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Epidermal growth factor (EGF) is one of the most well-
characterized growth factors and plays a crucial role in cell
proliferation and differentiation. Its receptor EGFR has been
extensively explored as a therapeutic target against multiple
types of cancers, such as lung cancer and glioblastoma. Recent
studies have established a connection between deregulated
EGF signaling and metabolic reprogramming, especially
rewiring in aerobic glycolysis, which is also known as the
Warburg effect and recognized as a hallmark in cancer. Pyru-
vate kinase M2 (PKM2) is a rate-limiting enzyme controlling
the final step of glycolysis and serves as a major regulator of the
Warburg effect. We previously showed that PKM2 T405/S406
O-GlcNAcylation, a critical mark important for PKM2 dete-
tramerization and activity, was markedly upregulated by
EGF. However, the mechanism by which EGF regulates PKM2
O-GlcNAcylation still remains uncharacterized. Here, we
demonstrated that EGF promoted O-GlcNAc transferase
(OGT) binding to PKM2 by stimulating OGT Y976 phos-
phorylation. As a consequence, we found PKM2 O-GlcNAcy-
lation and detetramerization were upregulated, leading to a
significant decrease in PKM2 activity. Moreover, distinct from
PKM2, we observed that the association of additional
phosphotyrosine-binding proteins with OGT was also
enhanced when Y976 was phosphorylated. These proteins
included STAT1, STAT3, STAT5, PKCδ, and p85, which are
reported to be O-GlcNAcylated. Together, we show EGF-
dependent Y976 phosphorylation is critical for OGT-PKM2
interaction and propose that this posttranslational modifica-
tion might be important for substrate selection by OGT.

Epidermal growth factor (EGF) is one of the most well-
characterized growth factors and required for cell growth,
proliferation, and differentiation (1). As a part of the trans-
membrane receptor tyrosine kinases (RTKs) family, EGF re-
ceptor (EGFR) appears to be highly expressed and
constitutively activated in multiple cancer types, such as lung
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cancer and glioblastoma (2–4). EGFR is the first identified
RTK functioning as an oncogene and found to regulate cancer
development by triggering distinct pathways, including RAS/
RAF/MEK/ERK, PI3K/AKT/mTOR, Src kinases, and STAT
transcription factors (1). Aberrantly regulated EGFR is often
associated with poor prognosis. Targeting EGFR with specific
inhibitors, antibodies, or vaccines has been extensively
explored and recognized as useful strategies for therapeutic
treatment against cancers (1, 2, 4).

Emerging evidence revealed that EGF stimulation could
trigger metabolic reprogramming in multiple types of cancer
cells (5). In rapidly dividing hepatocellular carcinoma cells,
EGFR activation upregulated de novo fatty acid synthesis to
meet the demand for membrane lipids (6, 7). Activation in
EGF signaling enhanced nutrient uptake, especially glucose, to
support the rapid proliferation of non–small cell lung cancer
cells (5, 8). More recent work has demonstrated an important
role for EGF in the regulation of aerobic glycolysis, which is
prominently featured in tumors as the Warburg effect (8). The
activation of EGFR could turn on both PI3K-AKT and tyrosine
kinase signaling to mediate the phosphorylation of several key
enzymes controlling glycolysis, including hexokinase, phos-
phofructokinase, and pyruvate kinase (PK) (5). As a conse-
quence, functions of these enzymes were orchestrated, leading
to enhanced glucose uptake as well as metabolic reprogram-
ming that in turn support macromolecular synthesis and
NADPH production (5).

As pyruvate kinase M2 (PKM2) is the rate-limiting enzyme
controlling the final step of glycolysis and serves as a major
regulator of the Warburg effect in different cancer cells, the
regulation of PKM2 by EGF, particularly in high EGFR–
expressing cells, is thus of great importance (9–13). It has
been reported that EGF-mediated ERK1/2 activation stimu-
lated PKM2 phosphorylation at serine 37 in glioblastomas (10).
As a consequence, the enzymatic activity of PKM2 was
reduced, and PKM2 was relocated into the nucleus to promote
glucose transporter GLUT1 and lactate dehydrogenase LDHA
expression (10). Moreover, PKM2 was found to be acetylated
by p300 in breast cancer cells upon EGF stimulation. By
blocking allosteric activator FBP binding, PKM2 K433
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EGF promotes PKM2 O-GlcNAcylation
acetylation reduced its enzymatic activity and influenced
glycolysis (12). More recently, highly O-GlcNAcylated PKM2
was observed in a series of tumor cells and tissues (14, 15). As
a unique posttranslational modification (PTM), O-GlcNAcy-
lation is reversibly controlled by O-GlcNAc transferase (OGT)
and O-GlcNAcase (OGA) and recognized as a “nutrient
sensor” (16–19). O-GlcNAcylation at PKM2 T405/S406, by
regulating PKM2 oligomerization and function, coupled
glycolysis to dynamically changing environment (14). In pre-
vious work, we also observed that O-GlcNAcylation level at
PKM2 T405/S406 was evidently increased in response to EGF
stimulation (14). However, the mechanism for the regulation
of PKM2 O-GlcNAcylation by EGF still remains unaddressed.

