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A B S T R A C T

In cancer radiomics, textural features evaluated from image intensity-derived gray-level co-occurrence matrices
(GLCMs) have been studied to evaluate gray-level spatial dependence within the regions of interest in the brain.
Most of these analysis work with summary statistics (or texture-based features) constructed using the GLCM
entries, and potentially overlook other structural properties in the GLCM. In our proposed Bayesian framework,
we treat each GLCM as a realization of a two-dimensional stochastic functional process observed with error at
discrete time points. The latent process is then combined with the outcome model to evaluate the prediction
performance. We use simulation studies to assess the performance of our method and apply it to data collected
from individuals with lower grade gliomas. We found our approach to outperform competing methods that use
only summary statistics to predict isocitrate dehydrogenase (IDH) mutation status.

1. Introduction

In oncology, characterization of the tumor phenotype is a challenge
owing to the heterogeneous tumor micro-environments and diverse
clinical pathways. Cancer radiomics has emerged as an area to address
such challenges. It deals with quantifying the intrinsic patterns in gray-
level intensity patterns, texture, enhancement, morphology and shape
of the tumor tissues. Recent advances include different types of quan-
titative assessments that are facilitated through dimension reduction by
constructing features from delineated areas (or regions of interest).
These features could potentially guide the understanding of the un-
derlying composition of tissues which are suspected to have malignant
pathology. Consequently, these image-derived features are expected to
capture the underlying patterns indistinguishable to the human eye and
facilitate down-stream analyses.

There has been increased interest in understanding the associations
between clinical features, molecular pathology and textural features
based on the imaging data (Zulpe and Pawar, 2012; Kumar et al., 2015;
Narang et al., 2017). Specifically, textural features evaluated using
gray-level co-occurrence matrices (GLCMs) have been used to study
gray-level spatial dependence within the delineated regions of interest.

GLCMs are matrices defined over an image domain with entries as
counts describing the spatial distribution of co-occurring gray-scale
values (Haralick et al., 1973). Most of the analyses involving GLCMs
work with the texture-based features (or summary statistics) rather than
evaluating the GLCM in its entirety. In this paper, we propose a Baye-
sian probabilistic modeling framework to identify the associations be-
tween a phenotype and the GLCMs constructed based on Magnetic
Resonance Imaging (MRI) scans. We specifically focus on lower grade
gliomas (LGG), which is a specific type of brain cancer. The proposed
framework facilitates modeling the GLCM within a two-dimensional
functional space to capture the spatial dependencies in the gray-levels,
thereby extending traditional analysis based on summary statistics or
textural features. This modeling can be utilized under a classification or
regression setting corresponding to any relevant clinical phenotype.

1.1. Lower grade gliomas

Lower grade glioma is a neoplastic disease that develops in the glial
cells of the brain. In general, gliomas are graded from I to IV according
to the World Health Organization criteria. Tumors grades II and III are
usually classified as LGG, as opposed to the more common higher grade
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tumors, also known as glioblastoma multiforme. We primarily work
with The Cancer Genome Atlas (TCGA) (Tomczak et al., 2015) cohort
for LGG data which involves 108 cases with the tumor histology as
astrocytoma, oligodendroglioma, or oligoastrocytoma. This histologic
data and the MRI acquisition protocols can be found in the publicly
available data files of patients (Pedano et al., 2016). Patients in this
cohort had undergone routine MRI prior to surgery and treatment.
These MRI images are acquired in four different sequences: Pre-contrast
T1-weighted (T1W), post-gadolinium T1 contrast enhanced (T1CE), T2-
weighted (T2W), and T2 fluid-attenuated inversion recovery (FLAIR).
We show all four MRI sequences corresponding to an axial slice for an
LGG patient in Figs. 1(a-d). The patient image data, the tumor seg-
mentation labels and the corresponding clinical data were extracted
from The Cancer Imaging Archive (TCIA) (Clark et al., 2013; Kuthuru
et al., 2018) and TCGA. The tumor area is shown as a delineated region
on the image for all four sequences in Figs. 1(a-d). However, the whole
brain MRIs are three-dimensional data objects with stacked axial layers
corresponding to each subject. Voxel intensity values are sensitive to
the MRI scanner configuration and are difficult to interpret and com-
pare either between study visits within a single subject, or across dif-
ferent subjects. This emphasizes the necessity of pre-processing in terms
of intensity value normalization, which we address by performing a
biologically motivated normalization technique using the R package
WhiteStripe (Shinohara et al., 2014). For consistency across all the
subjects and scans, the normalization was implemented under the same
default settings in the R package WhiteStripe.

1.1.1. Molecular Sub-types in LGG
Several molecular alterations have been shown to be associated

with the overall survival of the LGG patients. These include isocitrate
dehydrogenase (IDH1/2) mutation status (collectively referred to as
IDH mutations), 1p19q chromosomal arm codeletion, MGMT promoter
methylation status, and TP53 mutation (Leu et al., 2013; Moritz-Gasser
and Herbet, 2013; Pignatti et al., 2002). Multiple molecular sub-types
of LGG have been identified (Eckel-Passow et al., 2015; Network,
2015), which predominantly include IDH wild-type, IDH mutant with
1p19q codeleted, and IDH mutant with 1p19q noncodeleted groups.
These groupings were used to show that LGGs with IDH wild-type have
molecular characteristics and behavior similar to glioblastoma and
have been associated with shorter survival. Specifically in the case of
glioblastoma, studies also indicate that patients with IDH1 mutation
have better prognosis compared to the patients with wild-type
(Hartmann et al., 2010). Since the IDH status is such an important as-
pect in case of gliomas, in this paper we aim to assess the associations
between the imaging measurements and the IDH status in the case of
LGGs. Prediction of molecular status (e.g. IDH status) in gliomas using
radiomic features is an extensively studied problem in the field of
radiomics (Chaddad et al., 2015; Hsieh et al., 2017; Li et al., 2017;
Chang et al., 2018; Jakola et al., 2018; Li et al., 2018; Rathore et al.,
2018; Tian et al., 2018; Han et al., 2019; Liu et al., 2019).

