response to ABA, which are valuable for further study
in fresh fruit. In climacteric fruit, ERF family TFs have been implicated in hormone biosynthe-
sis, fruit ripening and carotenoid synthesis in several fruits, such as the tomato [10, 11, 49],
apple [50, 51], kiwifruit [40] and longan [52]. However, the actual functions of fruit AP2/ERF
genes are still poorly understood, and furthermore, the role for these genes in nonclimacteric
fruit remains unclear. In the present study, ERF family TFs were the largest cluster genes in
MT vs WT (Fig 1D), suggestingthat ERF TFs may play an important role in the formation of
later-ripening traits in MT and other ripening related processes. JA is another important phy-
tohormone involved in anthocyanin accumulation [53]. Anthocyanins as one of the flavonoids
are biosynthesized through the flavonoid pathway. The members of MYB-bHLH-WD40/WDR
(MBW), an important regulatory mechanism for modulating anthocyanin accumulation,
bHLH and MYB, have been extensively studied [17, 54, 55]. In the present study, several bHLH
and MYB TFs have been identified during fruit ripening, particularly in MT. A total of 14
bHLH TFs were identified (Fig 1). Although citrus fruit do not accumulate anthocyanin, these
TFs may interact with the JA signal pathway involved in the biosynthesis of flavonoids or other
processes. In the present study,MYB21 was up-regulated in WT more than 10-fold compared
with MT at 190 DAF (Fig 6), which interacted with jasmonate involved in stamen filament
growth in Arabidopsis [56]. Thus, this gene may also have other functions in citrus fruit ripen-
ing interacting with JA. In addition,MYB21 was highly correlated with the red module, which
was highly correlated with glucose and fructose (Figs 3 and 4); therefore,MYB21may be
involved in sugar metabolism during fruit ripening. The LBD family TFs act as repressors of
anthocyanin synthesis and affect additional nitrogen responses, which also regulate sectors of
flavonoid biosynthesis [57].

Carbon and nitrogen metabolism, chloroplast development and the light response pathway
are important for plant development and ripening. Previous studies have shown that Dof,
C2H2 and GATA family TFs play pivotal roles in these metabolic pathways [19, 58–61]. Trans-
genic sweet potato plants overexpressing SRF1 (a Dof TF) significantly increased the content of
storage root dry matter and starch, while the glucose and fructose content drastically decreased,
and the enzymes involved in sugar metabolism, and soluble acid invertase showed decreased
activity in transgenic plants [58]. In wheat, the expression of TaDof1 was influenced by the lev-
els of nitrogen [62]. Themutation of GNC (GATA21) reduces chlorophyll levels and produces
defects in the regulation of genes involved in sugar metabolism [63]. Plants must respond to
several environmental cues, one of the most important being light. Ward et al. [20] reported
that Dof TF OBP3 was regulated by light in Arabidopsis thaliana and suggested a model where
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OBP3 is a component in both phyB and cry1 signaling pathways, acting as positive and nega-
tive regulators, respectively. The Dof transcription factor can also respond to photoperiod reg-
ulation activating flowering. AtCDFs (CYCLING DOF FACTOR) are a group of commonly
studied Dof TFs in response to the photoperiod, such as AtCDF1 [64], AtCDF2 [65]. C2H2 TFs
function as part of a large regulatory network that senses and responds to different environ-
mental stimuli [14]. Transgenic Arabidopsis plants that constitutively express Zat12 (compris-
ing two C2H2-type zinc finger domains) are more tolerant to high light and osmotic and
oxidative stresses, and Zat12 antisense and knockout plants are more sensitive to light, osmotic
stress and salinity [66, 67]. In the present study, numerous C2H2 and Dof family TFs and sev-
eral GATA family TFs were identified during citrus fruit ripening (Fig 1). Some C2H2 and Dof
TFs were highly correlated with glucose, quinic acid and citric acid (S10 Table). Some TFs
related to light responses, such as GATA7 [59] andMYR2 [68], showed differential expressed
between MT andWT (Fig 6). However, the functions of these TFs in fruit development and
ripening are not clear; thus, these TFs may play roles in the regulation of sugar and acid metab-
olism and fruit coloration responding to light.

The degradation of organic acids for fruit ripening is also important. Organic acids and sol-
uble sugars contribute highly to the flavor and overall quality of citrus fruit. Organic acids play
an essential role in energy generation, response to nutritional shortage [69] and metal ion stress
[70]. Many of the structural genes involved in the metabolism have been isolated from various
fruits [71–73]. In the present study, many TFs correlated with citric acid, quinic acid and malic
acid during navel orange fruit ripening have been identified (S10 Table). Hence, TFs may play
a significant role during the degradation of organic acids. In addition, some of the TFs corre-
lated with organic acids were assigned to the plant hormone signal transduction pathway, such
as Cs8g15030 (TGA9) and Cs6g16030 (ARF8); therefore, plant hormones may play an impor-
tant role in the metabolism of organic acids.

In conclusion, in this study, we have identified numerous important TFs involved in citrus
fruit ripening on the platform of the later-ripening bud mutant "Fengwan" navel orange and its
wild-type "Fengjie" navel orange. The identified TFs belong to different families and are pri-
marily assigned to the C2H2, Dof, bHLH, ERF, NAC, MYB and LBD families. Recently, several
TFs have been studied in perennial fruit; herein, we determined a large cluster of TFs related to
fruit ripening to provide information for the screening of TFs for further functional analysis.
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S1 Fig. The family distribution of transcription factors identified in all samples (A), MT
(B) and WT (C).
(TIF)

S2 Fig. Biological process (A) and molecular function (B) enrichment analysis of the TFs
differentially expressed between MT andWT during fruit ripening. Bubble color indicates
the p-value; plot size indicates the frequency of the GO term in the underlying GOA database
(bubbles of more general terms are larger).
(TIF)

S3 Fig. Multidimensional scaling plot of dissimilarities between genes, based on topological
overlap.
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S4 Fig. The eigengenes expression of 32 modules clustered via WGCNA.
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right.
(TIF)

S1 Table. The values of fold-change with their respective p-values and FDR values for all
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S2 Table. The total genes used for WGCNA analysis.WT1, WT2 andWT3 indicate 170, 190
and 210 DAF of WT, respectively; MT1, MT2 and MT3 indicate 170, 190 and 210 DAF of MT,
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MM.module and p.MM.module indicate the correlation coefficient and P value, respectively.
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S5 Table. Identified differential expressed transcription factors of WT, MT and MT vs WT.
WT1, WT2 and WT3 indicate 170, 190 and 210 DAF of WT, respectively; MT1, MT2 and
MT3 indicate 170, 190 and 210 DAF of MT, respectively. RPKM, reads per kb per million
reads; MM.module and p.MM.module indicate the correlation coefficient and P value, respec-
tively. MT vs WT indicate the TF cluster, which is differentially expressed between MT and
WT.
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S6 Table. Gene ontology enrichment analysis (p-value< 0.01) of the TFs differentially
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S7 Table. Enriched (p-value< 0.01) GO term gene list differentially expressed during fruit
ripening in both MT andWT relative to hormones.
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