In this work, we showed that EGF stimulated the phos-
phorylation of OGT at Y976 and in turn promoted OGT
binding to PKM2. As a consequence, PKM2 O-GlcNAcylation
and detetramerization were enhanced, leading to a significant
reduction in PKM2 activity. Other than PKM2, additional
phosphotyrosine-binding proteins (20–27), including STAT1,
STAT3, STAT5, PKCδ, and p85, which are known to be
O-GlcNAcylated, were also preferentially recognized and
associated with OGT phosphorylated at Y976. Together, we
showed that EGF-dependent Y976 phosphorylation is critical
for OGT-PKM2 interaction and this PTM might be important
for the substrate selection of OGT.
Results

EGF reduces PKM2 enzymatic activity by stimulating
T405/S406 O-GlcNAcylation

We detected upregulated PKM2 T405/S406 O-GlcNAcyla-
tion upon EGF stimulation in breast cancer MCF-7 cells
(Fig. 1A) (14). EGFR is widely amplified in various cancers,
such as lung cancer and glioblastoma (28–30). Deregulated
EGFR signaling has a central role in driving cancer patho-
genesis (28–30). Subsequently, we found this double mark was
also enhanced by EGF in non–small cell lung cancer A549 and
glioblastoma U251 cells (Fig. 1A). Once T405/S406 was
mutated, PKM2 O-GlcNAcylation declined markedly as ex-
pected and failed to respond to EGF stimulation (Fig. 1A). It is
known that PKM2 can form active tetramers, less active di-
mers, or inactive monomers to regulate variable metabolic
demands (31–33). O-GlcNAcylation on PKM2 T405/S406
directly destabilized the active tetrameric form and reduced its
PK activity (14). When PKM2 O-GlcNAcylation was upregu-
lated by EGF, the equilibrium of PKM2 oligomers shifted from
tetramers toward dimers and monomers (Fig. 1B). Mutating
T405/S406 abolished EGF-induced PKM2 detetramerization
(Fig. 1B), again confirming the important role of T405/S406
O-GlcNAcylation in the regulation of oligomeric equilibrium
of PKM2. Importantly, the enzymatic activity of PKM2 seemed
to follow EGF-mediated alterations in PKM2 O-GlcNAcyla-
tion and detetramerization. The presence of EGF, which
enhanced PKM2 O-GlcNAcylation and detetramerization in
MCF-7, A549, and U251 cells, reduced the enzymatic activity
of WT PKM2 but not the un-O-GlcNAcylatable PKM2
T405A/S406A mutant (Fig. 1C). Subsequently, we took the
2 J. Biol. Chem. (2022) 298(9) 102340
advantage of the available PKM2 activator, TEPP-46, which is
small molecule capable of stabilizing PKM2 in its tetramer
form (34, 35). The addition of TEPP-46 completely blocked
EGF-induced reduction in PKM2 activity (Fig. 1C). These re-
sults showed that EGF-induced upregulation in PKM2 O-
GlcNAcylation and detetramerization reduced the enzymatic
activity of PKM2.

EGF enhances OGT association with PKM2 to facilitate its
O-GlcNAcylation

To understand how PKM2 O-GlcNAcylation was regulated
by EGF, we examined PKM2 association with OGT and OGA,
enzymes which respectively add and remove of O-GlcNAc
modification on proteins (16, 17). Of note, there are 3 forms of
OGT, including ncOGT (nucleocytoplasmic isoform), mOGT
(mitochondrial isoform), and sOGT (short isoform), and 2
forms of OGA, namely ncOGA (nucleocytoplasmic isoform)
and sOGA (short isoform) (17). Among them, ncOGT and
ncOGA are the most universal and dominant ones (17) which
we tested in this study. In A549 cells where PKM2
O-GlcNAcylation, detetramerization, and activity appeared to
be more sensitive to EGF than in the other 2 tested cell lines
(Fig. 1), we found that EGF elevated the binding of OGT, but
not OGA, to PKM2 (Fig. 2A, IP) without influencing the
protein levels of OGT and OGA (Fig. 2A, Input). Moreover,
overexpression of the constitutively active EGFRvIII mutant
also led to enhanced OGT association with PKM2 (Fig. 2B),
arguing that EGF signaling promoted OGT association with
PKM2 to stimulate its O-GlcNAcylation. In parallel, we also
analyzed the level of donor substrate for O-GlcNAcylation,
UDP-GlcNAc, another determinant for protein O-GlcNAcy-
lation. HPLC analysis showed that UDP-GlcNAc levels was
unaffected by EGF (Fig. 2C). Together, EGF increased OGT
association with PKM2 to upregulate PKM2 O-GlcNAcylation.

