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ABSTRACT

Single-cell RNA sequencing (scRNA-seq) revolution-
ized our understanding of disease biology. The
promise it presents to also transform translational re-
search requires highly standardized and robust soft-
ware workflows. Here, we present the toolkit Besca,
which streamlines scRNA-seq analyses and their use
to deconvolute bulk RNA-seq data according to cur-
rent best practices. Beyond a standard workflow cov-
ering quality control, filtering, and clustering, two
complementary Besca modules, utilizing hierarchi-
cal cell signatures and supervised machine learning,
automate cell annotation and provide harmonized
nomenclatures. Subsequently, the gene expression
profiles can be employed to estimate cell type pro-
portions in bulk transcriptomics data. Using multiple,
diverse scRNA-seq datasets, some stemming from
highly heterogeneous tumor tissue, we show how
Besca aids acceleration, interoperability, reusabil-
ity and interpretability of scRNA-seq data analyses,
meeting crucial demands in translational research
and beyond.

INTRODUCTION

Major breakthroughs in our understanding of rare cell
types, tissue heterogeneity, cell differentiation and tran-
scriptional regulation have been enabled by the increased
resolution in detecting gene expression provided by single-
cell RNA-sequencing (scRNA-seq). Encouraged by early
successes, pharmaceutical research has also embraced the
technology – to accelerate drug discovery. In this context,

scRNA-seq is used to better understand disease phenotypes
(1), to assess drug targets (2), to characterize microphysio-
logical systems (3) and to measure cell-type-specific phar-
macology and toxicity of drug candidates (4). In addition,
scRNA-seq assists the characterization of in vitro and in vivo
disease- and safety models by offering insights into cell-to-
cell communication (5), cell activation (6) or differentiation
trajectories (7).

Current challenges in the analysis of single-cell transcrip-
tomics data are predominantly related to the biological in-
terpretation of the analysis results rather than to the com-
putation thereof (8). Whereas the computational part can
be automated, biological interpretation still requires man-
ual user interaction and expert knowledge, often leading
to hurdles in translational research. Therefore, we auto-
mated and standardized multiple analysis steps, in line with
current best practices and benchmarks (9–14), focused on
streamlining a major bottleneck (15)––the cell type anno-
tation process––as well as on facilitating results usage in
downstream applications such as bulk RNA-seq deconvo-
lution. Our toolkit Besca (Figure 1) will thus allow transla-
tional researchers (and not only) to take full advantage of
the rapidly growing amount, size, and scope of single cell
data generated (16,17) and will facilitate consistent biolog-
ical investigation.

Besca is an open-source Python library that is com-
patible with and extends Scanpy (18), one of the most
established and up-to-date single-cell analysis toolkits. It
uniquely streamlines scRNA-seq data processing beyond
the clustering step, by providing a selection of robust anal-
ysis methods, cell annotation approaches and underlying
nomenclature, ensuring interoperability and reusability of
analysis, quality controls and results. Importantly, it re-
mains fully customizable beyond the standards introduced
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Figure 1. Besca provides streamlined single-cell transcriptomics data analysis modules and exchange file formats. (A) Well-defined interoperable input and
output file formats, cluster metrics, a quality control report and a signature storage ensure reusability of data. (B) The standard workflow internalizes a
raw count matrix and generates a quality control report as well as a processed dataset post filtering, normalization, highly variable gene selection, batch
correction, and clustering. (C, D) Clusters identified from the standard workflow are annotated using either signature-based hierarchical cell annotation
(Sig-annot module, C) or a supervised machine learning-based algorithm trained on previously annotated datasets (Auto-annot module, D). (E) The an-
notated datasets can be used to deconvolute bulk RNA-seq data based on gene expression profiles generated from annotated single-cell datasets utilizing
the Bescape module.
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here. For instance, we have expanded Besca to support the
analysis of datasets generated by the recently developed
CITE-seq (cellular indexing of transcriptomes and epitopes
by sequencing) (19) method.

Further, the Besca proportions estimate (Bescape) module
integrates SCDC (20) and MuSiC (21), allowing to directly
apply Besca-generated results and cell annotations to de-
convolute bulk transcriptomics data (Figure 1E). This en-
hances currently available bulk RNA-seq data, for instance
in the case of larger clinical settings that do not have the
capacity to perform scRNA-seq and where signals are of-
ten confounded by heterogeneity related to distinct cell type
composition (22). The resulting estimated cell compositions
can be used directly as biomarkers or as covariates towards
getting more robust differential gene expression results fa-
cilitating the understanding of disease biology or treatment
responses.

Besca targets scientists in translational research, helping
bioinformaticians streamline scRNA-seq analyses and in-
creasing comparability between studies, while at the same
time offering a low hurdle entry point into such analyses
for wet lab scientists with limited programming skills. The
toolkit is especially relevant for research groups that deal
with large amounts of internal data as well as re-analyse
public data and need to compare and reuse results or pro-
vide them as a basis for downstream applications. For in-
stance, cell type gene signatures and annotation schemas
provided with Besca were tested and applied across multiple
studies, tissues and species, ranging from healthy PBMCs to
highly heterogeneous tumor tissue. They represent one of
the most comprehensive hand-curated publicly available re-
sources that can be employed out of the box, with minimal
adjustments for novel datasets. Cell type annotations were
harmonized and can be reused across studies, also allowing
to cross-validate the discovery of new cell types from mul-
tiple studies such as inflammatory fibroblasts in colitis de-
scribed below. Finally, results can be seamlessly reused from
one application to another, for instance by using single-cell
gene expression profiles for tissue-specific cell deconvolu-
tion of bulk RNA-seq.

MATERIALS AND METHODS

Example data

The following publicly available single-cell datasets from ten
studies were reprocessed (see also Table 1). Besca allows to
load the unprocessed as well as the analyzed datasets with
a single function call. All studies utilized the microfluidics
platform from 10X Genomics, today’s most used platform
for disease understanding and drug discovery, and therefore
Besca’s workflows are optimized for this platform. In ad-
dition, Besca was applied to more than a hundred internal
and public datasets including additional platforms (data not
shown).

Three of the datasets shown in this manuscript cover
blood- and bone-marrow-derived hematopoietic cells:

• PBMC3k (https://doi.org/10.5281/zenodo.4441679)
includes healthy peripheral blood mononuclear cell
(PBMC) samples from one donor, a reference dataset

often used in single-cell tutorials based on 10X Genomics
data (https://www.10xgenomics.com/).

• Granja2019 (https://doi.org/10.5281/zenodo.4419527)
includes bone marrow mononuclear cell (BMMCs) and
PBMC samples from healthy donors (23). In addition to
scRNA-seq, several protein markers were also probed by
CITE-seq.

• Kotliarov2020 (https://doi.org/10.5281/zenodo.4350119)
includes baseline PBMC samples from healthy donors,
who were high and low responders to influenza vaccines
(24). In addition to scRNA-seq, a high number of protein
markers were also probed by CITE-seq.

Four datasets reveal the cell composition in intestinal tis-
sue:

• Smillie2019 (https://doi.org/10.5281/zenodo.3960617) in-
cludes colon epithelium and lamina propria samples from
healthy donors and ulcerative colitis patients (25).

• Martin2019 (https://doi.org/10.5281/zenodo.3862132)
includes ileal lamina propria samples from Crohn’s
disease patients (26).

• Haber2017 (https://doi.org/10.5281/zenodo.4447233) in-
cludes murine small intestine samples (27).

• Lee2020 (https://doi.org/10.5281/zenodo.3967538) in-
cludes tumor and non-malignant colon samples from
colorectal cancer (CRC) patients (28).

Three datasets are pancreas-derived:

• Segerstolpe2016 (https://doi.org/10.5281/zenodo.
3928276) includes pancreatic islet cells from healthy
donors and type 2 diabetic patients (29).

• Peng2019 (https://doi.org/10.5281/zenodo.3969339) in-
cludes tumor and non-malignant pancreatic samples
from pancreatic ductal adenocarcinoma (PDAC) and
non-pancreatic tumor patients (30).

• Baron2016 (https://doi.org/10.5281/zenodo.3968315) in-
cludes pancreatic samples from healthy donors (31).

Methods, implemented tools or functions and parameter
choices

For all Besca modules, the methods, the implemented tools
or functions, and the parameter choices are summarized in
Supplementary Table S1 together with motivations and re-
marks regarding their choice.

Besca’s standard workflow

Besca’s standard workflow starts with loading the count
matrix obtained from a preprocessing pipeline (demulti-
plexing, read alignment, feature counting), and the anno-
tation of the matrix, including barcodes, genes and, if avail-
able metadata associated to the datasets, including biologi-
cal (e.g. donor, experimental condition) and technical (e.g.
batches, protocols differences) variables. Before proceeding
with analysis, quality control (QC) is performed. This in-
cludes visualizing drop-outs and sequencing saturation as
well as performing cell and gene filtering.