1.2. Gray-level co-occurrence matrices

A predominant approach in image texture analysis to evaluate gray-
level spatial dependencies is through the analysis of GLCM. A GLCM is a
matrix defined over an image domain with its entries computed as
counts, describing the spatial distribution of co-occurring gray-scale
values in the image voxels at a given spatial offset and orientation/
angle (Haralick et al., 1973). The entry j k( , ) in a GLCM is the total
number of pixel pairs that have gray-levels j and k in the image in a
specified direction and distance. Consider a two-dimensional image
(e.g. an axial slice from the MRI), the j k( , )-th entry in the corre-
sponding GLCM represents the number of instances that pixel pairs with
gray-levels j and k are neighbors either horizontally, vertically or di-
agonally. The GLCM entries can be computed by traversing pixel-by-
pixel across the whole image or region of interest. That is, for a given
pixel (with gray-level j), we consider its neighbors at 0 , 45 , 90 and
135 at a distance one (immediate neighboring pixel). For each of these
four neighbors, if its gray-level is k then the j k( , )-th entry of the GLCM
is incremented by one, and this leads to a non-symmetric GLCM.
However, adding one to both j k( , )-th and k j( , )-th entries creates a
symmetric GLCM. Symmetric GLCMs can also be constructed by looking
at all eight directions for each pixel. For a three-dimensional image the
number of directions increase to thirteen as we have an additional di-
mension. GLCMs constructed by considering all the directions are
symmetric and rotation invariant. GLCMs can also be constructed by
looking for pixel pairs at different distances/scales and not necessarily
constrained to immediate voxel neighbors.

For each patient and imaging sequence, a GLCM is computed from
the three-dimensional tumor volume observed in the corresponding
sequence. We consider symmetric as well as non-symmetric GLCMs
from T gray-level bins. The GLCM object thus constructed provides a
huge dimension reduction mapping from the image space to the data
lattice. We choose =T 8 which is a common choice in applications
involving GLCMs. However, we would like to emphasize that our ap-
proach in this paper can be readily employed to various choices of the
gray-levels. The GLCMs also facilitate further statistical modeling and
analysis in diagnostic oncology, which is otherwise hindered due to
irregular shape and sizes of the tumor in the original image space.
Current modeling approaches using GLCM focus on deriving textural
features, which are summary statistics constructed using the GLCM
entries (Hitam et al., 2003; Lee et al., 2015; Ghosh et al., 2015). Many
studies have also reported high correlation between the derived textural
features which leads to over-fitting (Albregtsen et al., 2008; Zhang
et al., 2008; Kassner and Thornhill, 2010). These textural features also
potentially overlook other structural properties in the GLCM. Some of
the most commonly used textural features based on the GLCM are
contrast, correlation, energy, entropy and homogeneity (definitions
below). These features are interpreted in their conventional sense as
summary statistics and are referred to as the Haralick features.

Fig. 1. Axial slice of a brain MRI for a LGG subject shown for four imaging sequences T1W, T1CE, T2W and FLAIR. The segmented tumor region is shown with the
(red) boundary overlaid on the images. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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where pjk is the j k( , )-th entry in the GLCM, and µj and µk are the
marginal means of row j and column k, respectively. Similarly, j and k
are the marginal standard deviations of row j and column k, respec-
tively.

1.3. Statistical framework

In this work, we propose a novel Bayesian approach using a gen-
eralized two-dimensional (2D) functional linear models to model the
IDH status using the GLCMs. Our framework builds nonlinear associa-
tion models between scalar responses and functional predictors. To
utilize the gray-level spatial structure in the GLCM, we use it as our
fundamental data object rather than any texture features derived from
them. Li et al., 2019 is one of the very few studies that uses the whole
GLCM (instead of the textural features) to classify adrenal lesions
through spatial Bayesian modeling. The data object in their study is a
structured lattice whereas we consider the GLCM as a two-dimensional
functional object. We treat the GLCM counts as 2D functional data for
each imaging sequence, and account for both symmetric and non-
symmetric GLCMs. Our method is part of the functional prediction re-
gression (FPR) family of models which relate a non-functional response
(e.g. IDH status) to functional predictors (e.g. GLCMs). There is an
extensive literature on FPR models (Baladandayuthapan et al., 2015;
James, 2002; Ramsay and Dalzell, 1991; Morris, 2015; Vannucci et al.,
2003; Vannucci et al., 2005; Ferraty and Vieu, 2003; Cardot et al.,
1999; Cardot et al., 2003; Ferraty and Vieu, 2002; Muller, 2005). A nice
review on functional regression can be found in Morris, 2015. Most of
previous approaches to modeling functional regression effects have
focused on one-dimensional smoothing, but fewer studies have focused
on multidimensional smoothing used mostly as the tensor product of
basis of each dimension (Eilers and Marx, 2003; Marx et al., 2011; Marx
and Eilers, 2005). Inspired by the work of Chen et al., 2017, the re-
presentation of our two-dimensional functional data is based on a
tensor product of eigenfunctions of marginal kernels. As this re-
presentation has a simple interpretation, we newly adopt it in the
context of Bayesian FPR models. Moreover, we also account for mea-
surement error in the GLCMs, and provide regularization using mixture
prior distributions.

The manuscript is organized as follows. In Section 2, we illustrate
our proposed Bayesian modeling approach. In Section 3, we discuss
posterior inference and show how our modeling framework can be used
to predict the IDH status. In Section 4, we present results from simu-
lation studies in which we found our approach to outperform com-
peting methods that use summary statistics. In Section 5, we discuss the
results of our inference on the data set of TCGA LGG patients. We
conclude in Section 6 with a discussion and some directions for future
work.