OGT Y976 phosphorylation induced by EGF is required for
OGT-PKM2 interaction

Notably, PKM2 is a typical phosphotyrosine-binding protein
(20) and OGT contains multiple tyrosine sites, of which Y384
and Y976 in human and Y844 and Y989 in rat were reported to
bear phosphorylation (PhosphoSitePlus, https://www.
phosphosite.org/uniprotAccAction?id=O15294). Because the
phosphotyrosine levels in OGT increased upon EGF stimula-
tion (Fig. 3A), we asked whether EGF improved OGT-PKM2
interaction by inducing Y384, Y976, Y844, or/and Y989
phosphorylation. To this end, we generated constructs
expressing ncOGTWT, ncOGTY384F, ncOGTY976F, ncOG-
TY844F, and ncOGTY989F (Fig. S1) and transfected them into
A549 cells. Of note, exogenous OGT seemed rather dominant
as compared to the endogenous part (Fig. 3A, Input). A
comparison between WT and mutant OGT showed that
mutation at Y976, but not at Y384, Y844, or Y989, inhibited
EGF-induced OGT tyrosine phosphorylation (Fig. 3A, IP).
Consistently, only Y976 mutation blocked EGF-induced
interaction between OGT and PKM2 (Fig. 3A). Our mass
spectrometry (MS) analysis for OGT immunoprecipitated
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Figure 1. EGF induces PKM2 detetramerization and reduced its activity. A, EGF upregulates PKM2 T405/S406 O-GlcNAcylation. (top) Transfection of
Flag-tagged PKM2WT or PKM2T405A/S406A along with or without concomitant EGF treatment (100 ng/ml for 1 h) was conducted in MCF-7, A549, or U251 cells.
Following Flag immunoprecipitation (IP), samples were analyzed by western blotting (WB) with antibodies against Flag and O-GlcNAcylation (CTD110.6 and
RL2), respectively. IgG is the negative control. (bottom) Relative protein levels of IP. PKM2 O-GlcNAc was normalized to immunoprecipitated Flag-PKM2.
Quantification shows mean ± SD (n = 3) with significance determined by two-way ANOVA, ***p < 0.001, ns, nonsignificant. B, distribution of PKM2
oligomers. (top) MCF-7, A549, and U251 cells transfected with Flag-tagged PKM2WT or PKM2T405A/S406A for 24 h were incubated in the presence or absence
of EGF (100 ng/ml for 1 h) and subsequently analyzed by WB. GA, glutaraldehyde. (bottom) Quantification of PKM2 oligomers. Tetramers, dimers, and
monomers were normalized according to total Flag-PKM2 in each group. Data represent mean ± SD (n = 3) with significance determined by two-way
ANOVA, *p < 0.05, **p < 0.01, ***p <0.001, ns, nonsignificant. C, the effect of EGF on PKM2 activity. MCF-7, A549, and U251 cells were transfected
with Flag-tagged PKM2WT or PKM2T405A/S406A for 24 h in the presence or absence of TEPP-46 (100 μM, 24 h). Subsequently, they were treated with or
without EGF (100 ng/ml) for 1 h prior to the analysis of PKM2 enzymatic activity. Data represent mean ± SD (n = 3) with significance determined by one-way
ANOVA, *p < 0.05, **p < 0.01, ***p < 0.001, ns, nonsignificant. EGF, epidermal growth factor.
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and PKM2 O-GlcNAc were normalized to immunoprecipitated PKM2, while OGT pTyr and PKM2 were normalized to OGT. Quantification shows mean ± SD
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EGF promotes PKM2 O-GlcNAcylation
from A549 cells further confirmed the phosphorylation of
OGT at Y976 (Fig. 3, B–D). To precisely investigate the
function of OGT Y976 phosphorylation, we next generated an
antibody that can specifically recognize OGT Y976 phos-
phorylation (Fig. 4A). Notably, neither the irrelevant phos-
phopeptide from OGT nor a random phosphopeptide from an
unrelated protein was recognized by this antibody (Fig. 4A).
Although certain unspecific and weak recognitions appeared in
the western blotting for total cell lysates (Fig. 4B, Input), the
newly generated antibody could specifically detect OGT Y976
phosphorylation in our immunoprecipitations (Fig. 4, B and
C). A complete blockade of OGT Y976 phosphorylation
detection by pY976 peptide further confirmed the specificity of
the new antibody (Fig. 4C). Importantly, we observed that EGF
stimulation evidently upregulated OGT Y976 phosphorylation
(Fig. 4, B and C). When Y976 was mutated to F, this EGF-
induced upregulation was completely abolished (Fig. 4B).
Moreover, using GST pull down and biolayer interferometry
(BLI) with recombinant OGT and PKM2 purified from
4 J. Biol. Chem. (2022) 298(9) 102340
Escherichia coli, we showed that OGT association with PKM2
was disrupted by the Y976F mutation but was enhanced while
Y976 was replaced by glutamate (Y976E) (Figs. 4, D and E and
S1) that mimics constitutive phosphorylation (36–38). These
observations confirmed the important role of Y976 phos-
phorylation in OGT-PKM2 interaction.