During cell filtering all barcodes that likely do not corre-
spond to viable cells are removed. Cell filtering is performed
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Table 1. Dataset overview. Datasets include hematopoietic cells of peripheral blood and bone marrow, intestine and pancreas in health and disease. Besca’s
functionality is exemplified on these datasets utilizing Jupyter notebooks (N), R markdowns (R), this manuscript (M) and its supplementals (S)

Tissue Area of interest Dataset Original data accession Processed data DOI CITE-seq
Standard
workflow

Sig-annot,
signature-
based cell
annotation

Auto-annot,
supervised cell
annotation

Bescape, bulk
RNA-seq
deconvolution

Bone marrow and
peripheral blood

Healthy PBMC3k 10xgenomics.com 10.5281/zenodo.3948150 No S, N N M4, S, N -

Mixed-phenotype
acute leukemia

Granja2019 GSE139369 10.5281/zenodo.3944753 Yes N M2, N M4, S, N -

Vaccine
responsivenes

Kotliarov2020 10.35092/yhjc.c.4753772 10.5281/zenodo.3938290 Yes N M3, N M4, S, N M6, R

Intestine Ulcerative colitis Smillie2019 SCP259 10.5281/zenodo.3960617 No N N M5, S, N -
Crohn’s disease Martin2019 GSE134809 10.5281/zenodo.3862132 No N N M5, S, N -

Mouse Haber2017 GSE92332 10.5281/zenodo.3935782 No N N M5, S, N -

Colorectal cancer Lee2020 GSE132465 10.5281/zenodo.3967538 No N S, N - -

Pancreas Type II Diabetes Segerstolpe2016 E-MTAB-5061 10.5281/zenodo.3928276 No N N S, N M6, R
Pancreatic ductal
adenocarcinoma

Peng2019 PRJCA001063 10.5281/zenodo.3969339 No N S, N S, N -

Healthy Baron2016 GSE84133 10.5281/zenodo.3968315 No N N S, N -

M = main manuscript; S = supplementary material; N = notebook on GitHub (https://github.com/bedapub/besca publication results); R = R Markdown on GitHub (https://github.com/bedapub/bescape)
2, Fig.2; 3, Fig. 3; 4, Fig. 4; 5, Fig. 5; 6, Fig. 6.

on the basis of three QC covariates: the number of counts
per barcode, the number of genes per barcode, and the rela-
tive contribution of mitochondrial genes per barcode. Each
of the covariates are examined for outliers by threshold-
ing as described in (10). During gene filtering, transcripts
which are only expressed in a few cells are removed to re-
duce dataset dimensionality. As recommended by Luecken
and Theis (10), the filtering threshold for genes should be
set to the minimum cell cluster size that is of interest. As
QC filtering is highly dependent on the dataset, the filtering
thresholds need to be defined by the user before running the
workflow. To guide the user, Besca offers a wrapper function
based on Scater’s isOutlier (32) which estimates the outlier
cells and genes based on the number of median absolute de-
viations for a given QC. Correctly chosen thresholds are ver-
ified through knee-plot graphics within the pipeline.

After QC, the expression values are normalized. Normal-
ization is performed using count depth scaling and count
values are log(x+1)-transformed. Alternatively, the variance
stabilizing transformation approach of SCtransform can be
applied, which returns the Pearson residuals from a regular-
ized negative binomial regression model applied on UMI
count data (33). To reduce dataset dimensionality before
clustering, the highly variable genes within the dataset are
selected. By default, genes are defined as being highly vari-
able when they have a minimum mean expression of 0.0125,
a maximum mean expression of 3 and a minimum disper-
sion of 0.5.

Technical variance is removed by regressing out the ef-
fects of count depth and mitochondrial gene content and
the gene expression values are scaled to a mean of 0 and
variance of 1 with a maximum value of 10. It needs to be
mentioned here that correction of mitochondrial gene con-
tent might not be considered a technical variance correction
but removal of biological variability. If this correction is not
desired, the threshold for mitochondrial gene content cor-
rection can be set to 1. Based on the best practices suggested
by Luecken and Theis, technical variance should be cor-
rected before selection of highly variable genes. In Besca’s

standard workflow this order is reversed, due to regress-out
being a very time-consuming computational process which
can be significantly sped up by only calculating corrected
values for the previously selected highly variable genes.
Based on recent benchmarking (12), developments in the
community, and our own comparison (Supplementary Ta-
ble S2), we recommend omitting the regress-out step in case
of doubt, especially if SCtransform is used for normaliza-
tion.

Finally, dimensionality reduction and clustering is per-
formed. The first 50 principal components are calculated
and used as input for calculation of the 10 nearest neigh-
bors. The intrinsic dimensionality of the data can also be
estimated with a function based on the intrinsicDimension
R package (34). This method estimates the intrinsic number
of dimensions using a translated Poisson mixture model and
was shown to provide a better separation of cell subpopu-
lations after clustering (12). BBKNN can be used for batch
correction (35). The neighbourhood graph is then embed-
ded into 2D space using the UMAP (Uniform Manifold
Approximation and Projection) algorithm (36). Cell com-
munities are detected using the Leiden algorithm (37) at a
resolution of 1 by default.

For CITE-seq data, the protein marker abundance val-
ues are loaded separately to the gene expression values and
stored in its own data object. Previously determined cell
barcode filtering to identify viable cells on the basis of gene
expression values is applied to the CITE-seq data. Unlike
gene expression counts, protein marker counts are normal-
ized using centred log ratios, a per-ADT transformation
that divides each count by the geometric mean of that ADT
counts (19). Alternatively, the DSB method can be selected
to normalize the protein counts, which denoises the data by
subtracting the background noise of empty droplets (38). If
less than 50 markers were measured, the entire count ma-
trix is used as input for the nearest neighbour calculation.
Otherwise, as in the gene expression data, the first 50 prin-
cipal components are calculated. The rest of the CITE-seq
pipeline is analogous to the gene expression pipeline. At the

https://github.com/bedapub/besca_publication_results
https://github.com/bedapub/bescape
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end of the workflow the results are homogenized into one
data object which contains clustering and visualization re-
sults of both gene expression and protein abundance from
CITE-seq data. The subsequent cell annotation can then
either be performed on the RNA-based clusters or on the
ADT-based clusters (following CLR or DSB normaliza-
tion).

Analysis results are exported into interoperable file
formats to allow FAIR data management of analysis
results. This includes the Matrix Market exchange for-
mat (https://math.nist.gov/MatrixMarket/formats.html)
for sparse count matrices, GCT (https://software.
broadinstitute.org/software/igv/GCT) for dense count
matrices, and simple tab-separated or comma-separated
values formats for metadata and as interface for the cell
deconvolution package Bescape, respectively. Clustering
results or cell type labeling are exported including pre-
computed average expression and ranked marker gene lists
per cluster or cell type.

Annotation of cell types based on CITE-seq data

A fine-grained annotation of the cells contained within the
Kotliarov2020 dataset (24) was generated on the basis of
the labelled protein antibody counts from CITE-seq. The
normalized protein counts were exported to FCS files using
the R package flowCore (39,40) (R package version 2.0.1)
and loaded into FlowJo™ Software (FlowJo™ Software Mac
Version 10.6.2. Ashland, OR: Becton, Dickinson and Com-
pany; 2019). The gating strategy used to identify individ-
ual cell populations is outlined in Supplementary Figure S1.
Gating of individual cell populations was based on the gat-
ing strategy utilized in (41). Barcodes from identified cell
populations were exported from FlowJo™ Software to csv
files and loaded into Besca for visualization.

Sig-annot, signature-based automated cell type annotation

The annotation process has three components:

1. a nomenclature table with long and short names, ac-
cording to Cell Ontology (42), see Supplementary Table
S3 and https://github.com/bedapub/besca/blob/master/
besca/datasets/nomenclature/CellTypes v1.tsv

2. a configuration file including all the cell types to
be considered, their parent (or ‘none’), a factor to
be multiplied with the cut-off for scoring a cluster
positive or negative for the signature based on the
Mann–Whitney test and the order in which to con-
sider the signatures (only first positive one matching
a cluster will be taken into account). Two distinct
default configuration files are provided with Besca,
covering mouse and human. Users are free to adjust
the parameters in the files, and tailor these according to
tissues or dataset. Human: Supplementary Table S4 and
https://github.com/bedapub/besca/blob/master/besca/
datasets/genesets/CellNames scseqCMs6 config.tsv
Mouse: Supplementary Table S5 and https://github.com/
bedapub/besca/blob/master/besca/datasets/genesets/
CellNames scseqCMs6 config.mouse.tsv

3. a GMT file with the signatures, in line with the
nomenclature table, see Supplementary Table S6 and
https://github.com/bedapub/besca/blob/master/besca/
datasets/genesets/CellNames scseqCMs6 sigs.gmt

Sig-annot mimics and automates the classical manual
marker-based cell annotation process––for a given set of
clusters, signatures and cell types, it determines the best
match given previous knowledge of a hierarchy between the
cell types. As exemplified in the accompanying cell anno-
tation workbook, the hierarchy provided in the configura-
tion file (component 2) can be visualized as a graph and is
then used to call cell types at distinct levels. Level 1 would
thus contain major cell types such as epithelial, endothe-
lial, hematopoietic cells. Once clusters will be attributed
to these cell types (or to ‘animal cell’ in case none of the
corresponding signatures score above the given cutoff), the
next level will be attributed. For instance, for hematopoietic
cells, this corresponds to lymphocytes of B lineage, myeloid
leukocytes, T cells and innate lymphoid cells. Only cells
called as hematopoietic in level 1 will be considered for these
hematopoietic subtypes, thus reducing the requirement for
highly specific markers with regards to the cell population
and enabling fine-grained classification. Currently, up to
four levels are supported in the nomenclature file, however
this can be easily extended should the data and cell type
knowledge allow or require it.

For simplicity, we maintained one single large GMT file
containing all signatures, however irrelevant cell types that
may perturb the annotation can be easily excluded by pro-
viding them as an additional parameter. Cutoffs for cluster
attribution per signature are set in the configuration files,
but can also be manually modified in the annotation note-
book after data inspection, to ensure flexibility and best fits
with the data at hand. They represent multiplication factors
rather than absolute values, as a base cutoff is always deter-
mined relative to how a set of ubiquitously expressed genes
scores, thus ensuring better translatability across studies.

Finally, the order parameter ensures that more specific
signatures are always considered first in the attribution, thus
allowing more stringent cutoffs. For instance – epithelial
cells, endothelial cells and fibroblasts typically have a more
specific transcriptional signal compared to hematopoietic
ones, which are mainly characterized by strong expression
of PTPRC, which is relatively lowly expressed in plasma
cells and myeloids. Thus, in this case, clusters are first at-
tributed to the above-mentioned cell types with a stringent
cutoff such that one can be more lenient on the cutoff for
calling hematopoietic cells, ensuring inclusion of plasma
and myeloid cells. This concept is then applied to all levels
and signatures as ranks are pre-specified in the configura-
tion file.