2. A Bayesian 2D functional linear model

In this study, we consider imaging and clinical data from n TCGA
LGG patients who had all undergone routine MRI prior to surgery and
treatment. For the ith patient, we observe =y 1i if IDH is mutant and 0

otherwise. Moreover, for each patient i, we observe (log-) GLCM count
x s t( , )ir j k for imaging sequence = …r R1, , with gray-levels sj and tk for
every …j k T( , ) {1, 2, , }, where T is the total number of gray-level
intensities. For both simulated and LGG data, we used the Z-score
standardization for x s t( , )ir j k for each entry s t( , )j k and imaging sequence
r. In our LGG case study, we consider =T 8 gray-levels and =R 4
imaging sequences: T1W, T1CE, T2W and FLAIR as described in Section
1.2.

2.1. Theoretical motivation

Let µ s t E x s t( , ) ( ( , )) be the mean of the process x s t( , ) for all
s t( , ) 2T where T . Under fairly general assumptions, Chen
et al., 2017 showed that the two dimensional process x s t( , ) can be
written as

+
= =

x s t µ s t s t z s t( , ) ( , ) ( ) ( ) ( , )
k l

kl k l
1 1 (1)

where the s{ ( )k ’s, k 1} and t{ ( )l ’s, l 1} are respectively the ei-
genfunctions of the marginal kernels =K s s K s t s t t( , ) [( , ), ( , )]dT1

and =K t t K s t s t s K s t s t( , ) [( , ), ( , )]d , [( , ), ( , )]T2 is the covariance
function of x s t( , ), and kl is the principal component score associated
with the pair of eigenfunctions ( , )k l such that =cov ( , ) 0kl kl for
l l and =cov ( , ) 0kl k l for k k . The representation of x s t( , ) in
Eq. (1) can be seen as an extension of the Karhunen-Loève expansion
(Loève, 1963), and is well suited for situations where the two argu-
ments of x s t( , ) play symmetric roles. From Eq. (1), we can show that

s{ ( )k ’s, k 1} and t{ ( )l ’s, l 1} are respectively eigenfunctions of
cov X s X s( ( ), ( ))1 1 and cov X t X t( ( ), ( ))2 2 , where =X s x s t t( ) ( , )d1 T

and
=X t x s t s( ) ( , )d2 T

are the marginal functions of x s t( , ) (see Theorem
6.1 of the Supplementary Materials). Hence, those eigenfunctions can
be estimated after performing standard functional principal component
analysis on the marginal stochastic processes X s( )1 and X t( )2 .

2.2. Model formulation

We treat the non-symmetric GLCM counts from each sequence r as
2D functional data indexed by pairs of gray-levels. We then model the
(log-) GLCM counts as follows

= + +x s t µ s t z s t s t( , ) ( , ) ( , ) ( , ),ir r ir ir (2)

where

=
= =

z s t s t( , ) ( ) ( ),ir
k l

ikl
r

k
r

l
r

1 1

( ) ( ) ( )

(3)

s t( , )ir is a mean-zero white-noise process with variance r
2. Hence we

assume that for subject i, the GLCM counts x s t( , )ir are noisy realiza-
tions of the true latent process z s t( , )ir at intensity level s t( , ). When
GLCMs are symmetric, we then assume that =t t( ) ( )k

r
l

r( ) ( ) , and
=ikl

r
ilk

r( ) ( ). Hence the indices of the double summation in Eq. (3) would
be restricted to belong to the set k l k l{ , , } and the off-diagonal
terms ikl

r( )’s ( <k l) are multiplied by two. We use yi ( = …i n1, , ) to
denote a continuous clinical outcome for patient i. To illustrate the
main ideas, we describe the simplest case with continuous outcome
data and extend the method for binary outcome later. In order to relate
imaging with clinical outcome, we assume a functional linear regres-
sion model with a scalar response defined as

= + +
=

w by z s t s t s t e e( , ) ( , )d d , (0, ).i
r

R

ir r i
T

i i i i d e
1

. .
2

2 N
T (4)

where s t( , )r is the continuous functional regression coefficient asso-
ciated with GLCM for imaging sequence r, and wi is a Q-dimensional
vector that encodes for nonfunctional fixed effects (confounders such as
demographic variables: gender, age, etc) with b as the associated re-
gression coefficients. Here we take the first component of W to be 1 to
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include the intercept term. Using Eq. (3), Eq. (4) can be written as

= + +
=

w by e .i
r

R

k l
ikl

r
kl

r
i
T

i
1 ,

( ) ( )

(5)

where

= s t s t s t( , ) ( ) ( )d d .kl
r

r k
r

l
r( ) ( ) ( )

2T (6)

Under the assumption that s t( , )r is defined in the tensor Hilbert
space L L( ) ( )2 2T T (Takesaki, 2001; Bratteli and Robinson, 2003),

s t( , )r can be written as a linear combination of the orthonormal
system s t k l{ ( ) ( ), , 1}k

r
l

r( ) ( ) using the representation

=
= =

s t s t( , ) ( ) ( )r
k l

kl
r

k
r

l
r

1 1

( ) ( ) ( )

(7)

The basis functions s k{ ( ), 1}k
r( ) and t l{ ( ), 1}l

r( ) are not
known, hence we use functional principal component (FPC) analysis to
construct their estimators (Ramsay and Silverman, 2005; Hall et al.,
2006; Yao et al., 2005) by using respectively the marginal functions
X s( )1 and X t( )2 . Once the orthonormal basis coefficients or the FPC
scores have been estimated, we can reduce (5) by applying truncated
approximations in (3), which gives

= + +
= = =

w by e .i
r

R

k

K

l

K

ikl
r

kl
r

i
T

i
1 1 1

( ) ( )
r r1 2

(8)

where Kr1 and Kr2 are the truncation parameters for the predictors from
the rth imaging sequence. Again, when GLCMs are symmetric, =K Kr r1 2
and =kl

r
lk

r( ) ( ). Hence, the indices of the double summation k and l in
Eq. (8) belong now to …k l K k l{ , {1, , }, }r1 and the off-diagonal re-
gression coefficients lk

r( ) ( <k l) are also multiplied by two. For both
simulated and observed data, we used a fraction of variance explained
(FVE) of at least 95% in order to estimate Kr1 and Kr2. Alternatively, we
may formulate it as a model selection procedure and choose them by
using some model selection criterion, such as the deviance information
criterion (DIC).