Furthermore, mutating OGT Y976 to F compromised EGF-
induced upregulation in PKM2 O-GlcNAcylation (Fig. 5A).
However, when OGT Y976 was replaced by E, the level of
PKM2 O-GlcNAcylation was elevated, irrespective of the
presence of EGF (Figs. 5A and S1). To check whether changes in
PKM2O-GlcNAcylation were due to altered OGT activity upon
point mutations, we took advantage of the published method
(39, 40) with a few modifications implemented to avoid unex-
pected interferences and used HPLC to measure UDP-GlcNAc
(Fig. 5B), the donor molecule forO-GlcNAcylation mediated by
OGT. In our assay, OGT inhibitor OSMI-4 (41) reduced OGT
activity as expected (Fig. 5B), while different mutations failed to
affect UDP-GlcNAc levels in the absence or presence of OSMI-
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EGF promotes PKM2 O-GlcNAcylation
4 (Fig. 5B). Although this assay does not discriminate between
OGT transferring GlcNAc to a peptide or water (hydrolysis),
the WT and mutant OGTs had similar activity in this assay
(Fig. 5B). In addition, mutation of OGT Y976F blocked EGF-
induced detetramerization and reduction in PKM2 activity,
while OGTY976Emutant maintained PKM2 detetramerization
and reduction in PKM2 activity (Fig. 5, C–E). Collectively, we
conclude that OGT Y976 phosphorylation played an essential
role in EGF-dependent regulation of PKM2.

Y976 phosphorylation might be important for OGT
recognition by phosphotyrosine-binding proteins

As a phosphotyrosine-binding protein, PKM2 recognizes
and binds to various targets, such as Src and PDGFR, which
all contain phosphorylated tyrosine residues (20). A positive
charged amino acid K433 in PKM2 has been shown to be
important for PKM2 association with phosphotyrosine-
containing proteins (20). As anticipated, mutation at PKM2
K433 also impaired PKM2 interaction with OGT upon EGF
stimulation (Fig. 6A). Y976 phosphorylation of OGT that
associated with PKM2 K433E was indeed lower than that in
PKM2 WT-bound OGT (Fig. 6A). These observations
corroborated the important role of K433 in bridging PKM2
interaction with phosphotyrosine-containing proteins.
Notably, the disruption of PKM2 association with OGT upon
PKM2 K433 mutation was incomplete, indicating additional
mechanism(s) might be also involved in the regulation of
PKM2-OGT interaction. Other than PKM2, a number of
phosphotyrosine-binding proteins have also been found to be
O-GlcNAcylated (20–27). Given the critical role of Y976
phosphorylation in EGF-induced OGT interaction with
PKM2 (Figs. 3 and 4), we asked whether this PTM is also
important for OGT recognition by a broader range of
phosphotyrosine-binding proteins.
J. Biol. Chem. (2022) 298(9) 102340 5
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EGF promotes PKM2 O-GlcNAcylation
To this end, phosphotyrosine-binding proteins that bear
O-GlcNAcylation, including transcriptional factor STAT1,
STAT3, STAT5, protein kinase PKCδ, and PI3K subunit p85
(20–27), were selected for the interaction assay with OGT.
While EGF did not affect the protein levels of selected factors
regardless of the presence of either OGTWT or OGTY976F,
binding of STAT1, STAT3, STAT5, PKCδ, and p85 to OGT
was upregulated by EGF treatment (Fig. 6B). Importantly,
EGF-mediated association with OGT for these factors was
substantially compromised when Y976 in OGT was mutated
(Fig. 6B). This argued that, in addition to PKM2, other
phosphotyrosine-binding proteins might also need Y976
6 J. Biol. Chem. (2022) 298(9) 102340
phosphorylation to interact with OGT. Of note, glucose-6-
phosphate dehydrogenase (G6PD), which is a known
O-GlcNAcylated protein regulated by OGT, but not a
phosphotyrosine-binding protein, was included in our inter-
action assay as a negative control. It appeared that G6PD-
OGT interaction was not affected by Y976 phosphorylation
(Fig. 6B). Furthermore, in the presence of EGF, OGTWT,
instead of OGTY976F mutant, enhanced the O-GlcNAcylation
of STAT1, STAT3, STAT5, PKCδ, and p85 (Fig. 6C). Taken
together, these results suggest that Y976 phosphorylation is
important for OGT interaction with phosphotyrosine-binding
proteins.
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EGF promotes PKM2 O-GlcNAcylation
Discussion
In this study, we have uncovered a mechanism by which

EGF regulates PKM2 function. By mediating OGT phos-
phorylation at Y976, EGF signaling stimulates OGT interac-
tion with PKM2 and consequently promoted PKM2
O-GlcNAcylation and detetramerization (Fig. 7).