We note that in our experience, while new datasets of dis-
tinct types (tissue, technology) may require some parame-
ter adjustments, modifications of the analysis on the same
or a highly similar dataset (as is typically required when
including/excluding additional samples or trying multiple
clustering parameters for instance) can then be rerun with
the exact settings, thus saving all the time one would require
for the manual attribution of clusters. For large datasets
covering tens of types of cells this is a substantial gain. Fi-

https://github.com/bedapub/besca/blob/master/besca/datasets/genesets/CellNames_scseqCMs6_config.tsv
https://github.com/bedapub/besca/blob/master/besca/datasets/genesets/CellNames_scseqCMs6_config.mouse.tsv
https://github.com/bedapub/besca/blob/master/besca/datasets/genesets/CellNames_scseqCMs6_sigs.gmt
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nally, the obtained annotation will all be in line with the
nomenclature table (component 1) and thus the Cell Ontol-
ogy (42), greatly facilitating comparisons between studies
and analyses, as also exemplified here.

Auto-annot, supervised automated cell type annotation

Besca’s Auto-annot module, a supervised machine learn-
ing workflow, can be run independently from the standard
workflow and works as follows:

• Initially the training datasets are merged to form a com-
bined training dataset using Scanorama (43), in the case
where multiple training datasets are available, and com-
plemented with the testing dataset. Scanorama is one of
the most robust tools for the integration task and per-
forms well on complex real data (44,45), especially on
data from the 10X Genomics platform (13). A parameter
specifies if the resulting integrated gene expression ma-
trix contains the intersection of all genes, the intersection
of previously selected highly variable genes, or genes of a
previously defined signature.

• Secondly, the Python package scikit-learn (https://scikit-
learn.org) is used to train a classifier based on the merged
training datasets. Two classification approaches are im-
plemented, SVM and logistic regression. For SVM, one
can choose between SVM with linear kernel (linear);
SVM with linear kernel using stochastic gradient descent
(sgd); SVM with radial basis function kernel (rbf), which
should be used on small datasets only due to longer run-
time. For logistic regression, the options are multino-
mial loss (logistic regression); logistic regression with one
versus rest classification, without normalised probabil-
ity scores (logistic regression ovr); logistic regression with
elastic loss, cross validated among multiple l1 ratio (logis-
tic regression elastic). In our evaluations, logistic regres-
sion and SVM generally provide very similar results. We
thus recommend to use logistic regression as the default
option as its runtime is superior to the SVM, especially
for larger datasets, reducing the runtime from hours to
minutes, depending on resources. In addition, the thresh-
old functionality with logistic regression allows for more
informative results and can also act as a sanity check.
Since the different logistic regression tools usually pro-
vide almost identical results, we recommend the standard
implementation to avoid unnecessary complexity.

• Finally, the fitted model is used to predict cell types in the
test dataset and predictions are added to the metadata. A
probability threshold can be defined for logistic regres-
sion classifiers, to classify only cells reaching the defined
threshold. In order to compare the predicted cell types to
a ground truth already annotated in the test datasets, a re-
port can be generated including precision, recall, and F1
metrics as well as confusion matrix and automatically an-
notated UMAP plots. These scores should be interpreted
with care for the following three reasons: (i) most scor-
ing methods do not take into account the class imbalance
prevalent in scRNA-seq datasets; (ii) when the training
and testing set do not contain the same set of cell types,
scores are not always defined; (iii) in scoring, misclassifi-
cations into very similar subtypes are not treated differ-

ently to completely incorrect annotations. Such biases are
easily avoided by basing one’s interpretation on UMAP
visualizations instead of summary scoring functions.

Bescape, cell deconvolution

At the core of the cell deconvolution algorithm is a
regression-based problem. The concept is not novel, as it
has already been investigated for microarray data (46). The
combination of how newly derived cell specific GEP from
scRNA-seq data can be used is the key factor that has
evolved considerably over time. At a broad level, there are
two categories of cell deconvolution, it is either a full de-
convolution where neither the source nor the mixing pro-
cess is known or a partial deconvolution where there is priori
knowledge of the sources or the mixing process. Although
a completely unsupervised approach can be taken, where
the non-negative matrix factorization is suitable, it has been
proven to show low accuracy and difficulty in handling the
collinearity of the genes (20). The research focus is thus cur-
rently placed on partial deconvolution with known signa-
tures used as bases to estimate the proportions in the bulk
tissue. Such approaches have been developed using con-
strained least squares regression (EPIC) (47) and �-support
vector regression (CIBERSORT) (48). These methods ei-
ther use microarray or a mixture of bulk RNA and scRNA-
seq data to build a single GEP as a basis vector.

To facilitate direct incorporation of reference scRNA-seq
datasets and at the same time address outstanding method-
ological shortcomings, we included two recent cell deconvo-
lution methods in Bescape. MuSiC (21) uses a constrained
least square regression but factors in gene weights to reduce
the impact of genes with low cell type specificity. Thus, it
eliminates the need for preselection of genes. Importantly,
it also addresses the hierarchical nature of cell lineages with
a recursive tree guided search, similar to the gating strategy
in FACS, by first grouping similar cell types into the same
cluster and estimating cluster proportions, then recursively
repeating the previous step within each cluster identified. At
each recursion stage, the focus is only on differentially ex-
pressed genes across cell types within the cluster, avoiding
signal dilution from unspecific genes.

The second method included in the Bescape module is
SCDC (20), an ensemble approach allowing for multiple
scRNA-seq reference datasets. In short, similar to MuSiC,
a weighted non-negative least square regression is adopted
but differs slightly on how the weights are assigned to the
genes. The salient point of the method is an additional
layer of abstraction being introduced by assigning differ-
ent weights for each reference scRNA-seq dataset. Higher
weights are attributed to reference datasets that can fit the
gene expression profiles of bulk RNA-seq samples better
based on defined performance metric.

The selection of MuSiC and SCDC have been included
in the Bescape module to allow for the deconvolution fea-
ture to use GEPs derived after scRNA-seq analysis with our
standard workflow, while taking full advantage of the afore-
mentioned improvements made by these methods. The long
term goal is to keep this module open for novel methods
to be evaluated and added by the user community. In ad-
dition, although benchmarking of the different methods is
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out of scope for this current work (see e.g. (49)), we have
included the results of running CIBERSORTx (50) on the
two publicly available datasets in the supplementals for ref-
erence (Supplementary Figure S2 and S3).

Generating simulated bulk

Simulated bulk RNA-seq was generated to evaluate the es-
timated proportions of the selected cell types with ground
truth from a known in silico mixture. The annotated
scRNA-seq data can be used directly by SCDC and MuSiC
where no user specified feature selection based on marker
genes is needed, instead a higher weight is assigned to fea-
tures showing high variability across annotated cell types
and low variability across samples (20,21). The simulated
bulk is based on linear regressions where the cell fractions
(weights) are taken from a uniform distribution, thus with-
out factoring in any prior knowledge of the range of cell
proportions of the different cell types, and scaled for the to-
tal to add up to 1. The GEPs of the cell types constitute the
basis matrix needed to construct the bulk RNA-seq vector.
This step is repeated for several instances representing dif-
ferent subjects’ bulk RNA-seq data.

RESULTS

To demonstrate the broad applicability of Besca, we repro-
cessed publicly available single-cell data from ten studies,
across four tissues, seven disease states, including diabetes,
inflammatory bowel disease, colorectal and pancreatic can-
cer (see Table 1 and Materials and Methods). We show how
our proposed toolkit can be used to quickly obtain biolog-
ical insights and generate reusable results from these highly
diverse datasets. Further functionalities of Besca and more
examples can be found in the supplementary material, ex-
ample workbooks on GitHub (https://github.com/bedapub/
besca publication results), and in the tutorials available
from the documentation (https://bedapub.github.io/besca/).

A standard workflow streamlining scRNA-seq and CITE-seq
analyses

The Besca standard workflow offers a streamlined series
of steps, starting from a gene-by-cell count matrix (Fig-
ure 1A) and ending with cell clustering (Figure 1B). Based
on Scanpy (18), it facilitates performing analysis of single-
cell transcriptomics data in a reproducible and compara-
ble manner. Good practices and FAIR (findability, acces-
sibility, interoperability, reusability) principles (51) enable
comparisons between all datasets analysed with Besca. The
standard workflow detailed in the Methods broadly fol-
lows the steps of single-cell analysis described at length by
Luecken and Theis (10) and also allows for the processing of
CITE-seq (19) data. Several of the top-performing analysis
methods according to multiple benchmarking studies and
best practice recommendations (9–14) are integrated, ensur-
ing robustness and flexibility (Supplementary Table S1).

The standard workflow generates a quality control (QC)
report and a log file which summarize the performed anal-
ysis (Figure 1A, B). For future reuse, all of the analysis re-
sults are written to files in interoperable exchange data for-
mats (see Materials and Methods) including output files of

precomputed metrics, such as average gene expression or
marker gene rankings (Figure 1A). These features are im-
portant for reusability and result reporting in collaborative
efforts. They distinguish Besca from other analysis toolkits
such as Seurat (33), Scanpy (18), Scater (32) and scvi-tools
(52).