For the case of binary response (IDH status) we consider a probit
model that linearly relates GLCMs to the binary response. That is, we
adopt a data augmentation approach (Albert and Chib, 1993) to define
our predictive model as in (8) where

= >y y1 if 0,
0 otherwise,i

i

(9)

and =y 1i if subject i has a mutant IDH and =y 0i if subject i has a wild
type IDH. In this context, the variance of the latent continuous variable
yi is = 1e

2 (Albert and Chib, 1993).

2.3. Prior Distributions

Variable selection is an important problem in functional regression
model and we aim to identify both imaging sequences and their cor-
responding components that contribute the most to the prediction of
the response. As commonly done in Bayesian variable selection, we
define the indicator vector = ( )r

kl
r

kl
( ) ( ) where = 1kl

r( ) if component
k l( , ) for imaging sequence r is selected and 0 otherwise. We then define
adaptively regularized representations of the effect functions s t( , )r by
placing a mixture prior on kl

r( ), the coefficient effect of latent scores
= ( )kl

r
ikl

r
i

( ) ( )

= + Normal h( ) [(1 ) ( ) ( ;0, )]0
r

k l
kl

r
kl

r
kl

r
kl

r
e r

( )

,

( ) ( ) ( ) ( ) 2

(10)

for every …r R{1, , }. In Eq. (10), 0 is the Dirac delta function con-
centrated at 0, and Normal x µ( ; , ) denotes the probability density
function of a normal distribution with mean µ and variance 2. It fol-
lows from prior (10) that = 0kl

r( ) if = 0kl
r( ) and 0kl

r( ) if = 1kl
r( ) . Let

us define = =A r{ | 1}kl kl
r( ) and assume that

= = >Cov ( , ) 0kl
r

k l
r

e rr e r r
( ) ( ) 2 2 for every r A r A,kl k l (r r ),

…l l K, {1, , }r1 and …k k K, {1, , }r2 . The shrinkage hyper-parameter
hr in Eq. (10) is defined as = +h hr r r k l kl

r
rr,

( ) ( >h 0, fixed) such
as the covariance matrix of = k l r A{ , , , }kl

r
kl

( ) is diagonally domi-
nant (and symmetric), hence, it is guaranteed to be positive definite.

Instead of defining a mixture prior for the coefficient effects kl
r( )’s

(see Eq. 10), we can simply assume that kl
r( ) follows Normal h(0, )e r

2 i.e.
we do not impose sparsity on the set of components. This approach can
be valid when the number of components is less than the number of
subjects but the computational cost of its MCMC algorithm is higher
than the sparsity approach. We made a comparison of the two ap-
proaches (sparsity and no sparsity) in terms of computational cost and
component selection in the Supplementary Materials (see Section 7).
We have also added the option to run the non-sparsity approach to our
MCMC algorithm.

Under our model formulation, rr controls the overall correlation
between the regression coefficient functions s t( , )r and s t( , )r if both
imaging sequences r and r are associated with y. Otherwise, there is no
correlation. This assumption is motivated by the fact that the imaging
sequences provide information about the same region and also seem to
be positively correlated, hence we would expect their effects to be
correlated as well. Moreover, in the case where one imaging sequence is
associated and the other are not, the method can learn from the data
and impose a partial correlation, thereby enabling the effects of other
imaging sequences. Fig. 1 of the Supplementary Materials presents
empirical correlations between sequences of the observed GLCMs. It
shows that most of the empirical correlations are positive. For example,
we observe stronger pairwise correlations between FLAIR and T2W,
possibly as the tumor region is indicated by a mass-like hyperintense
signal in both sequences (Bruno et al., 2019).

We assume independent binomial prior distributions with prob-
ability pr for the binary parameter kl

r( ). We also impose gamma prior
distributions on the covariance r r A, ,rr k l kl, with shape parameter
a and rate parameter b. If the outcome is binary, it is assumed that the
variance of the error term ei (or the latent variable yi ), e

2 is set to 1
(Albert and Chib, 1993). Otherwise, if it’s continuous, we assume a
conjugate inverse gamma prior for e

2 with parameters ae and be.
The latent scores ikl

r( )’s are assumed to be normally distributed
N (0, )kl

r( ) , as is commonly assumed in functional principal component
analysis (Crainiceanu and Goldsmith, 2010), where kl

r( ) follows an in-
verse gamma distribution with parameters a and b , and represents the
eigenvalues for each imaging sequence r. We finally impose a conjugate
inverse gamma prior for r

2 with parameters ar and br , and independent
normal N h(0, )0 for components of the coefficient vector = …b b b( , , )Q1
for nonfunctional features.

3. Posterior inference

For posterior inference, our primary interest is in the estimation of
the selection indicator kl

r( ) and regression effects of the latent scores

ikl
r( )’s. We implement a Markov Chain Monte Carlo (MCMC) algorithm

for posterior inference that employs partially collapsed Gibbs sampling
(van and Park, 2008) to sample kl

r( ) and the regression coefficients kl
r( ).

In fact, for each sequence r, to sample the binary matrix ( )kl
r

kl
( ) given

( )kl
r

kl
( ) (r r), we integrate out first kl

r( ). Then, we sample the re-
gression coefficients kl

r( ) from their full conditional distributions. In
Section 8 of the Supplementary Materials, we present the full condi-
tionals to update all parameters. We outline the steps of our MCMC
algorithm below.

1. Sample r( ) from its full conditionals as defined in Eq. (5) of the
Supplementary Materials.

2. Sample r( ) from its full conditionals as defined in Eq. (6) of the
Supplementary Materials.

3. Sample rr from its posterior full conditional using a Metropolis-
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Hasting step as decribed in Section 8 (Supplementary Materials).
4. Sample the parameters , , ,ikl

r
kl

r
e r

( ) ( ) 2 2, from their full conditional
distributions as defined respectively in Eqs. (7)–(10) of the
Supplementary Materials.