As a key enzyme regulating glycolysis, PKM2 is highly
O-GlcNAcylated in various types of tumor cells and tissues
and involved in the regulation of the Warburg effect (14). We
previously showed that, on one hand, O-GlcNAcylation-
dependent PKM2 detetramerization resulted in reduced PK
activity, leading to the rewiring of metabolic fluxes toward
anabolic pathways for rapid cell proliferation (14). On the
other hand, destabilized PKM2 tetramers facilitated their nu-
clear translocation and in turn stimulated GLUT1 and LDHA
expression to promote the Warburg effect (14). EGF-mediated
PKM2 O-GlcNAcylation and detetramerization are likely to
influence cell proliferation by modulating both metabolic and
nuclear functions of PKM2. The identification of Y976 phos-
phorylation coupled with EGF signaling may pave the way for
limiting uncontrolled cancer cell proliferation as well as tumor
growth by blocking PKM2 functions. Meanwhile, we also
notice that the abolishment of OGT Y976 phosphorylation in
OGTY976F did not seem to jeopardize PKM2 O-GlcNAcylation,
J. Biol. Chem. (2022) 298(9) 102340 7
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EGF promotes PKM2 O-GlcNAcylation
detetramerization, or activity under normal condition without
EGF (Fig. 5), implying that additional mechanism(s) may be
involved in the control of PKM2 function, especially under an
unperturbed situation.

O-GlcNAcylation is a noncanonical and reversible glyco-
sylation, which involves the attachment of single O-linked
GlcNAc moieties to Ser and Thr residues (16, 17). Dynamic
O-GlcNAc cycling regulates a wide variety of cellular processes
8 J. Biol. Chem. (2022) 298(9) 102340
involving gene transcription, signal transduction, and meta-
bolism (16, 17, 42). The donor substrate, UDP-GlcNAc, is the
end product of nutrient fluxes and synthesized through the
hexosamine biosynthetic pathway, which integrates glucose,
amino acid, fatty acid, and nucleotide metabolism (16). Obvi-
ously, O-GlcNAcylation on proteins that is recognized as a
“nutrient sensor” is tightly linked with O-GlcNAc level as well
as nutrient availability. More recent studies revealed that



Figure 7. Model of PKM2 regulation by OGT upon EGF stimulation. EGF stimulates the phosphorylation of OGT at Y976 to promote its association with
PKM2. As a consequence, PKM2 are O-GlcNAcylated at T405/S406, resulting in the disassembly of active tetramers into less active dimers and monomers.
EGF, epidermal growth factor; OGT, O-GlcNAc transferase.

EGF promotes PKM2 O-GlcNAcylation
O-GlcNAcylation is also responsive to different environmental
stimuli, such as heat shock, hypoxia, cytokines, and growth
factors (17). Whether the mechanism for the regulation of
PKM2 by OGT Y976 phosphorylation could be useful for cells
to respond to or cope with other types of stimuli, in addition to
EGF, remains to be tested.

Hitherto, thousands of proteins, including transcription
factors, signal proteins, and metabolic enzymes, have been
found to be O-GlcNAcylated (17). Disturbed O-GlcNAc ho-
meostasis and aberrant O-GlcNAcylation are frequently asso-
ciated with diabetes, neurodegeneration, and cancers (17).
How OGT recognizes and selects substrate proteins for
O-GlcNAcylation has been a long-standing question in the
field. Albeit identification of consensus sequences from sub-
strate proteins for OGT recognition has not been successful,
accumulating attempts based biochemical, biophysical, and
computational analyses of the molecular structures of OGT
have suggested different scenarios (17): (i) distinct adapter
proteins that recruit different substrates to OGT in a context-
dependent manner probably play an important role in OGT
substrate selection (17); (ii) the N-terminal tetratricopeptide
repeat domain in OGT, which is an extended superhelical
structure composed of up to 13.5 tetratricopeptide repeats, has
been reported to function as a scaffold for the recognition and
assembly of distinct protein complexes (43); (iii) a possibility
that OGT nonspecifically O-GlcNAcylates proteins in their
unstructured/flexible regions (loops or termini) has also been
proposed (43). Apparently, each of these mechanisms can only
explain some of the available cases. A comprehensive under-
standing for the control of OGT substrate selection is still
lacking. We here demonstrated that EGF-mediated phos-
phorylation of OGT at Y976 navigated the association of
PKM2 with OGT. Also, the regulation of OGT recognition by
Y976 phosphorylation appeared to be important for the as-
sociation of a set of phosphotyrosine-binding proteins as well,
indicating that OGT Y976 phosphorylation is a special PTM
with important function in substrate recognition. How PTMs
on OGT regulate substrate recognition is probably an attrac-
tive area of future investigations.