Additional downstream analyses such as automated cell
type annotation can be run directly on the output of the
standard workflow. The cell type annotation of the clus-
ters can be performed using the Sig-annot (Figure 1C) or
Auto-annot (Figure 1D) methods described thereafter. A
re-clustering framework is available to focus on specific
cell populations or clusters. This procedure re-initiates the
highly variable gene selection on a subset of selected cells
and reapplies the chosen clustering algorithm to better de-
cipher finer grained cell subtypes. In addition, plotting func-
tions for frequently used visualizations are implemented to
illustrate gene expression variation under certain conditions
(e.g. treatment effect) or to show the cell type composition
found in the analyzed dataset. The standard workflow and
subsequent marker-based cell annotation are exemplified
in Supplementary Figure S4 utilizing the PBMC3k dataset
(see Table 1 and Materials and Methods).

A gene signature management system

The integration of multiple scRNA-seq datasets allows for
the accumulation of knowledge and insights about biolog-
ical tissues, cells, cell states and diseases. As the develop-
ment of suitable scRNA-seq integration data increases, a
key challenge in single-cell data analysis workflows is the
accurate dissemination of this knowledge and the appropri-
ate reuse of the information gathered. In particular, it is of
utmost importance to be able to re-apply gene signatures
extracted from individual studies across studies and within
analyses.

In contrast to other single cell analysis toolkits
(18,32,33,52), Besca is focusing on the standardization
and reusability of analyses, and therefore we connected
Besca to the Geneset Management System (GeMS)
(https://github.com/bedapub/GeMS). GeMS is a light web-
based platform that enables the centralized management of
genesets using structured formats and a local application
programming interface for geneset information retrieval
and organization. The application is built on top of the
Flask micro-framework (https://flask.palletsprojects.com)
using MongoDB (http://www.monogdb.com), an open-
source, document-based database as its backend.

Once GeMS is deployed, Besca allows the export of gene
signatures to the GeMS database (for example a geneset of
marker genes from distinct populations) and the retrieval
of user-defined signatures (Figure 1A). It is also possible
to check for geneset similarity to avoid redundancy within
the database and check for signature specificity. GeMS is
distributed with initial public genesets extracted from Re-
actome (53), CREEDS (54), CellMarker (55) and MSigDB
(56,57) and can be filled with new genesets.

In addition to these public resources, Besca is also dis-
tributed with over 100 hand-curated signatures related to
cells of different tissues, including hematopoietic, intesti-
nal and pancreatic cell types, which can be used for cell
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type annotation, as discussed below. We assessed the quality
of these signatures by comparing them with genes that are
preferentially expressed in tissues and cell types, which we
identified previously from bulk expression studies (58,59),
and by querying their expression in the gene expression
compendia Human Protein Atlas (60), which integrates
newly generated data with data from GTEx (61) and FAN-
TOM5 (62). Both approaches confirmed the quality of the
Besca signatures by revealing the consistency between sig-
natures identified from single-cell techniques and their ex-
pression profile in bulk studies (Supplementary Document
1, Supplementary Figures S5 and S6). Our toolkit is made
for direct usage of these genesets for signature enrichment
analysis and can compute bi-directional scores combining
up and down-regulated genes into one metric, highly rele-
vant for treatment-specific signatures, for instance.

Automated and harmonized cell type annotation

Cell type identification in scRNA-seq poses great chal-
lenges, mainly related to the lack of a biological consensus
of what a cell type actually represents and a patchy overview
of existing cell types and their identity footprints on the
transcriptomic level (63,8). During recent years, a large
number of approaches and computational methods have
been developed to address the attribution of cells to discrete
types, however a one-fit-for-all approach is still lacking and
the identification of highly specific, very similar or novel
cell types remains challenging (64–66). At the most basic
level, cell types are attributed iteratively to individual clus-
ters after manual inspection of the expression of a handful
of markers according to expert biological knowledge. The
vast majority of scRNA-seq-based publications have taken
this approach in the past (see e.g. (23–31)), in line with the
above-mentioned limitations of specialized tools. However,
such an approach is highly dependent on the availability of
expert knowledge, does not scale to processing a large num-
ber of samples, and is poorly reproducible across individual
studies.

In order to standardize this process, while maintaining
the flexibility of adjusting marker genes and expression cut-
offs across studies according to prior knowledge, we devel-
oped Sig-annot (Figure 1C), a Besca module that provides
a hierarchical signature-enrichment based approach for cell
type annotation (see next paragraph). To guarantee consis-
tency across studies and communities, beyond scRNA-seq,
the proposed cell type annotation schemas are based on the
Cell Ontology (42), which is accessible via the Experimental
Factor Ontology (67). The controlled vocabularies at differ-
ent cell type hierarchies are summarized in a nomenclature
sheet (Supplementary Table S3) and can be easily extended
with further cell types. Newly generated cell type annota-
tions in this manuscript provide the most fine-grained an-
notation as DBlabel assignment, which follows the Cell On-
tology whenever possible, as well as higher level annotations
according to the nomenclature sheet distributed with Besca.

Sig-annot, Besca’s signature-based hierarchical cell annota-
tion schema

Sig-annot is Besca’s streamlined version of the manual
process of cluster attribution based on marker gene en-

richment, including ready-to-go annotation schemas for a
broad range of cell types, with a particular focus on im-
mune cells. The flexible, multi-level identification schemas
are based on a nomenclature file (Supplementary Table S3)
containing over 300 cell types and their hierarchical rela-
tions as well as the corresponding cell type signatures (see
Materials and Methods). Depending on signatures and em-
ployed cutoffs, novel cell types not yet covered will be as-
signed as ‘animal cell’, awaiting inclusion in the schemas.
As the scoring is not dependent on a sample’s heterogeneity,
the annotation result is identical no matter if cells of a single
type are present (e.g. only naive B cells) or if a mix of diverse
types is enquired (e.g. PBMCs or tumor digest), ensuring
consistency and broad applicability. Default configuration
files for human and mouse are provided, covering a large
range of tissues and over 100 cell types (human: Supplemen-
tary Table S4, mouse: Supplementary Table S5). These files
are easily customizable and users are free to provide addi-
tional schemas or annotations. The corresponding cell type
signatures provided with Besca (Supplementary Table S6)
are derived and adapted from various scRNA-seq experi-
ments and publications, with subsequent manual curation,
providing a comprehensive resource of harmonized cell type
markers to be used out-of-the-box in novel experiments (see
also Supplementary Document 1).

As demonstrated here, the signatures can be applied
across tissues and potentially even species (with some
dataset-specific adjustments) and represent a fast and con-
sistent way of determining the most likely cell type com-
position in complex, large-scale scRNA-seq experiments.
Other available marker-based cell annotation tools, like Cel-
lAssign (68), scCATCH (69), SCINA (70) and SCSA (71),
focus on the underlying attribution method and only pro-
vide very limited (typically less than ten) and often tissue-
specific gene sets. Alternatively, they provide comprehensive
but highly redundant or even inconsistent sets. In contrast,
we deliberately facilitate sharing of state-of-the-art signa-
tures and validate their quality based on bulk RNA-seq
data (Supplementary Document 1, Supplementary Figures
S5 and S6). Thereby we aim to enhance the speed and repro-
ducibility of the annotation process, in particular for ana-
lysts that may not be experts in the cell type composition of
the sample they are analyzing.

For convenience, we have implemented various functions
to guide the annotation based on the Sig-annot framework,
and also provide visualization at individual steps in a ded-
icated cell annotation notebook. For instance, one can vi-
sualize the relation between the individual cell types as a
graph (Figure 2A), plot the enrichment of individual sig-
natures across all clusters in the dataset as a heatmap (Fig-
ure 2B), directly generate annotations at distinct levels in
the cell hierarchy and add these in bulk to the AnnData
(https://anndata.readthedocs.io) metadata.

To exemplify this approach and its utility across sam-
ples of various origins and characteristics, we apply it
to recent publicly available datasets covering most known
hematopoietic cell types (72) in blood and tissue, show-
ing that we are able to reproduce and enhance the origi-
nal expert-driven annotations (23,24) (Figure 2 and 3). For
instance, while regulatory T cells were annotated as group
‘22-CD4 M’ in the Granja2019 data, they now appear as
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Figure 2. Besca’s Sig-annot module applied. (A) Overview of the cell type hierarchy provided with Besca’s Sig-annot module and employed for annotating
the datasets in the current manuscript. (B–E) Granja2019 data containing hematopoietic cells of multiple healthy donors from blood and bone marrow,
probed by CITE-seq. (B) Hierarchically clustered heatmap showing enrichment of main signatures employed in the annotation across Leiden clusters,
facilitating the evaluation of cluster attribution. (C) Overview of clustering in 2D UMAP space. (D) Overview of one of the signatures employed in cell
annotation; regulatory T cells are typically rare in scRNA-seq experiments and often missed in annotation processes, but can be clearly detected in the
Granja2019 dataset based on the Besca included signature. (E) Sig-annot cell type attribution at level 1, consisting of major cell types such as T cells and
myeloid cells. All detected populations are broadly consistent with the original annotation (G). (F) Sig-annot cell type attribution at level 3, the highest
resolution provided in Besca’s cell annotation schema. The detected populations are consistent with the original Granja annotation (G), cover T cell subsets
with higher granularity (e.g. including regulatory T cells) and attribute the previously unknown (‘14 Unk’ and ‘26 Unk’) clusters as well. (G) Original cell
type attribution as obtained from Granja et al. Annotated cell populations are highly consistent with clusters obtained from the reanalysis of the original
data following the Besca standard workflow. (H) Confusion matrix showing overlap proportions between the original author’s annotation of the dataset
and Sig-annot cell type attribution at level 3. Further comparisons are summarized in Supplementary Table S7.
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Figure 3. Sig-annot applied to Kotliarov2020 data containing hematopoietic cells of multiple healthy donors from blood, probed by CITE-seq. (A) RNA
signature-based cell type attribution at level 2, consisting of cell subtypes such as CD4+ T cells and classical monocytes. (B) Protein-marker based anno-
tation using a gating method of classical FACS markers at a similar hierarchical depth as described in (A). Cell attribution is highly consistent with the
automated RNA based results. (C, D) RNA signature-based (C) and protein-based (D) cell type attribution at the most fine-grained level 3. Even immune
cell subtypes such as memory versus naive B cells or rare populations such as regulatory T cells and plasmacytoid dendritic cells are correctly attributed.

a stand-alone cell group (Figure 2C–H and Supplementary
Table S7). As one of the datasets also contains information
on the expression of a large number of surface protein mark-
ers, we can confirm that our cell type attribution (Figure
3A and C) is in line with our current protein-level under-
standing of hematopoietic cell biology (Figure 3B and D,
Supplementary Figure S1 and Supplementary Table S7). As
described in detail in the Supplementary Document 2, this
result is also consistent with annotations automatically ob-
tained by SingleR (73), scANVI (52) and to some extent Cel-
lAssign (68) (but only at a limited granularity and ignoring
the large fraction of unassigned cells), three broadly used
and well-performing annotation tools using highly distinct
underlying algorithms (64–66).