5. When the response is binary, sample yi as a truncated normal
distribution as described in the Supplementary Materials (see
Section 8).

6. Sample b from its full conditionals as defined in Eq. (11) of the
Supplementary Materials.

3.1. Prediction

We use an M-fold cross-validation where the n samples are parti-
tioned into M subsets. We follow a similar procedure adopted in
Chekouo et al., 2017 for survival time outcome. We set =M 10 for our
LGG case study, and for each sample = …i n1, , , we denote with i( ) the
partition that contains i (validation set). Let y i( ) be the binary outcome
vector in the partition i( ), and y i( ) be the outcome from the re-
maining partitions (training set). The cross-validation density for the i-
th individual is estimated via model averaging; following Gelfand and
Dey, 1994; Lamnisos et al., 2012 and Chekouo et al., 2017, we use

y( | ) as the importance density of the target distribution y( | )i( ) ,
where = r k l{ , , , }kl

r( ) . The predictive probability can then be written
as

= = =

=
= =

y y y

y

y y

w y g w

prob( 1| ) prob( 1| , ) ( | )

prob( 1| , ( ))/ ,

i i i i i

g

G

g i i
g

G

g

( ) ( ) ( )

1
( )

1 (11)

where = y yw p g[ ( | , ( ))]y
yg

g
g i i

( ( ) | )
( ( ) | ) ( ) ( )

1i( ) , and G is the number of
distinct models g( )’s obtained from the MCMC samples. We approx-
imate the densities

= yy gprob( 1| , ( )) ( ^ ) andi i i g( ) ( ( )) (12)

> >( ) ( )y yp g( | , ( )) (1 ,i i
i i

i g i g( ) ( )
( )

( ( )) ( ( ))
1¯ ¯

(13)

where is the cumulative distribution function of the standard normal
distribution, i is the posterior mode of i obtained from Eq. (2), ȳi is
the posterior mean determined by averaging sample values of yi from
each iteration g, g( ( )) is the posterior mode of g y( | ( ), , ¯ )i( ) , and

=>¯ if >ȳ 0i and 0 otherwise. Hence, the inclusion probability
for subject i i( ) can be estimated as

= = ×
=

=

y y y

y y

y p g

p g

prob 1| [ ( | , ( ))] ^ ^

1/ [ ( | , ( ))] ,

i i
g

G

i i i g

g

G

i i

( )
1

( ) ( )
1

( ( ))

1
( ) ( )

1

(14)

4. Simulation study

To demonstrate the performance of our 2D functional linear model
on the GLCM data we conduct a simulation study under different sce-
narios. Note that in our real data analysis GLCMs are generated from
the pixel values of the original tumors in the MRI scans of patients with
low-grade gliomas. However, for simulation purposes we focus on si-
mulating the GLCMs directly instead of trying to create them from si-
mulated MRI scans.

Each GLCM is a ×T T matrix where the j k( , )-th entry corresponds
to the GLCM count generated to represent the neighborhood pattern of
gray-level j and gray-level k. For each subject we want to generate four

×T T GLCMs corresponding to four imaging sequences. Let
=G g(( ))r

jk
r

j k T
( ) ( )

1 , be the GLCM corresponding to the imaging se-
quence r and gjk

r( ) be its j k( , )-th entry for sequence r. Let
=Q q(( ))r

jk
r

j k T
( ) ( )

1 , be a matrix which specifies the underlying mean
structure of the pattern in the GLCM. The entries ofQ r( ) are generated in
a deterministic way to include different patterns for the GLCM. We
determine the value of each qjk

r( ) by corresponding it to the probability of
a certain region under a bivariate normal distribution. Steps (7)-(8) in
Algorithm 1 specify the exact computations to generate symmetric
GLCMs. Note that Q is constructed to be a symmetric matrix to generate
a symmetric GLCM. As alluded to previously, we observe correlation
between the GLCMs across imaging sequences, which will be in-
corporated as correlation between the entries …g g, ,jk jk

(1) (4) for all
= …j k T, 1, , . We incorporate this correlation through the error term

= = …( , , )jk kj jk jk
(1) (4) , where N (0, )jk jk4

2 and jk is a pre-spe-
cified correlation structure with 2 being the noise. For the simulations
in this section, we consider jk to be the empirical correlations between
the j k( , )-th GLCM entries across all four sequences based on all the
subjects from our real data. We now compute the logarithm of entries of
G r( ) as = + +g w qlog( ) log( ) log( )jk

r
jk
r

jk
r( ) ( ) ( ), where w is an integer sam-

pled randomly from a discrete uniform distribution U v v{ , }1 2 such that
< <v w v1 2. Here w accommodates for the varying tumor volume (total

number of tumor pixels) for each subject. We choose = ×v 4 101
4 and

= ×v 3 102
6 based on the real data. The inclusion of additive noise in

log-scale could also be interpreted as multiplicative noise for the ori-
ginal GLCM count =g wq exp( )jk

r
jk
r

jk
r( ) ( ) ( ) . The values gjk

r( ) will be rounded
to the nearest integer to generate integer-valued GLCM counts.
Algorithm 1 summarizes the procedure to simultaneously generate
correlated GLCMs for multiple imaging sequences. Note that first we
generate y {0, 1}i randomly from a Bernoulli (0.5), which indicates the
category label for subject i. Based on this label we assign the mean
parameter m r( ) and variance parameter r( ) to specify the underlying
patterns in the GLCM.

Algorithm 1 Simulating symmetric GLCMs for four imaging sequences

1: Set =m m( , ) ( , )r r r r( ) ( )
1
( )

1
( ) or m( , )r r

0
( )

0
( ) based on =y 1 or 0, respectively.

2: Let w be an integer sampled randomly from a discrete uniform distribution
U v v{ , }1 2 .

