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Abstract: In peptide production, oxidative sulfitolysis can be used to protect the cysteine residues
during purification, and the introduction of a negative charge aids solubility. Subsequent controlled
reduction aids in ensuring correct disulfide bridging. In vivo, these problems are overcome through
interaction with chaperones. Here, a versatile peptide production process has been developed using
an angled vortex fluidic device (VFD), which expands the viable pH range of oxidative sulfitolysis
from pH 10.5 under batch conditions, to full conversion within 20 min at pH 9-10.5 utilising the VFD.
VED processing gave 10-fold greater conversion than using traditional batch processing, which has
potential in many applications of the sulfitolysis reaction.
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1. Introduction

Oxidative sulfitolysis introduces negatively charged sulfonate moieties onto a peptide
chain containing cysteine residues [1,2]. This increases the solubility and stability of pro-
teins, and is especially useful for processing proteins with multiple cysteine residues [3-5].
Sulfitolysis is reversible, specific to disulfide moieties [6-8], and can improve the folding
of proteins [9-11]. A distinct advantage of sulfitolysis is the formation of an intermediate
S-sulfonate, which is essentially a protecting group during the protein modification, and
can be readily removed by treatment using excess thiol when required [2]. The presence of
small amounts of a reducing agent, such as 3-mercaptoethanol or dithiothreitol, during
the removal of this protecting group by oxidation stimulates disulphide bond reshuf-
fling [12]. The oxidative sulfitolysis of cysteine residues in proteins involves treatment
with sodium sulphite and an oxidizing agent, typically sodium tetrathionate or potassium
o-iodobenzoate. Sulfitolysis was first reported more than 50 years ago [6], but the reaction is
poorly understood. In addition, it is also noteworthy that the by-products in the production
of many biologically active peptides and proteins result in inactive or less active precursors,
which must undergo processing to obtain their full potency [1]. The use of a sulfitolysis
step can enhance the efficiency of this processing to achieve the properly folded protein
with the desired activity, efficacy, and affinity levels [13].

Cysteine containing proteins expressed in E. coli cells as inclusion bodies benefit
from oxidative sulfitolysis following inclusion body solubilisation to increase the yield
of refolded protein [10]. Oxidative sulfitolysis can be used to cleave all cysteine linkages,
thereby protecting the thiols as sulphites (Scheme 1). Such protection allows for greater
tolerance for purifying the protein, which can then be easily reduced back to the disulphide
of the correctly folded protein. Oxidative sulfitolysis has been widely used in biotechnology
for the isolation and analysis of cysteine-containing proteins [1,14].
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Scheme 1. A general reaction scheme for the oxidative sulfitolysis of a disulphide with sodium sulfite
and sodium tetrathionate, resulting in formation of the S-sulfonate.

Oxidative sulfitolysis has been used to separate the two chains of insulin [15,16], as
well as in the production of the proinsulin precursor using E. coli expression systems [17,18].
When proinsulin is produced in bacteria, it typically forms misfolded proinsulin as inclusion
bodies. Human insulin contains three disulfide bonds that are essential for its native
conformation, and the formation of the native disulphide bonds is the rate-determining
step during insulin folding [19]. Introducing eight S-sulfonate moieties into synthetic
hepcidin was shown to considerably decrease aggregation and, under optimised conditions,
dramatically increase the yield of refolded protein [4]. Oxidative folding of synthetic
hepcidin is inherently difficult due to its high cysteine content (=30%) and high aggregation
propensity [20,21].

Oxytocin is a small peptide hormone and neuropeptide secreted in humans by hy-
pothalamus nerve cells. It is stored in the hypophysis posterior lobe [22] and is well-known
for its role in lactation and parturition [23]. The nine amino acid sequence of oxytocin
(Cys-Tyr-Ile-GIn-Asn-Cys-Pro-Leu-GlyNH;) was elucidated in 1953 [24,25], having an
intramolecular di-sulfide bridge between two cysteine moieties (Figure 1). Production
of oxytocin is limited, due to difficulties in its isolation and purification. The chemical
synthesis of oxytocin is laborious and requires purification to remove the impurities which
have chemical properties close to that of oxytocin [22]. In addition, the bacterial approach
to prepare oxytocin, using recombinant DNA techniques, has shown promise, but short
peptides have small lifetimes in bacterial cells [22].
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Figure 1. The structure of Oxytocin, which has an intramolecular disulphide linkage forming the
cyclic structure.