Importantly, we demonstrate that our approach is also
applicable to more complex settings such as heterogeneous
tumor samples, as exemplified by the annotation of publicly
available colorectal and pancreatic cancer data (see Sup-
plementary Figures S7, S8 and Supplementary Table S7).
Specifically, when we re-analyzed 23 samples of tumor and
non-malignant colon samples from colorectal cancer (CRC)
patients (28) using Besca and Sig-annot, we found high cor-
respondence with the original annotation not only at ba-
sic annotation levels such as main cell types (hematopoi-
etic cells, fibroblasts, epithelial cells, tumor cells) (Supple-
mentary Figure S7d), but also at the highest resolution
(e.g. regulatory T cells, myeloid dendritic cells) (Supplemen-
tary Figure S7h–i). We made similar observations when we
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reanalyzed 11 tumor and non-malignant pancreatic sam-
ples from pancreatic ductal adenocarcinoma (PDAC) and
non-pancreatic tumor patients (30), additionally obtaining
finer-grained resolution compared to the original annota-
tion (Supplementary Figure S8).

It remains difficult to compare annotations from dif-
ferent authors using different nomenclatures. To demon-
strate the validity of Besca’s standard workflow followed
by the Sig-annot approach, we evaluated the silhouette
score (74), which is independent from a ground truth or
cell type nomenclatures. The silhouette score helps deter-
mine if the granularity of cell types do reflect the vari-
ance between cell types compared to the intra-cluster vari-
ance. For all ten datasets, we assessed the cell type anno-
tations from the original authors, the Besca-derived fine-
grained DBlabel annotation, a coarse grained DBlabel an-
notation at level 2, and a random assignment (Supplemen-
tary Document 3). For example, in the case of the PBMC3k
dataset, the silhouette score is 0.25 for the high granular-
ity annotation, which was derived after reclustering (see
Supplemental Figure S4), whereas the coarser resolution
leads to a much higher silhouette score of 0.67. In con-
trast, the Lee2020 dataset shows 0.04 for the author’s an-
notation, 0.20 for the fine-grained and 0.19 for the coarse-
grained Sig-annot annotation. Here, colorectal cancer cells
are numerous and divided into many clusters (Supplemen-
tary Figure S7a), but the cell type annotations (Supple-
mentary Figure S7d–h) do not capture their diverse func-
tions rendered in transcriptomic space, leading to overall
low silhouette scores. For the other datasets we calculated
the following average silhouette scores: Granja2019: 0.23
(author’s annotation), 0.21 (fine-grained Sig-annot), 0.25
(coarse-grained Sig-annot); Kotliarov2020: 0.28, 0.29, 0.55;
Smillie2019: 0.13, 0.14, 0.22; Martin2019: 0.30, 0.37, 0.32;
Haber2017: 0.16, 0.25, 0.19; Segerstolpe2016: 0.06, 0.44,
0.19; Peng2019: 0.39, 0.12, 0.16; Baron2016: 0.43, 0.50,
0.14. Overall, the silhouette scores show that the Sig-annot
annotations do consistently capture the variability of cells
present as well as the author’s annotations (see Supplemen-
tary Document 3 for more details).

We investigated the clustering and annotation results
with additional quantitative metrics, including the adjusted
mutual information (AMI) and adjusted Rand index (ARI),
which compare two clusterings independent of their la-
bel names, and the accuracy and F1 score, which directly
compare two annotations, but can only be applied in case
of overlapping label names. To be able to compare to the
author’s annotation, we translated their cell type names
to the DBlabel nomenclature (Supplementary Table S3) at
different hierarchical levels. We compared the Sig-annot
annotation to the translated author’s annotation for the
Granja2019 data (Figure 2), the Lee2020 data (Supplemen-
tary Figure S7), and the Peng2019 data (Supplementary
Figure S8). The accuracy (Acc) and F1 scores are gener-
ally higher for the coarse-grained annotations and decrease
with more fine-grained levels: Granja2019 Acc: 0.82 (level
1), 0.73 (level 2), 0.52 (level 3); Lee2020 Acc: 0.65, 0.76,
0.48; Peng2019 Acc: 0.81 (level 1), 0.69 (level 3); whereas
the AMI and ARI scores remain stable across these lev-
els: Granja2019 AMI: 0.80, 0.82, 0.79; Lee2020 AMI: 0.93,
0.83, 0.80; Peng2019 AMI: 0.92, 0.89. Additional scores for

all datasets tested and visualized in the main or supplemen-
tary figures are summarized in Supplementary Table S7.

We note that we employed the same set of signatures
and highly similar configuration files across datasets, suc-
cessfully obtaining consistent annotations of hematopoietic
cells derived from independent experiments, each with dis-
tinct levels of resolution and cell type frequency and repre-
sentation, covering human blood, bone marrow, tumor and
non-malignant pancreas and intestine. Importantly, our ap-
proach is automated, in the sense that only minimal changes
(if any) are required for re-annotating each dataset should
e.g. filtering/clustering be modified. It is also fully repro-
ducible if the signature matrix and configuration files are
stored for each annotation event. The distinct levels provide
flexibility in terms of the annotation depth––one can easily
choose to inspect differences between myeloid cells and T
cells, or alternatively examine myeloid cell subsets, as each
cell is attributed all hierarchical annotation levels present in
the configuration file.

Auto-annot, Besca’s supervised machine learning module for
cell type annotation

In addition to the signature-based annotation approach,
Besca provides the Auto-annot module (Figure 1D), a su-
pervised machine learning workflow for automated cell type
annotation based on well annotated training datasets. Re-
cently, supervised machine learning has become a popular
alternative to signature-based cell type annotation (68,75–
77). Benchmarking studies of such methods revealed that
tailored single-cell classifiers or deep learning algorithms
do not perform significantly better than conventional gen-
eral purpose machine-learning methods (64,78). Therefore,
we implemented methods for supervised machine learning
based on the classical approaches and robust libraries for
support vector machines (SVMs) or logistic regression uti-
lizing scikit-learn (https://scikit-learn.org). One or multiple
annotated reference datasets can be used to train a clas-
sifier for the annotation of a test dataset. Further details
of the implementation are described in the Methods. Addi-
tionally, a semi-supervised generative model implemented
by scANVI (52) can be utilized directly from Besca’s func-
tions.

We demonstrate the application of Auto-annot on
scRNA-seq data from healthy PBMCs. The datasets
Kotliarov2020 and Granja2019 (Table 1, (23,24)) were
used to train a logistic regression model, which was then
tested on the PBMC3k dataset (Table 1, https://www.
10xgenomics.com/). An initial annotation of the PBMC3k
dataset was performed using Besca’s workflow and the Sig-
annot procedure with a reclustering on NK and T cells (Sup-
plementary Figure S4). We note that the training data in-
cludes far more cells and is annotated more fine-grained,
a scenario we expect for predicting cell identities in newly
sequenced datasets, while training on deeply annotated ref-
erence datasets derived from larger cell atlases.

The reference annotation (Figure 4A) is broadly repro-
duced by the predicted annotation (Figure 4B, Acc 0.64,
AMI 0.62, see Supplementary Table S7 for additional mea-
sures), which also highly overlaps with the unsupervised
Leiden clustering from Besca’s standard workflow (Figure
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Figure 4. Auto-annot applied to PBMCs using a logistic regression model trained on the Kotliarov2020 and Granja2019 datasets and tested in the PBMC3k
dataset. (A) Overview of DBlabel annotations in 2D UMAP space for the PBMC3k test dataset. (B) Auto-annot largely recovers the original cell types.
Finer divisions are uncovered in B cells, but resolution is lost for some T cell subtypes. (C) Overview of Leiden clustering in 2D UMAP space shows high
overlap with predictions and illustrates the difficulty of finding subclusters in overlapping T cell communities. (D) The memory B cell signature supports
the separation of the B cell cluster in (B). (E) Idem for the naive B cell signature. (F) The confusion matrix shows that misclassifications, if they do occur,
generally misannotate very similar cell types. (G) Overview of Auto-annot labels with threshold. Ambiguity in some T cell subtypes leads to classification
as unknown, all other cell types remain identified. The corresponding confusion matrix can be found in Supplementary Figure S9. Further comparisons
are summarized in Supplementary Table S7.



NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 4 13

4C). For B cells, it provides even higher resolution than the
reference annotation, correctly separating them into mem-
ory and naive B cells (Figure 4B), as independently con-
firmed by the according signatures (Figure 4D, E). The
automated annotation for T cells shows some ambiguity,
which reveals the limitations of the method (Figure 4A, F).
Still, the specific IL7R-max CD8 T cells were correctly iden-
tified (Figure 4F) showing that accurate subdivisions within
T cells are possible.