By stimulating OGT Y976 phosphorylation, EGF improved
OGT-PKM2 interaction and subsequently enhanced PKM2
O-GlcNAcylation and detetramerization. These findings reveal
O-GlcNAcylation as a link integrating EGF signaling with
metabolic regulation and shed lights on the exploitation of
O-GlcNAcylation in therapeutic treatment against EGF re-
ceptor expressing cancers.

Experimental procedures

Cell lines and reagents

Human MCF-7 breast cancer cells, A549 lung cancer cells,
and U251 glioblastoma cells were cultured in Dulbecco’s
modified Eagle’s medium (Sigma–Aldrich), supplemented with
10% fetal bovine serum and 1% penicillin/streptomycin. All
cell lines aforementioned were purchased from the Cell Bank
of Type Culture Collection of Chinese Academy of Science.
EGF was purchased from R&D Systems. TEPP-46 and OSMI-4
was purchased from MedChemExpress.

DNA constructs and mutagenesis

PCR-amplified human PKM2 complementary DNA was
cloned into p3 × Flag-CMV-10 or pET-28a vector. Original
ncOGT plasmid was generously provided by Dr Gerald W.
Hart (School of Medicine, Johns Hopkins University) (44). We
subsequently constructed ncOGT into p3 × Flag-CMV-10
(Flag-tag) and pGEX-4T-2 (GST-tag) vectors (Fig. S1). Muta-
tions, including PKM2T405A/S406A, PKM2K433E, OGTY384F,
OGTY976F, OGTY844F, OGTY989F, and OGTY976E were made
using the QuickChange Site-directed Mutagenesis Kit
(TransGen Biotech). Transient transfection of DNA constructs
was performed using Lipofectamine 2000 reagents (Thermo)
according to the vendor’s instructions.

Immunoprecipitation and Western blotting

Cells were lysed in cold Western blotting (WB)-immuno-
precipitation (IP) lysis buffer (Beyotime) for 30 min and
centrifuged (4 �C, 5 min at 14,000g) to remove cell debris.
Supernatants were collected and used as the whole cell lysates.
Flag-PKM2 protein were immunoprecipitated from the whole
cell lysates using anti-Flag antibody coupling to Protein A/G
PLUS Agarose beads (Santa Cruz Biotechnology) for 3 h at
4 �C. Nonspecific mouse IgG antibody (Boster) coupling to
Protein A/G PLUS Agarose beads was used as a negative
control. Immunoprecipitated proteins on the beads were
collected in 2 ways: (1) directly boiled off with loading buffer
(100 mM Tris–Hcl, pH6.8, 4% SDS, 0.2% bromophenol orchid,
J. Biol. Chem. (2022) 298(9) 102340 9
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20% glycerine, 200 mM β-mercaptoethanol) for 5 min; (2)
competitively eluted by poly DYKDDDDK (Flag) peptide (400
μg/ml) for 1 h at 4 �C. The IP samples were analyzed by SDS-
PAGE (6%�8% separation gel) in WB.

Antibodies used in this study include PKM2 (CST, #4053S),
OGT (CST, #24083), OGA (Abcam, #ab124807), pTyr (CST,
#8954), Flag (Sigma, #F1804), β-actin (Sigma, #A4700), STAT1
(SAB, College Park, #41462), STAT3 (CST, #30835), STAT5
(SAB, #41466), PKCδ (Abclonal, #A0471), p85 (Abclonal,
#A11526), G6PD (SAB, #32301), and O-GlcNAcylation
(CTD110.6, Sigma, #O7764; RL2, Abcam, #ab2739). OGT
pY976 site-specific antibody was generated at Shanghai
Genomic Inc. The OGT phosphopeptide C-IAKNRQEY(p)
EDIAV and nonphosphopeptide C-IAKNRQEYEDIAV were
synthesized and conjugated with keyhole limpet hemocyanin,
respectively. The serum antibody was produced by immu-
nizing rabbits with synthetic phosphopeptide IAKNRQEY(p)
EDIAV after 5 immunizations. Nonphospho-specific anti-
bodies were removed by chromatography using non-
phosphopeptide IAKNRQEYEDIAV. OGT pY976 site-specific
antibody was purified by affinity chromatography using
epitope-specific IAKNRQEY(p)EDIAV phosphopeptide. In
following validation assays, we have thoroughly verified the
specificity of OGT pY976 polyclonal antibody.
GST pulldown assay

E. coli cells transfected with GST-OGT or His-PKM2 were
induced by IPTG (1 mM) at 16 �C for 24 h. GST-OGT fusion
proteins immobilized on Glutathione Sepharose 4B (GE
Healthcare) were mixed with or without His-PKM2 fusion
proteins rolling at 4 �C overnight in lysis buffer containing
50 mM Tris–HCl, pH 8.0, 120 mM NaCl, 1 mM DTT, 10%
glycerol, and plus 1 mM PMSF. The agarose resin was washed
extensively with lysis buffer before eluting with lysis buffer (pH
7.5) containing 20 mM glutathione. Eluted proteins were
analyzed by WB.
BLI