One example of oxytocin production utilises sulfitolysis of a fusion protein expressed
from E. coli [22]. This hybrid protein included the oxytocinoyl lysine tetramer and a
histidine hexamer in the C-terminus of the molecule. The use of the histidine hexamer
enhances the solubility of the molecule as well as simplifying the purification process,
with the presence of the oxytocinoyl lysine tetramer increasing the final yield of oxytocin.
The hybrid protein was expressed as insoluble inclusion bodies, which then required
solubilisation using urea and reducing agent, namely dithiothreitol (DTT), affording the
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completely reduced hybrid protein, which only exists in this form for a short period, with
the high concentration of urea hindering purification. In contrast, sulfitolysis allowed the
complete reduction of the disulphide bonds with an increase in solubility of the sulfonated
product and prevention of aggregation, even in the absence of urea [22].

The vortex fluidic device (VFD), Figure 2, is effective in controlling oxidation pro-
cesses [26], and we hypothesised that the high shear stress and associated mass transfer in
the device would be effective in mediating the oxidative sulfitolysis reaction of oxytocin,
in producing the S-sulfonate analogue. The VFD is a thin film microfluidic platform with
a diversity of applications, including in controlling organic reactions [26,27], promoting
biochemical transformation [28,29], mediating materials chemistry [30], and more. Protein
folding in pharmaceutical and agricultural industries rely heavily upon laborious process-
ing methods. The VFD is effective in refolding proteins, as established for hen egg white
lysozyme (HEWL) and cAMP-dependant protein kinase A (PKA), with the processing
requiring much smaller solution volumes with refolding times reduced by a factor of 100
compared to the commonly used overnight dialysis [28].

Gas

Confined
mode

Double
helical flow

Spinning
top

Figure 2. Salient features of the vortex fluidic device (VFD) and the associated high shear (i) spinning
top and (ii) double helical topological fluid flows.

The dynamic thin film in a VFD, Figure 2, has high shear topological fluid flow regimes
of submicron dimensions, depending on the properties of the liquid and rotational speed,
at a tilt angle, © of 45°, which has proven optimal for all applications of the device [31]. The
topological fluid flows are (i) a spinning top shape at low rotation speed in water (above
ca. 3.5 k rpm), arising from the Coriolis force from the hemispherical shape of the base of
the tube, and (ii) double helical flow arising from the eddies from Faraday waves across
the thin film being twisted by the Coriolis force from the curved surface of the wall of the
tube [31]. There is also a special case of spherical or spicular flow where (i) and (ii) have the
same diameter [31]. Processing in the VFD can occur under continuous flow where jet feeds
deliver reagents at points inside the tube, or in the so-called confined mode, where a specific
volume of liquid is added to the angled tube and then it is spun in the same way. Confined
mode features in the present study, given the small volumes to be processed and that the
processing time as such is longer than the residence time for liquid passing through the
VED, even for flow rates less than 0.5 mL-min~! [31]. Nevertheless, with the above detailed
understanding of the fluid flow in the VFD, translating any process from confined mode to
continuous flow is well established [31]. A standard 20 mm OD quartz tube (17.5 mm ID),
19 cm in length with a hemispherical base, was used for all processing herein.
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2. Materials and Methods

Oxidative sulfitolysis was performed on oxytocin using the following procedure. First,
a series of carbonate buffered solutions were prepared by the dissolution of NaHCOj3
(168 mg, 2 mmol) and NayCOs3 (21.2 mg, 0.2 mmol) in ultrapure water (20 mL). The pH
of each of these solutions was raised with NaHCOj3 or lowered with Nay,COj to produce
a series of pH solutions of 9, 9.5, 10, and 10.5. Next, the stock solution of oxytocin was
prepared by dissolving oxytocin (1 mg, 9.93 x 10~7 mol, 0.1 mM) in each of the carbonate
buffered solutions (10 mL). A stock solution containing both Na;SO3 and NayS4O4 was
then prepared by dissolving Nay;SO3 (100 mg, 0.8 mmol, 80 mM) and NaS404 (5.4 mg,
0.02 mmol, 20 mM) in each of the carbonate buffered solutions (10 mL).

The reactions were then performed in either a magnetically stirred vial or operated in
the VED at either 4.5, 7, or 9 k rpm. For these, the oxytocin stock (800 pL) and the NaySO3-
NapS40q stock (80 uL) were combined and diluted in the pH buffered carbonate solution
(3120 pL) and reacted for a total of 20 min at room temperature. The resulting reaction
mixture contained oxytocin (0.02 mM), Na;SO;3 (1.6 mM), and Na;S;O0¢ (0.04 mM). Upon
completion of the desired time, the reaction was quenched by the addition of trifluoro-acetic
acid (20 uL).