3: for …j T1, , do
4: for …k j1, , do

5: Let = = …( , , )jk kj jk jk
(1) (4) , where N (0, )jk jk4

2 .
6: for …r 1, , 4 do
7: S square given by

+ +k T j k T j k T j k T j( 1, ), ( , ), ( , 1), ( 1, 1).
8: = =q q P SX( )jk

r
kj

r( ) ( ) , where NX m( , )r r2 ( ) ( ) .

9: Compute the GLCM entry as = +g w qexp(log( ) )jk
r

jk
r

jk
r( ) ( ) ( ) .

To create the different simulation scenarios, we fix the number of gray-
levels as =T 8. To construct the GLCMs for the subjects with =y 1i , we
consider the mean parameter as m r

1
( ) and covariance matrix as r

1
( ) for

all = …r 1, , 4. Similarly, for the subjects with =y 0i , we consider the
mean parameter as m r

0
( ) and covariance matrix r

0
( ) for all = …r 1, , 4.

Let = 1 0.1
0.1 1 be a correlation matrix. We assume the same

covariance structure to construct GLCMs of all four sequences for the
subjects in the same category, that is, = = = = cl l l l l

(1) (2) (3) (4) for
some >c 0l and =l 0, 1. We broadly divide our simulation scenarios
into three cases with respect to different mean patterns in the GLCM
between all four imaging sequences. These scenarios are trying to
capture various degrees of co-occurrence for different gray-levels. For
example, higher values close to the diagonal reflects strong co-occur-
rence of voxel values indicating spatial homogeneity, whereas, higher
values away from the diagonal reflect less co-occurrence indicating
spatial heterogeneity. Table 1 shows the specific choices of m r

1
( ) and

m r
0
( ) for all = …r 1, , 4 for different simulation scenarios we consider.

These choices are structured so that two of the four imaging sequences
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have similar underlying patterns across both the response categories.
That is, only GLCMs with sequences =r 2 and =r 3 are associated with
the response for each scenario (except case C). Figs. 2–4 show the
generated GLCMs for a subject with =y 1 for cases A B, and C, re-
spectively.

For each of the three cases A B, and C we further consider two
scenarios through varying covariance structure of the bivariate nor-
mals. We consider the first scenario with = =c c 100 1 and the second
scenario with =c 100 and =c 81 for each of the three cases. We also
consider two possible values for the noise: (a) = 1 and (b) = 3. In
summary, we include the characteristics of GLCMs from MRI data such
as (i) varying tumor volume (total number of tumor pixels) between
subjects using the parameter w, (ii) dependence between the GLCM
entries from the four imaging sequences, and (iii) various spatial het-
erogeneity/homogeneity patterns using the entries ofQ r( ). We have also
generated similarly non-symmetric GLCMs with the same scenarios.
The algorithm to generate them is presented in Section 2 of the
Supplementary Materials.

Hyperparameter Settings: We set the hyperparameters as follows.
A vague prior is assigned to the coefficient b of nonfunctional effects by
specifying the hyperparameter h0 as a large value. Specifically, we set

=h 10000 . We also set =h 1, the hyperparameter of the regression ef-
fects which allows the covariance matrix of to be positive definite. We
set the hyperparameters of the prior distributions of rr as =a 0.5 and

=b 0.5. We set a non-informative prior on kl
r( ) by specifying its hy-

perparameters as = =a b 0.001. Finally, we set =p 0.5r , the hy-
perparameter of kl

r( ) and the prior probability to select a specific com-
ponent. A sensitivity analysis with different choices of a b, , and h shows
that the posterior inference is quite robust to the specification of these
hyperparameters (details in Supplementary Material, Section 4).

4.1. Simulation results

To highlight the comparison of using symmetric and non-symmetric
GLCM matrices, we defined two Bayesian methods for GLCM matrices:
Bayes2Dsym is our Bayesian approach for 2D functional data that ac-
counts only for symmetric GLCM, while Bayes2Dnosym can account for
non-symmetric GLCMs. Both methods were run for 80,000 MCMC
iterations with a burn-in period of 10,000 iterations. To assess the
convergence of the MCMC algorithm on simulated data, we ran two

MCMC chains for each case with randomly chosen starting points.
Correlations between the marginal posterior probabilities of lk

r( ) were
greater than 0.98 indicating good concordance between the two chains.
Additional MCMC diagnostic checks can be found in the Supplementary
Materials Section 5.

We further compared our methods with three alternative ap-
proaches that use summary statistics obtained from GLCM as covariates
(i.e. the 13 Haralick features described in Section 1.2): the penalized L1
lasso binomial regression of Friedman et al., 2010 implemented in the R
package glmnet, the SCAD penalty for support vector machine (SVM) of
Zhang et al., 2005 implemented in the R package penalizedSVM, and the
Random Forest of Breiman, 2001 implemented in the R package ran-
domForest. We applied those methods with a total of × =R 13 52 cov-
ariate features. We computed the AUC to assess the prediction perfor-
mance, and predictive probabilities were computed as described in
Section 3.1 for =M 10.

Fig. 5 shows violin plots with density plots on each side, and sample
means (marked as a diamond in the middle of plots) of AUCs. It shows
the prediction performance for all competing methods across 12 sce-
narios: Bayes2Dnosym always performs best (much higher AUC), and
Bayes2Dsym is the second best. This actually shows that the use of the
raw GLCM (i.e without symmetrizing them) gives better predictive
performance in particular when the noise in the GLCMs is large.
Moreover, the prediction performance is worst when using summary
statistics with the competing methods. However, all methods perform
similarly in Case B under the scenario of different covariance structure
between the two groups of responses (0 and 1), and = 1. We have also
compared our methods with the three alternative methods that use the
whole symmetric and non-symmetric GLCMs (not summary statistics)
as covariates. We still outperform the competing methods (see Figs. 11
and 12 in Section 9 of the Supplementary Materials for details). Finally,
we have also run our two methods when = 0rr i.e. without prior
correlation between marginal effects of imaging sequences on the re-
sponse y. Results presented in Supplementary Material (Section 3)
show that they are not significantly different from those with 0rr
but seem slightly inferior.