The BLI assay was performed on Octet RED96 System
(Pall ForteBio). His-tagged PKM2 (50 μg/ml) purified from
E. coli were immobilized onto a Ni-NTA biosensor (Pall
ForteBio) that had been equilibrated in running buffer
containing 20 mM Hepes (pH 7.5), 150 mM NaCl, and 0.02%
Tween-20 for 3 min. Subsequently, the biosensor coated
with His-PKM2 was transferred into GST-tag or GST-OGT
containing buffer or analyte-free buffer for the detection of
PKM2-OGT association. Binding constants were determined
using Octet System Data Analysis software 8.11 (Pall
ForteBio).
PKM2 oligomerization assay

The whole cell lysates (4 mg/ml) were crosslinked with
0.025% glutaraldehyde for 3 min at 37 �C and terminated with
Tris–HCl (pH 8.0, 50 mM). Subsequently, samples were
analyzed by WB with indicated antibodies.
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PKM2 activity assay

PKM2 proteins immunoprecipitated from the whole cell
lysates were incubated with reaction buffer (30 μM pyruvate,
6.6 μM NADH, 0.2 M Tris–HCl, 500 μM FBP, pH 7.3) for
30 min at room temperature (RT). PK activity was then
measured with a colorimetric based PK activity assay kit
(Sigma) according to the manufacturer’s protocol.

HPLC assay for UDP-GlcNAc

About 5 × 106 cells were resuspended in 500 μl methanol
(80%, −80 �C precold) and incubated for 20 min at −80 �C,
centrifuged for about 40 min, 12000g to remove the sediment,
then subjected to detect the UDP-GlcNAc level by HPLC (LC-
16, Shimadzu). In brief, samples and a series of standard UDP-
GlcNAc (Sigma) solutions were filtered at 0.22 μm. Ten
microliter aliquots of samples were directly injected into
HPLC C18 column (250 mm × 4.6 cm, 5 μm, 100 Å, Kromasil),
which is suitable to separate the nucleotide sugars (45), while a
pump system supplied moving phase A (0.1% trifluoroacetic
acid [TFA] in distilled water) and moving phase B (0.1% TFA
in acetonitrile [ACN]). Absorbance measurements were made
at 214 nm on a UV-detector (SPD-10A, Shimadzu). The profile
of the gradient moving phase was as follows: 0�3 min, 90% A,
10% B, and the flow rate was 1 ml/min. The level of UDP-
GlcNAc was calculated based on the peak area referenced to
standards.

OGT activity assay

OGT activity assay was modified from the previously pub-
lished protocol (39, 40). According to the established reaction
system, OGT use UDP-GlcNAc as substrates to modify
YSDSPSTST peptides and release UDP, which combine with
phosphoenolpyruvate to support PKM2-mediated pyruvate
formation. The previous protocol analyzed pyruvate concen-
tration to evaluate the catalytic activity of OGT. Because OGT
can directly target PKM2 and regulate its functions, we
decided to avoid the potential interference from PKM2 during
the assessment of OGT activity. In the modified assay, we only
removed PKM2 and phosphoenolpyruvate from the reaction
system and kept the rest of the settings in the exact same way.
By using HPLC, we followed the level of UDP-GlcNAc to
monitor OGT activity. In brief, OGT proteins (300 nM) were
mixed with UDP-GlcNAc (1 mM) and YSDSPSTST peptide
(200 μM) in reaction buffer (50 mM Tris–HCl, pH 7.4, 1 mM
DTT, 10 mM KCl, and 12.5 mM MgCl2) in the presence or
absence of OSMI-4 (3 μM), then incubated at 37 �C for 1 h.
The reaction was terminated by adding methanol solution of
the same volume. The supernatant was centrifuged for about
40 min, 12,000g to remove the sediment, filtered at 0.22 μm,
and then subjected to detect the UDP-GlcNAc level by HPLC.
The reduction of UDP-GlcNAc in the reaction indicates
changes in OGT activity.