In order to avoid false positive annotations it is possible
to set a threshold for cells with low annotation scores. The
threshold approach labels most of the ambiguous T cells
as unknowns (Figure 4G and Supplementary Figure S9),
removing almost all misclassifications at the cost of some
cell types. As a result, central memory CD4 T cells remain
virtually undetected, resulting in lower measures: Acc 0.44,
AMI 0.58 (see also Supplementary Table S7). However, lit-
tle changes occur when it comes to other cell types, includ-
ing IL7R-max CD8 T cells, suggesting that this approach
mainly flags out ambiguous attributions.

For comparison, we also trained a SVM model in the
same scenario (Supplementary Figure S10). Compared to
the logistic regression approach it labels most of the T cells
into one larger naive CD4 T cell cluster resulting in higher
accuracy scores (Acc 0.71, AMI 0.69, Supplementary Table
S7), but neglecting the subdivision of these T cells compared
to the logistic regression model.

It is notable how accurate the supervised approach works
with a fine-grained training annotation. Still, an automated
annotation based on less fine-grained cell types leads to
even clearer results and higher accuracy: Acc 0.81, AMI 0.7;
Multiple different cell types being co-located in the same
broad cell type class from the reference annotation does not
occur when we applied it to broader cell types (see Supple-
mentary Figure S11 for Optimised Classes and Supplemen-
tary Table S7).

We performed additional cross-validation of the super-
vised Auto-annot approach on hematopoietic cells using the
Granja2019 and Kotliarov2020 datasets on their own (see
Supplementary Figures S12, S13 and Supplementary Table
S7) and on pancreatic cells utilizing the Segerstolpe2016,
Peng2019 and Baron2016 annotations in three different
combinations (see Supplementary Figures S14, S15, S16,
and Supplementary Table S7). In addition, we compared
the results of the Auto-annot module to the results from Sin-
gleR (73), scANVI (52) and CellAssign (68) in the PBCM3k
dataset (see Supplementary Document 2). In short, the
comparison revealed a similar performance of the logis-
tic regression in Auto-annot compared to scANVI and Sin-
gleR and the accuracy and F1 measures for the PBMC3k
data (see above) are comparable to the scANVI (Acc 0.67)
and SingleR (Acc 0.68) results (see also Supplementary Ta-
ble S7).

Together, our results show that these approaches work
best when the training set contains all cell types present in
the test set, and when transcriptional differences between
cell types are large and stable. These observations were also
made in a recent benchmarking exercise of automated cell
annotation tools (79). Benchmarking such methods, espe-
cially for the needed case of inter-study predictions and dif-
ficult to separate cell types remain difficult to assess due to

the lack of a reliable ground truth (66). We note that bench-
marking studies revealed larger differences in performance
between evaluated tissues or datasets than between the dif-
ferent methods assessed (64–66), highlighting the challenge.

Auto-annot facilitates a cohesive understanding of intestinal
cell types

Recent studies revealed the intestinal cell type composi-
tion utilizing single-cell transcriptomics of intestinal biop-
sies taken from inflammatory bowel disease (IBD) patients
(including ulcerative colitis and Crohn’s disease), healthy
donors or mice (25–27) as reviewed in (80). The utilized cell
type nomenclatures are inconsistent between these studies
and while various novel cell types were discovered, a con-
solidated understanding of all intestinal cell types is still
missing (80,81). Here, we exemplify the power of Besca’s su-
pervised machine learning method Auto-annot in resolving
such inconsistencies by cross-validating disparate cell type
annotations. We focus on two major studies: Smillie2019
(human colon epithelium and lamina propria during ulcera-
tive colitis) (25) and Martin2019 (human ileum lamina pro-
pria during Crohn’s disease) (26). In addition, we perform
cell type annotation across species using the Haber2017
dataset (mouse small intestine epithelium) (27).

Firstly, we use the Smillie2019 and Martin2019 datasets
to train a model with one dataset and apply it to the other,
respectively (Figure 5A–D, Supplementary Figures S17,
S18 and Supplementary Table S7). Both datasets were pro-
cessed with Besca’s standard workflow and cell type anno-
tations were adopted from the respective publications, in-
cluding a coarse (Figure 5A, left and Supplementary Fig-
ure S17) as well as a fine grained cell type annotation (see
Supplementary Figure S18 and for Smillie2019 fine-grained
fibroblasts Figure 5D, left). Epithelial cell annotations are
missing from the Martin2019 author’s annotation, because
those cells were excluded from the analysis in the origi-
nal study. Therefore, they are labelled as ‘unknown’ in our
comparison. The Auto-annot module identifies the corre-
sponding cell types in the unseen dataset, respectively, re-
vealing differences of the individual coarse annotations. For
instance, while B and plasma cells were subclassified in Mar-
tin2019, only Smilie2019 separated the stromal compart-
ment into fibroblasts, glial and endothelial cells. Taken to-
gether, confidence in such cell communities can easily be ob-
tained by Auto-annot.

Most interestingly, in both studies a new type of disease-
relevant fibroblasts was discovered and named inflamma-
tory fibroblasts in ulcerative colitis (25) or activated fibrob-
lasts in Crohn’s disease (26). Here, we show as an example
to compare fine-grained cell types, how our machine learn-
ing approach could clearly confirm that these two fibrob-
last communities correspond to the same cell type (Figure
5D and Supplementary Figure S18), unified in our DBlabel
nomenclature as an ‘inflammatory fibroblast’, with a spe-
cific signature.

The fine-grained comparison revealed further differences
in the cell type annotation, e.g. a cell community from the
enteric nervous systems, which is named glial cells in Smil-
lie2019 and enteric neurons in Martin2019 (Supplemen-
tary Figure S18). Another example are B cells, which are
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Figure 5. Supervised machine learning to compare intestinal cell type annotations in scRNA-seq data. (A) UMAP representations of the coarse-grained
cell types annotated in the Smillie2019 and Martin2019 datasets based on author’s annotations (left) and predictions based on Besca’s Auto-annot module
(right). (B, C) Confusion matrices comparing the true labels from the author’s annotation and the cell types predicted in the Smillie2019 dataset from the
Martin2019 annotation (B) and in the Martin2019 dataset predicted from Smillie2019 (C). (D) Discovery of inflammatory or activated fibroblasts point
to the same cell community in both studies as exemplified in the Smillie2019 dataset by the author’s annotation (left) and prediction from Martin2019
(right). (E) UMAP representations of the mouse small intestinal epithelial cells from Haber2017 showing the reference DBlabel cell type annotation (left)
and cell types predicted from Smillie2019 human colon (right), and (F) the corresponding confusion matrix. Further comparisons are summarized in
Supplementary Table S7.
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separated into follicular, germ center, and cycling B cells
in Smillie2019, whereas Martin2019 provides a separation
into naive and memory B cells (Supplementary Figure S18).
Those differences in annotation could be driven by biologi-
cal differences, experimental differences, or simply different
cell type nomenclatures used. The results show that our ap-
proach can be used to match cell type identities across stud-
ies and obtain a more cohesive picture of a tissue’s cell type
composition.

Finally, we performed a cross-species comparison. The
Haber2017 small intestine mouse dataset includes only ep-
ithelial cells and was used as a test dataset. As the training
dataset we chose the Smillie2019 human colon dataset and
trained the machine learning model on the epithelial cells
only leading to accuracy scores between 0.23 (fine-grained
DBlabel) and 0.66 (coarse-grained DBlabel level 2). This ap-
proach clearly identified enterocytes, enteroendocrine cells,
goblet cells and brush (tuft) cells (Figure 5E, F). The over-
all gradient from stem and transit amplifying cells to pre-
cursor and fully differentiated cells was mainly reproduced,
but with less accuracy than the aforementioned discrete cell
types (Figure 5E, F). Paneth cells are highly abundant in
the mouse small intestine (27), but mainly absent in colon
and not annotated in the human colon training data (25).
They were wrongly identified as stem cells or transit ampli-
fying cells, which are their neighbouring cells in the intesti-
nal stem cell niche. Still, most Paneth cells did not get as-
signed to any known cell type (Figure 5F), due to a thresh-
old for cells with low annotation score in the Auto-annot
method.

Similar results were achieved by using the fine-grained
author’s annotation from Smillie2019 and by the reverse
prediction from mouse to human (Acc 0.18–0.60, see also
Supplementary Table S7). The results show that a cross-
species prediction is generally possible and Auto-annot can
be applied to provide fast insights for translational research
(see Supplementary Figure S19).

The quantitative assessment of all these comparisons be-
tween Smillie2019, Martin2019, and Haber2017 summa-
rized in Supplementary Table S7 reveals high similarity
between the annotations at coarse-grained levels (DBlabel
level 1 and 2, Acc 0.82–0.96) and a significant drop in the
comparability with the more fine-grained levels (Acc 0.08–
0.71), which suggests a need for harmonizing such anno-
tations across datasets. Precision, recall and F1 metrics per
cell type are provided in the Supplementary Reports ZIP file
for each comparison.

scRNA-seq-informed cell deconvolution through Bescape

Cell deconvolution aims to estimate cell type proportions
from bulk transcriptomic data based on cell type specific
gene expression profiles (GEPs). Derivation of GEPs rele-
vant for different bulk RNA-seq experiments has remained
a challenge. As scRNA-seq data is being collected and an-
notated at an unprecedented rate, this offers the potential to
leverage on the newly gathered knowledge (82). As the de-
convolution algorithms have made significant progress over
the past years (48,83), the focus is now being placed on the
specificity of the GEPs that are used as basis vectors to es-
timate the cell composition addressing platform, tissue and

indication variability (84). This is where Besca’s cell type an-
notations from scRNA-seq have a direct impact.

Besca’s deconvolution framework Bescape facilitates the
usage of established deconvolution methods directly on any
scRNA-seq data of choice (Figure 1E). This is in contrast
to most available tools, which do not offer the flexibility
to introduce user defined cell specific GEPs, instead relying
solely on the authors’ carefully curated ones. The applica-
tion and performance of the cell deconvolution results are
then limited to the scope of the tissue and cell types em-
bedded in the curated set. For example, GEPs derived from
microarray data from hematological malignancies will have
a limited scope of application in deconvoluting cell propor-
tions from bulk RNA-seq sequenced from solid tumor biop-
sies.