Fig. 6 shows plots for marginal posterior probabilities (MPP) of
= … =r k, 1, , 4, 1, 2lk

r( ) and =l 1, 2 for a scenario. They show that all
MPPs of components from FLAIR ( =r 4) and T1CE ( =r 1) sequences
are less than 0.5 but for sequences T1W ( =r 2) and T2W ( =r 3), some
are larger than 0.5. This is aligned with our simulated data where se-
quences FLAIR and T1CE are not associated with the binary response as
they were generated with the same means and covariances between the
two groups of responses (i.e = =m m (1, 7)1

(1)
0
(1) and

= =m m (7, 1)1
(4)

0
(4) ).

5. Application to TCGA LGG Data

In this section, we summarize results from our methods applied to

Table 1
Choice of the mean parameter for the bivariate normal distribution used to
generate Q r( ) to create simulation cases A B, and C.

Case m m m m{ , , , }1
(1)

1
(2)

1
(3)

1
(4) m m m m{ , , , }0

(1)
0
(2)

0
(3)

0
(4)

A {(1, 7), (3, 5), (5, 3), (7, 1)} {(1, 7), (2, 6), (4, 4), (7, 1)}
B {(1, 7), (1, 4), (1, 1), (5, 2)} {(1, 7), (4, 4), (6, 2), (5, 2)}
C {(4, 4), (4, 4), (4, 4), (4, 4)} {(4, 4), (4, 4), (4, 4), (4, 4)}

Fig. 2. Case A: log(Counts) of symmetric GLCM for a subject with =y 1 where the pattern between imaging sequences is shifted on the diagonal. In this case, we have
= = =m m m(1, 7), (3, 5), (5, 3)1

(1)
1
(2)

1
(3) and =m (7, 1)1

(4) .
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the TCGA LGG dataset described in Section 1.1, which consists of
=n 82 TCGA LGG patients whose MRI scans were available for all
=R 4 imaging sequences (T1W, T1CE, T2W and FLAIR). To assess the

utility of the whole GLCM in terms of prediction on the LGG data, we
fitted the following models: (i) our models Bayes2Dnosym and
Bayes2Dsym by using the non-symmetric and symmetric GLCM ma-
trices respectively and (ii) competing methods as described in Section
4.1 using summary statistics as covariates. We adjusted all the models
with clinical data such as age and gender.

To assess the convergence of the Bayes2Dnosym and Bayes2Dsym
models, we fitted 10 MCMC chains with different starting points. We
assessed the convergence of binary variables kl

r( ) by evaluating the
correlation coefficients between their marginal posterior probabilities.
These indicated good concordance between the 10 chains, with all
correlations>0.90 for each imaging sequence (figures in Supplementary
Material, Section 5). Additional MCMC diagnostics checks for con-
tinuous parameters (in particular rr ) can be found in Supplementary
Material. We run our methods with the same hyperparameter settings
as described in Section 4. Figure 7(b) shows violin plots of AUCs for
predictive performances of the aforementioned models. It shows that
our two methods (Bayes2Dsym and Bayes2Dnosym) perform much
better than the competing methods as they have higher AUCs. More-
over, our method Bayes2Dnosym which accounts for non-symmetric
GLCMs has the highest predictive performance. Our methods outper-
form the competing methods, when the competing methods use the
whole GLCM data as covariates, showing the importance of modeling
the GLCM data as 2D objects. Fig. 8.

Figs. 9(a)–(d) show marginal posterior probabilities of component
inclusion lk

r( ) for each imaging sequence =r 1, 2, 3, 4. We can observe
that only the imaging sequence T1CE does not have high probabilities
which would confirm that sequences T1W, T2W and FLAIR are poten-
tial biomarkers for IDH status in LGG disease (Patel et al., 2017). From
the four sequences of the MR imaging in lower grade gliomas, it is

known that the tumor region could be slightly hypointense compared to
white matter in T1W, whereas usually there is no enhancement ob-
served in T1CE. However, with the T2W and FLAIR sequences, the
tumor regions are usually observed with a mass-like hyperintense
signal. This confirms with our findings as the marginal posterior
probabilities corresponding to components from T1W, T2W and FLAIR
are clearly higher as shown in Figs. 9(a)–9(d). This indicates that the
differences in signals from these sequences is contributing towards
better predictive capability of the model for the IDH status. For diffuse-
astrocytomas, the tumor region in T1CE does not usually show en-
hancement except rare instances of small ill-defined areas (Bruno et al.,
2019). In oligodendrogliomas contrast enhancement is shown in about
50% of the cases but is not a reliable indicator (Frank, 2019). The lack
of enhancement could potentially contribute towards the GLCM not
being able to consistently capture the information about the spatial
heterogeneity. This could be one of the possible reasons for not seeing
significant associations with the GLCMs from T1CE.

Figs. 10(a)–(d) show estimated functional effects for the non-sym-
metric case, where we see that the effect sizes corresponding to the
GLCM for T1CE are lower in magnitude in comparison to the other
three imaging sequences. In case of T1W since the tumor region is
usually observed to be hypointense compared to the white matter, we
expect to see more voxels with intensities in the middle of the gray-
scale. This fact is captured from our analysis as we see that the func-
tional effect sizes are high in magnitude for the cells corresponding to
middle region on the gray-scale. However, in T2 and FLAIR sequences,
the tumor region in mostly observed to be hyperintense and we see
more voxels with intensities on the higher end of the gray-scale. This
aspect is clearly captured as we see higher magnitudes for the func-
tional effect sizes corresponding to the higher end of the gray-scale.
Similarly, in the symmetric case we see from Figs. 11(a)–(d) that the
functional effect sizes for T1CE are too small in magnitude compared to
the other three imaging sequences. For T1W images we see that the

Fig. 3. Case B: log(Counts) of symmetric GLCM for a subject with =y 1 where the pattern between imaging sequences is shifted away from the diagonal. In this case,
we have = = =m m m(1, 7), (1, 4), (1, 1)1

(1)
1
(2)

1
(3) and =m (5, 2)1

(4) .