MS analysis for OGT phosphorylation

In A549 cells (5 × 108 cells) pretreated with or without EGF
(100 ng/ml) for 1 h respectively, endogenous OGT proteins
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were isolated by IP followed by SDS-PAGE and subjected to
in-gel protein digestion and peptide recovery. The operation
steps are as follows: cut 3 excised gel slices from each gel into
1 mm3 cubes, add 500 μl of 50 mM ammonium bicarbonate/
ACN (1:1, v/v) solution, and wash until Coomassie blue
disappear. Remove the supernatant, add 500 μl of ACN, and
incubate for 10 min. Remove the ACN, rehydrate the gel slices
in 10 mM DTT/50 mM ammonium bicarbonate to completely
cover the gel slices, and incubate at 56 �C for 1 h. Remove the
supernatant, add 500 μl of ACN, and incubate for 10 min.
Remove the ACN and add the 50 mM iodoacetamide/50 mM
ammonium bicarbonate to completely cover the gel slices.
Incubate for 60 min at RT in the dark. Remove the iodoace-
tamide/ammonium bicarbonate, add 500 μl of ACN, and
incubate for 10 min. Remove the ACN solution and add just
enough enzyme digestion solution to cover the gel slices.
Incubate the gel pieces on ice for 45 min. Add 10 μl of enzyme
digestion solution to keep the gel pieces wet during enzymatic
digestion. Incubate overnight at 37 �C. Add 100 μl extraction
solution (5% TFA-50% ACN-45% ddH2O) at 37 �C water bath
for 1 h, sonicate, centrifuge, and then transfer the extract to a
fresh microcentrifuge tube. Lyophilize the extracted peptides
to near dryness. Resuspend peptides in 10 μl of 0.1% formic
acid.

The solutions containing peptides released during in-gel
digestion were measured using Nanoflow UPLC (Ultimate
3000 system, Thermo) coupled to a mass spectrometer
(Q Exactive Hybrid Quadrupole-Orbitrap, Thermo). Briefly,
the trypsinized peptides were firstly trapped and desalted on
an Acclaim PepMap100 C18 Nano-Trap Column
(75 μm × 2 cm, 3 μm, 100 Å, Thermo) with a pump system
supplied moving phase A (0.1% formic acid in distilled
water) and moving phase B (0.1% formic acid in ACN). The
profile of the gradient moving phase was as follows:
0�4 min, 5% B; 4�30 min, 5% to 40% B; 30�35 min, 40%
to 80% B; 35�45 min, 80% B; 45 to 45.1 min, 5% B; 45.1 to
60 min, 5% B; and the flow rate was 0.4 μl/min. The pep-
tides were then reverse eluted and loaded into the analytical
capillary C18 column (Venusil × BPC, 75 μm × 10 cm,
5 μm, 300 Å, Agela Technologies) connected inline to the
mass spectrometer. Different fractions of the eluate were
injected into the Q-Exactive MS set in a positive ion mode
and the data-dependent manner with a full MS scan from
350 to 2000 m/z. High collision energy dissociation was
employed as the MS/MS acquisition method. Raw MS/MS
data were converted into an MGF format using Proteome
Discoverer 1.2 (Thermo). The exported MGF files were
searched with Mascot v2.3.01 against the human OGT
database (UniProt_O15294; 1 sequence; 1046 residues) with
a tryptic specificity allowing 2 missed cleavage. The se-
quences coverage is �90%. Carbamidomethylation (C) was
considered as fixed modification, whereas oxidation (M) and
Gln->pyro-Glu (N-term Q) as variable modifications. The
mass tolerance for MS and MS/MS was 15 ppm and 20
mmu, respectively. Proteins with false discovery rates <0.05
were further analyzed. The result was filtered by score >25.
The MS proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE (46) partner
repository with the dataset identifier PXD031593.
Click-iT O-GlcNAc enzymatic labeling for the detection of
O-GlcNAcylation

Chemoenzymatic labeling and biotinylation of proteins in
total cell lysates were carried out as described previously
(14, 47). In brief, proteins (200 μg) were labeled utilizing the
Click-iT O-GlcNAc Enzymatic Labeling System (Invitrogen).
The permissive mutant β-1,4-galactosyltransferase (GalT) is
responsible for the transfer of azido-modified galactose (Gal-
NAz) from UDP-GalNAz to O-GlcNAc residues on target
proteins. Modified proteins were detected utilizing the Click-
iT Biotin Protein Analysis Detection Kit protocol (Invi-
trogen). Biotinylated proteins were resolubilized in binding
buffer (0.1 M phosphate, 0.15 M NaCl, 0.1% SDS, 1% NP-40,
pH 7.2). Appropriate amount of streptavidin resin (Thermo)
was added to incubate with the mixture overnight at 4 �C. The
streptavidin-bound complex was washed with binding buffer.
Following the removal of supernatants, pellets were eluted by
boiling with loading buffer (2% SDS, 10% glycerol, 2.5%
2-mercaptoethanol, 62.5 mM Tris–HCl, pH 6.8) and analyzed
by WB.
Statistical analysis

All experiments were done at least 3 times independently.
Data were analyzed using Prism Version 8 software
(GraphPad). For data with 2 groups, unpaired t tests were
performed. For datasets with 3 or more groups, a one-way
or two-way ANOVA was performed followed by Tukey’s
multiple comparison test. Data are presented as the mean ±
SD values. Calculated p values are indicated on individual
figures.
Data availability

All data are contained within the article.
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