Aliquots (110 pL) were then centrifuged (1 min at 10,000x g) for HPLC analysis.
Aliquots (500 pL) were also diluted 1:1 with water for HPLC-MS analysis. This was
performed to identify the peaks in the HPLC trace, whilst a UV detector at 215 nm was
used for determining peak integrals for the conversions. This was repeated in triplicate,
with results shown in Figures 3 and 4. All HPLC was performed on an Agilent Prep-Cyg
column (10 um, 4.6 x 250 mm, 100 A) connected to the Agilent 1260 Infinity Quarternary
LC system. Buffer A: 0.1% aqueous trifluoracetic acid. Buffer B: 80% acetonitrile in 0.08%
trifluoracetic acid. Peptides were eluted using a linear gradient of 10-50% acetonitrile for
40 min, at a flow rate of 0.5 mL/min. UV detection was at 215 nm and peak areas were used
for quantitation of peptides. TrOxytocin) = 28.76 min and Tr(sulfitolysed Oxytocin) = 24.67 min
(Figure 5).

o} (o}
NaySO; (80 eq.)
H,N-Gly-Leu-Pro NH-Asn-Gin-lle-Tyr Na,S306 (2 eq.) H,N-Gly-Leu-Pro NH-Asn-Gin-lle-Tyr
“111INH, PH buffered carbonate N ‘058 tlINH,
H,0
(o] S——S 20 minutes (o] S S
SO;5
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Figure 3. Oxidative sulfitolysis of oxytocin. Above is a schematic of the sulfitolysis reaction with
oxytocin. Comparisons between batch performed in carbonate buffered at pH of 9, 9.5, 10, and 10.5;
conversions were determined using HPLC with percent conversion determined by comparing areas
under the curve for reduced and sulfitolysed oxytocin. Significance is reported as ns (not significant),
*** (p < 0.0001). All experiments were repeated in triplicate.
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Figure 4. Oxidative sulfitolysis of oxytocin. Comparisons between batch versus three VFD operational
speeds, 4.5, 7, and 9 k rpm, performed in carbonate buffered at pH of 9, 9.5, 10, and 10.5; conversions
were determined using HPLC with percent conversion determined by comparing areas under the
curve for reduced and sulfitolysed oxytocin. Significance is reported as ns (not significant), * (p < 0.01),
*** (p < 0.0001).
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Figure 5. Overlays of HPLC traces of the oxytocin reaction products at pH 10. Peaks at 24.7 min
correspond to the S-sulfonated product and peak at 28.8 min corresponds to oxytocin.

LC-MS was conducted using the Waters Synapt HDMS with LC-MS/MS capability
using Acquity UPLC. A C18 column was used with flow rates of 0.2 mL.min"!. A binary
solvent system was used, the solvents being a formic acid solution (0.1% v/v aq.) and
acetonitrile. Initial flow consisted of 90:10 formic acid: acetonitrile, before ramping to 70:30
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over 10 min. This ratio was held for 4 min giving a total time of 14 min. Mass detection
was 300-2000 m/z. A photodetector at 252 nm was also used (Figures 52 and S3).
Statistical analysis of conversions to sulfonated products using different reaction
conditions or processing were performed using a 2-way ANOVA with post-hoc Tukey’s
multiple comparisons tests. Significance is reported as ns (not significant), * (p < 0.01),
** (p < 0.001), or *** (p < 0.0001). All statistics were performed using GraphPad Prism v8.

3. Results and Discussion

Oxidative sulfitolysis of oxytocin was performed using carbonate buffered solutions
(1 mL) in a series of pH solutions of 9, 9.5, 10, and 10.5. For each pH, oxytocin (0.02 mM),
sodium sulphite (1.6 mM), and sodium tetrathionate (0.04 mM) were processed for 20
min in either a magnetically stirred vial (designated herein as batch processing), or in
the VFD at rotational speeds of either 4.5, 7, or 9 k rpm. These speeds were chosen to
span the different complex fluid dynamics in the device for increasing rotational speeds,
with 4.5 k rpm in water dominated by spinning top topological flow and 9 k rpm domi-
nated by double helical flow, Figure 2 [31]. Reactions were quenched by the addition of
trifluoro-acetic acid (20 uL) [2,15,32]. The analysis of the products was performed by HPLC
(Figures 5, 52 and S3) and LC-MS (Figures 52 and S3) to confirm the identify of peaks in the
HPLC trace. All reaction conditions were repeated in triplicate with significance reported
as ns (not significant), * (p < 0.01), ** (p < 0.001), or *** (p < 0.0001).