In order to allow for simple incorporation of reference
scRNA-seq datasets to generate GEPs for cell types of
interest and addressing challenges such as collinearity of
closely related cell types, Bescape includes two cell decon-
volution tools, SCDC (20) and MuSiC (21) (see Materials
and Methods), which performed among the best in a recent
benchmark (22). As most deconvolution methods are im-
plemented in R, several steps are required which have been
implemented to run seamlessly in the background within
Bescape in a containerized environment (see Supplementary
Figure S20).

To extract the information from a reference scRNA-seq
dataset, two sets of GEPs are generated from the Besca
workflow immediately following the cell type annotation
step: (i) using all genes from the scRNA-seq reference
dataset without performing any feature selection, through
the functionality provided by SCDC and MuSiC or (ii)
based on the subset of highly variable genes defined in the
standard workflow. The first set of GEPs is suitable for
use by MuSiC and SCDC where subsequent weighing of
the different genes is performed. The second set of GEPs
can be used as input basis matrix for a multitude of cell
deconvolution tools such as EPIC (47) and CIBERSORT
(48). The resulting GEPs derived from the Segerstolpe2016
and Kotliarov2020 datasets (Table 1, (24,29)) utilizing both
strategies are shown for comparison in Supplementary Fig-
ures S21-S24.

Here, we focus on the first strategy, applied to both
datasets, utilizing SCDC by example, as a representative
demonstration of Bescape’s functionality. One of the ad-
vantage of SCDC, which follows an ensemble approach,
is that it allows for multiple scRNA-seq reference datasets.
Bulk RNA-seq was simulated from the pancreatic islets (29)
and hematopoietic CITE-seq (24) datasets using the GEPs
across all genes from the raw count. The use of simulated
bulk RNA-seq, where the ground truth of the in silico ad-
mixture is known, allows validation of the estimated cell
proportions (see Materials and Methods).

The estimated proportions from these simulated data us-
ing SCDC correlate highly with the ground truth across
samples for both datasets (Figure 6A,B).The estimated pro-
portions show high Pearson correlation with the ground
truth, and corresponding low root mean square deviation
(RMSD) and mean absolute deviation (mAD), in both tis-
sues for all the cell types that were annotated from the Besca
workflow (Tables 2 and 3). There are a few exceptions where
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Figure 6. Cell deconvolution using Bescape. (A) Measured versus predicted cell proportions in pancreatic islets bulk RNA-seq simulated from
Segerstolpe2016 (please refer to Table 2 for performance metrics). (B) Measured versus predicted cell proportions in hematopoietic bulk RNA-seq simu-
lated from Kotliarov2020 (please refer to Table 3 for performance metrics). (C) Estimated cell proportions for real pancreatic islets bulk RNA-seq between
type 2 diabetes patients and healthy controls. (D) Estimated pancreatic beta cells proportions for real pancreatic islets bulk RNA-seq between type 2 dia-
betes patients and healthy controls showing a significant negative association with glycated hemoglobin levels (HbA1c) to reject H0: slope = 0 (P-value =
1.38E–3) similar to the analysis performed in MuSiC.
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the cell type proportions are of low abundances in the ref-
erence scRNA-seq dataset (see Tables 2 and 3) and where
the GEPs are less well defined (see Supplementary Figures
S21 and S23). More specifically, the deconvolution result
is shown to be less performant for blood vessel endothe-
lial cells and enteroendocrine cell in the simulated pancre-
atic islets dataset and for DN T cells, not determined, pDCs
and mDCs labelled cell types in the simulated hematopoi-
etic CITE-seq dataset.

In contrast to evaluations on simulated data, it is impor-
tant to note that the success of cell deconvolution on real
datasets can be measured based on two merits. First, on
the accuracy to known proportions estimated based on a
known or proxy ground truth from matched samples mea-
sured with more traditional single-cell means (e.g. immuno-
histochemistry or flow cytometry). Although this is the pre-
ferred measure of success, validating the results compared
to a ground truth obtained using known cell types can be
difficult, as these more traditional methods for studying
cell heterogeneity rely on a limited repertoire of markers
of known cell types. Secondly, the success can also be mea-
sured based on the results obtained from embedding esti-
mated cell proportions as covariates in prognostic and pre-
dictive models. Following the SCDC manuscript (20), we
utilized this strategy as described in the next paragraph.

In a recent study of type 2 diabetes (85), the difference in
the estimated beta pancreatic cell proportions between type
2 diabetic patients and healthy controls provides an oppor-
tunity to test the performance of deconvolution results. Es-
timated proportions obtained from the real bulk RNA-seq
for all ten cell types using Besca cell annotation is shown in
Figure 6C. The estimated pancreatic beta cells show the ex-
pected lower cell proportions in the type 2 diabetes patients
as compared to healthy subjects as shown in Figure 6D.

In sum, both evaluations on simulated bulk RNA-seq
data and the ability to detect a downstream biological effect
suggest that the GEPs derived after Besca analysis, in com-
bination with the implementation of the SCDC deconvolu-
tion algorithm facilitate the accurate deconvolution of bulk
RNA-seq samples. Future extension of the Bescape module
aims to incorporate additional cell deconvolution methods
and further downstream analysis tools to help validate the
estimated proportions based on feedback of the user com-
munity.

DISCUSSION

No two cells are identical; neither are two scRNA-seq ex-
periments. Cells are extracted from different tissues, treated
according to lab-specific protocols, and sequenced with a
variety of technologies. Still, the vast amount of available
scRNA-seq studies provokes the ambition to reuse the valu-
able experimental data and to re-assess them by compar-
ing between studies. Streamlined and standardized work-
flows, such as those presented here, strive to find balance
between automation and flexibility, as automation brings
efficiency, reusability, and reproducibility of data process-
ing. They strive to bring scRNA-seq results to a level that
allows for cross-study comparisons, integration into larger
cell atlases and continuous improvement of our general un-
derstanding of cell types and their characteristics.

As Besca builds upon and extends concepts and functions
from Scanpy, each analysis step remains customizable and
it seamlessly integrates with other toolkits such as scvi-tools
(52) or specialized analysis tools such as scVelo (86) and
CellRank (http://cellrank.org/) for cellular trajectory and
fate (87) analysis or Scirpy (88) for T-cell receptor analysis.
Besca is however not limited to Python modules and also
includes optional R-based methods (e.g. DSB and SCtrans-
form), added through the rpy2 module. This makes Besca
very flexible, as it can integrate cutting-edge methods from
both the Python and the R community. Still, its strength is
to free the user from having to navigate individually through
each method and parameter from the vast number of avail-
able options (89) by providing robust defaults that work in
most cases. This abstraction has the drawback that some
steps or parameters are hidden in wrapper functions not vis-
ible to the user.

Translational research is utilizing multiple modalities of
single cell assays (90) and the integration of these multi-
modal data is gaining importance in translational research.
Besca’s workflow allows to process complementary RNA
expression and protein abundance from CITE-seq experi-
ments simultaneously and is prepared to adapt multi-modal
analysis approaches (91) once they mature.

Besca’s Sig-annot module greatly facilitates streamlined
and reusable scRNA-seq analyses by automating the anno-
tation of the cell groups obtained by unsupervised cluster-
ing. It mirrors the still most widespread and accurate man-
ual annotation approach, but provides a harmonized an-
notation schema and hence guarantees comparability be-
tween studies. It also captures the knowledge of cell type
markers that is gained in this process in explicit gene sig-
natures that can be easily shared, applied with other public
marker-based annotation methods (68,70), re-assessed and
improved across different conditions, studies and technolo-
gies.

This signature-based approach is valuable for specific tis-
sues and disease phenotypes as an approach to harmonize
annotations across various cell atlases, which is critical for
holistic disease understanding (see e.g. (1,80,92–94)). Still,
as each tissue and fine-grained cell type needs to be incor-
porated and optimized for in the annotation schema, de-
spite our inclusion of over 100 cell type markers – one of the
largest hand-curated resource currently available––many bi-
ological systems are not yet covered. Other recent efforts
have pursued streamlining the manual maker-based anno-
tation, including CellAssign (68), scCATCH (69), SCINA
(70) and SCSA (71), and utilizing unified cell type nomen-
clatures and hierarchical relations such as OnClass (95) and
scMatch (96).

However, in practice, various limitations remain in their
direct and systematic applicability across datasets. For in-
stance, some methods rely on differential expression be-
tween the clusters to derive marker genes that are then over-
lapped with marker gene databases, making them not suit-
able for samples where a limited number of cells are en-
quired. The markers provided are either very restricted (less
than ten cell types) or at the other extreme, exhaustive, cov-
ering entire databases (e.g. CellMarker (55), CancerSEA
(97), PanglaoDB (98)), but suffering from redundancy, in-
consistency or lack of specificity. Most do not consider hi-

http://cellrank.org/


18 NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 4

Table 2. SCDC deconvolution results based on simulated bulk RNA-
seq from SCDC GEPs on pancreatic islets reference scRNA-seq from
Segerstolpe2016

Cell type
Pearson
correlation RMSD mAD

blood vessel endothelial cell 0.68 0.017 0.010
enteroendocrine cell 0.52 0.064 0.047
fibroblast 0.87 0.020 0.017
macrophage 0.98 0.004 0.002
pancreatic A cell 0.97 0.043 0.033
pancreatic acinar cell 0.99 0.049 0.024
pancreatic D cell 0.88 0.023 0.018
pancreatic ductal cell 0.83 0.075 0.043
PP cell 0.87 0.041 0.033
type B pancreatic cell 0.94 0.055 0.040

Table 3. SCDC deconvolution results based on simulated bulk RNA-
seq from SCDC GEPs on hematopoietic reference CITE-seq data from
Kotliarov2020

Cell type
Pearson
correlation RMSD mAD

B cells 0.98 0.009 0.007
CD4 T cells 0.79 0.075 0.062
CD8 T cells 0.90 0.021 0.016
classical monocytes 0.99 0.014 0.011
DN T cells 0.13 0.078 0.058
ILCs 0.81 0.031 0.024
mDCs 0.75 0.009 0.008
non-classical monocytes 0.81 0.009 0.007
not determined 0.56 0.033 0.026
pDCs 0.61 0.003 0.002

erarchical relations between cell types, or only limited ones
(two levels), requiring the user to rerun the annotation or to
modify the granularity of the analysis (e.g. naive B cells, B
cells or hematopoietic cells).