Fig. 4. Case C: log(Counts) of symmetric GLCM for a subject with =y 1 where the pattern between imaging sequences is the same. In this case, we have
= = = =m m m m (4, 4)1

(1)
1
(2)

1
(3)

1
(4) .
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effect sizes are higher for regions in the middle of the gray-scale con-
sistent with the non-symmetric case. For T2W and FLAIR sequences we
see higher magnitudes on the higher-end of the gray-scale as the tumor
region is observed to be hyperintense in the image which is also con-
sistent with the non-symmetric case.

6. Conclusion

In this manuscript, we have proposed a Bayesian predictive model
to accurately predict the IDH status for LGG patients based on GLCM
matrices obtained from multiple imaging sequences. Our Bayesian ap-
proach has several innovative characteristics: (i) it employs novel
image-dependent variable selection priors, leveraging correlations

between imaging sequences through priors imposed on regression
coefficients, (ii) it explicitly accounts for the structure of the whole
GLCM matrices rather than restricting its use to some derived summary
statistics, (iii) it accounts for both symmetric and non-symmetric GLCM
matrices, and (iv) it treats any sequence r of GLCM counts as 2D
functional data, indexed by pairwise gray-level intensities. We elabo-
rate on these features below. The performance of our method was
evaluated on simulated data and on a data set collected from TCGA LGG
patients. Both studies show that using the whole GLCM matrices en-
hances prediction performances. While GLCM-derived features are
usually computed on symmetric matrices as symmetric GLCMs are ro-
tation and direction invariant, our method with non-symmetric GLCMs
performs slightly better than symmetric GLCMs in terms of prediction

Fig. 5. Simulation results using whole symmetric and non-symmetric GLCMs with our methods (Bayes2Dsym and Bayes2Dnosym), but competing methods (RF,
glmnet and SVM) are fitted using (symmetric) GLCM-derived Haralick summary features. AUC were computed (in %) to evaluate the prediction performance. SC
stands for same covariance i.e = =c c 100 1 , and DC stands for different covariances i.e. =c 100 and =c 81 .

Fig. 6. Marginal posterior probabilities of lk
r( ) on a simulated data scenario: Case A, = =c c 100 1 and = 32 .
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performance.
Prediction of IDH mutation status (and other molecular status) in

gliomas using radiomic features is an extensively studied problem in the
field of radiomics. The first step in these methods is feature construction

from one or more MRI sequences, followed by either (a) standard sta-
tistical modeling (e.g. logistic regression, random forest) using those
features (Chaddad et al., 2015; Hsieh et al., 2017; Jakola et al., 2018; Li
et al., 2018; Tian et al., 2018; Han et al., 2019; Liu et al., 2019), or (b)

Fig. 7. Comparison of predictive performance on the
LGG data over 10 partitions of the sample data.
Symmetric and non-symmetric GLCMs are used with
our methods Bayes2Dsym and Bayes2Dnosym re-
spectively, but competing methods (RF, glmnet and
SVM) are fitted using GLCM-derived haralick features
(computed from symmetric GLCMs). (A)
Bayes2Dnosym; (B) Bayes2Dsym; (C) glmnet; (D) RF
and (E) SVM.

Fig. 8. Comparison of predictive performance on the LGG data over 10 partitions of the sample data. competing methods used the whole GLCM data as covariates.
(A) Bayes2Dnosym; (B) Bayes2Dsym; (C) glmnet; (D) RF and (E) SVM.

Fig. 9. Marginal posterior probabilities of lk
r( ) obtained from the method Bayes2Dnosym.

Fig. 10. Functional regression effects of GLCMs for imaging sequence r s t, ( , )r , based on non-symmetric matrices.
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deep learning-based approaches (Li et al., 2017; Chang et al., 2018).
Some of the existing literature for IDH prediction in gliomas, using
either texture features or morphological features or both, report AUCs
greater than 0.9. However, one of the main drawbacks of these ap-
proaches is the subjectivity in the choice of what features to include,
and how many of them to include. The choice of these features is also
reliant upon the pre-processing steps involved during the feature se-
lection. However, our proposed method addresses the issue of sub-
jectivity in the choice of features, and is an end-to-end approach that
takes as input the MRI scans from four imaging sequences to compute
the corresponding GLCMs. These GLCMs are directly used as data ob-
jects in the modeling such that there is no subjectivity in feature con-
struction. We build a classification model for the IDH status by directly
using the GLCMs from the four MRI sequences as predictors and
treating them as 2D functional data objects. Our approach aims to
capture the entire information in the GLCM instead of only using
summary statistics constructed from the GLCM as predictors. We de-
veloped a rigorous functional data based approach, that respects the
underlying geometry of the space of GLCMs, to predict the IDH status.
Our approach provides an alternative way that complements the ex-
isting approaches which use texture/morphological features to predict
the molecular status in LGGs.

Our Bayesian hierarchical model can be generalized and extended in
different directions. One can incorporate molecular data features (e.g.
RNA-seq and proteomic data) as potential response variables. This may
also require the incorporation of the dependence between GLCM and
molecular data as similarly implemented in Chekouo et al., 2016. Al-
though our motivating example was LGGs, our framework could readily
be applied to gliomas in general, and other types of cancer where
GLCMs can be constructed from imaging data.
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Appendix A. Supplementary data

Web Appendices 1–9, referenced in Sections 2, 3, 4 and 5 are
available along with this manuscript. We have created an R package
called BayesF2D and published it on GitHub. Its source R and C codes,
along with the user pdf manual are also available in the GitHub re-
positoryhttps://github.com/chekouo/BayesF2D.

Supplementary data associated with this article can be found, in the
online version, athttps://doi.org/10.1016/j.nicl.2020.102437.
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