On the other end of the spectrum, the recently proposed
OnClass (95) approach relies on the Cell Ontology, as we
do here, building exhaustive hierarchical relations across all
available cells. This introduces additional complexity in in-
terpretation, given the very large number of intermediate
cell types and relations thereof contained in the ontology.
In contrast, in our approach, we chose to simplify this re-
lation and also to ensure flexibility by allowing the user to
determine the relations in a practical sense in the configura-
tion sheet, as often many of the intermediate levels are not
required or of interest at the single-cell analysis level.

When it comes to automating cell annotation, supervised
approaches overcome certain challenges faced by unsuper-
vised clustering (99) and therefore generalize better. Impor-
tantly, they allow for the utilization of curated high-quality
annotations by transferring them to new studies more effi-
ciently than a marker-based process. Such approaches not
only allow for the fast comparison of cell annotations be-
tween studies, but even across species. They depend on well
annotated reference datasets containing harmonized label-
ings. We expect cell atlas projects (see e.g. (93,100–104)) to
provide such annotations in the near future for all major
tissues, which would allow for a wide applicability of su-
pervised approaches. With more data, advanced machine
learning methods will dominate including new approaches
to transfer annotations between atlases, species, and dis-

ease states (105), or to even predict cell types missing from
the training data (95,106). Besca is primed to integrate such
methods in its framework in the future.

Hard-to-classify fine-grained cell types and non-
overlapping cell types between reference dataset and test
dataset are the major challenges for supervised cell type
annotation methods. Similar to the challenges in cell
deconvolution methods, cell type annotation methods
are prone to spillover effects, a term borrowed from flow
cytometry, which lead to wrong predictions of the abun-
dance of a certain cell type due to high correlation with
the signature of a related cell type (82,107). In addition,
low abundant cell types from the reference dataset might
not provide reliable information to predict those cell types
in the test dataset, especially if a cell type is missing from
the reference, which might be solved with most recent
methods such as MARS (106). These and several other
challenges are being thoroughly investigated in recent cell
deconvolution benchmarking papers (22,108). A similar
line of development (e.g. recursive fitting for closely related
cell types proposed by MuSiC (21)) may help to more
accurately perform cell type classification.

In this manuscript, we assessed logistic regression as part
of the Auto-annot module as a robust supervised machine
learning method. We argue that it provides a straightfor-
ward approach to assign ‘unknown’ labels for such chal-
lenging predictions, because a probability score for the as-
signment of each individual cell to all reference cell types
is calculated. This probability offers the application of a
threshold that needs to be reached to assign a cell type, or
‘unknown’ otherwise. A limitation of this approach is that
it does not provide a generalized fixed threshold or an op-
timization procedure to determine the threshold. The opti-
mization would require a systematic benchmark across dif-
ferent datasets and scenarios. It would be further compli-
cated by the fact that the ideal threshold depends on the
type of subsequent analysis, which might require either a
large proportion of annotated cells with lower confidence,
or few very-high-confidence annotations. The overlap and
granularity of cell types is usually not known a priori for
the testing dataset and therefore we recommend to use the
threshold to reduce the complexity of the predicted annota-
tion and as a sanity check in combination with traditional
marker gene assessment.

Various examples in this manuscript and previous studies
show that the automation of cell type annotation is feasi-
ble to a certain extent, however the vast majority of discov-
ery publications still resort to expert-driven manual annota-
tion or at least adjustments. With Besca, the analyst retains
full control, and is provided with robust, standardized and
streamlined approaches that complement each other and
enable to focus on the biological challenges in cell type an-
notation. As cells can be grouped by multiple orthogonal
criteria such as surface markers, functions, cell cycle states,
differentiation stages, or activation levels (109), a clear def-
inition of concrete cell types remains controversial and a
more general concept of cell types will be needed in the fu-
ture (63).

Setting aside the controversy in cell type definition (110),
our work already provides tools and best practices to
achieve better reference annotations and to share the gene
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signatures that capture the knowledge about how they were
derived, which is novel compared to most current stud-
ies. As the human reference genome, which does not ulti-
mately reflect a human genome consensus (111), but serves
many practical purposes (112), accelerated genomic re-
search, such reference cell type annotations will accelerate
our understanding of biological systems even though they
reflect only a subset of a cell’s characteristics.

Finally, these cell type definitions help investigate
changes in cell composition and differentially expressed
genes within certain cell types, which are often postulated
as indications of disease progression or response to stim-
ulation and perturbation (113). While scRNA-seq offers
the possibility to investigate these hypotheses, the current
cost as well as the technical and logistical challenges asso-
ciated with the technology are preventing large scale stud-
ies (114), particularly in a clinical trial setting. Although
this is likely to improve over time as the technology ma-
tures, large numbers of biological replicates are currently
measured using bulk RNA-seq. In these samples, hetero-
geneity resulting from the distinct cell type composition of
the probed material can often confound the signals, mak-
ing it difficult to interpret results. By leveraging annotated
reference scRNAseq datasets in combination with cell de-
convolution methods, the cell composition of bulk RNA-
seq samples can be robustly estimated. This information can
then either be used directly as biomarkers or as covariates
towards inferring more robust differential gene expression
results.

It is important to point out the difference in algorithms
between the different cell deconvolution tools that are being
proposed and widely adopted. MuSiC and SCDC are based
on weighted nonlinear least squares (W-NNLS) as opposed
to CIBERSORT, which is based on support vector regres-
sion (SVR) framework. While the Besca workflow allows
the user to extract the GEPs and apply the deconvolution
method of their choice, we have included MuSiC and SCDC
in the Bescape module for their seamless integration of in-
corporating multiple scRNA-seq reference data and their
performance on a recent benchmark (49).

In sum, Besca extends broadly used analysis workflows
based on Seurat (33), Scanpy (18), Scater (32) and scvi-
tools (52) with additional functionalities: It ensures a stan-
dardized output structure of interoperable file formats to
enhance reusability of results. It promotes the usage of a
cell type nomenclature and provides one of the most com-
prehensive hand-curated publicly available resources for cell
type gene signatures. It provides a framework, the Sig-annot
module, to use those signatures for semi-automated cell type
annotation. It provides reprocessed and harmonized refer-
ence datasets covering multiple tissues and disease states,
including distinct cancer types (Table 1), which can directly
be used for comparison, cell type prediction using the Auto-
annot module, or deconvolution. It provides plotting func-
tions to investigate data quality, to compare cell type anno-
tations, or to explore differentially expressed genes between
conditions.

The core benefits of adopting Besca for scRNA-seq data
analysis are automation, standardization, and reusability.
We expect that Besca, published as an open-source software
contribution to the community, will promote interoperabil-

ity, reusability, and interpretability of scRNA-seq data. Fi-
nally, Besca will be part of the many components that pave
the way for a reference catalogue of cell types and their re-
actions to various perturbations. This catalogue will allow
a deeper understanding of human diseases and their inter-
ventions.

AVAILABILITY OF DATA AND SOURCE CODE

Besca source code and installation

• The Besca source code is available from GitHub: https:
//github.com/bedapub/besca. Release 2.4 is also available
from Zenodo: https://doi.org/10.5281/zenodo.4551125.

• Besca can be installed through Python’s package man-
ager pip with the following command: pip install
git+https://github.com/bedapub/besca.git.

• The Bescape source code is available from GitHub: https:
//github.com/bedapub/bescape.

• Bescape can be installed through Python’s package man-
ager pip with the following command: pip install
bescape.

Besca dependencies

• Besca depends mainly on Python 3 (https://www.python.
org/), Scanpy (https://github.com/theislab/scanpy),
anndata (https://anndata.readthedocs.io/), leide-
nalg (https://github.com/vtraag/leidenalg), bbknn
(https://github.com/Teichlab/bbknn), umap-learn
(https://umap-learn.readthedocs.io/), Scanorama
(https://github.com/brianhie/scanorama), and scikit-
learn (https://scikit-learn.org/).

• The Bescape container needs Docker (https://docs.
docker.com/get-docker/) or Singularity (https://sylabs.io/
guides/3.0/user-guide/installation.html) to run.

• Bescape depends mainly on R (https://www.r-project.
org/), MuSiC (https://github.com/xuranw/MuSiC), and
SCDC (https://github.com/meichendong/SCDC).

Datasets

• All processed datasets are available from the Besca
community in Zenodo: https://zenodo.org/communities/
besca/.

• All original datasets are available from the respective
publications or under the accession numbers given in Ta-
ble 1.

Results workbooks

• Jupyter notebooks (https://jupyter.org/) used to
generate results and figures in this manuscript are
available from GitHub: https://github.com/bedapub/
besca publication results.

• The cell type gene signature validation analysis is
available from GitHub: https://github.com/bedapub/
besca publication signature validation.

• R markdown files (https://rmarkdown.rstudio.com/)
used to generate results and figures in this manuscript
are available from GitHub: https://github.com/bedapub/
bescape/tree/master/bescape/docker files.

https://github.com/bedapub/besca.git
https://github.com/bedapub/besca_publication_signature_validation
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SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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