The oxidative sulfitolysis performed on oxytocin under normal batch conditions with
increasing pH shows that the optimal pH is 10.5 for 20-min reaction times (Figure 3). At
pH9, 9.5, and 10, conversion to the S-sulfonate product is <15%, whereas at pH 10.5, the
conversion is >99%. This establishes that the oxidative sulfitolysis of oxytocin in a carbonate
buffer is dependent on pH, and that the reaction will not achieve completion in the 20 min
investigated here when the pH < 10.5.

However, when processed in the VFD, full conversion can be achieved throughout
the entire buffer range of carbonate, from pH 9 to 10.5, with the highest rotational speed,
9 k rpm, being effective for near full conversion at the lowest pH of 9 (Figure 4). This
result is yet another example of the unique capabilities of the VFD and is in accord with
the high mass transfer and heat transfer in the thin film. Where the spinning top and
double helical topological fluid flows strike the surface of the tube, high temperatures can
be achieved, in excess of 270 °C, as established by being able to melt elemental bismuth in
an organic solvent in the device [31]. Such high temperatures in localized regimes on the
surface of the tube can increase the dissociation of water, although the time scale for being
exposed to such forcing conditions is small [31]. In this context, the ionic product of water
is 1000-fold greater at 240 °C than at 25 °C, i.e., at high temperatures water is a stronger
acid and base [33]. Recent examples utilizing the high shear in the VFD as such include
surfactant-free fabrication of fullerene Cgy nanotubes [34], transformation of graphite
into highly conducting graphene scrolls [35], direct transesterification of wet microalgae
biomass to biodiesel [36], and synthesis of macroporous bovine serum albumin-based
microspheres [37].

Oxidative sulfitolysis performed under conventional batch and VFD processing (con-
fined mode), for the same pH range shows a statistically significant enhancement in the
VED at pH 9, 9.5, and 10. Thus there is an increase in the reaction rate for the oxidative
sulfitolysis performed under VFD processing. This suggests that where the sulfitolysis
reaction is limited by a pH range below 10.5, it may be viable using VFD processing rather
than conventional batch processing. The clear advantage of the VFD in the present study
relates to the high mass transfer under high shear, with the chemistry not limited to diffu-
sion control [38]. Examples of the processing resulting in oxidative sulfitolysis of oxytocin
and other proteins have timescales on the order of hours to days, Table 1 [1,4,10,22,39-41].
The utilisation of the VFD, affording >95% conversion at a range of rotational speeds and
different pH values, are all within 20 min.
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Table 1. Conditions for oxidative sulfitolysis of polypeptides.

Temp

Refs.
©0) efs

Protein Incubation pH Time (h)

7 M Urea
0.1 M NaySO; 8.2 3 RT [41]
10 mM Na25406

6 M GuHCl
Hepcidin 0.1 M NaySOs3 8.5 O/N RT [4]
80 mM Na25406

8 M Urea
Oxytocin 0.4 M Na,SO3 9.0 4 20 [22,40]
93 mM Na28406

7 M Urea
Proinsulin 0.1 M Na,SO3 8.2 3 RT [1]
10 mM Na25406

8 M Urea
Proinsulin 0.2 M Na,SO3 9.5 4 RT [39]
20 mM Na28406

IGF, insulin-like growth factor; RT, room temperature; O/N, overnight.

Human
IGF-1I

4. Conclusions

This widely used reaction in protein production and purification gave >10-fold con-
version using VFD processing than previously reported using traditional batch methods.
This is significant given that the extent of recovery of biological activity is important in
many applications of the sulfitolysis reaction.

The 20 min processing required in the VFD circumvents the use of the VFD under
continuous flow where the reaction time is much less, as highlighted above. However, we
envisage the use of the VFD with robotic control for adding a specific volume of liquid for
processing, then removing, and adding another aliquot of the feedstock for processing in
the VFD, and so on and forth, has potential in adopting VFD processing for the sulfitolysis
reaction. Employing the VFD to allow access to improvements in reactions limited by a pH
range could be expanded to a wide range of applications for research where the localised
in situ dissociation of water under shear stress drives the chemistry.

Supplementary Materials: The following supporting information can be downloaded online, Figure S1:
Schematic representation and photograph of the vortex fluidic device (VFD), Figure S2: HPLC
chromatogram and mass spectra of native oxytocin, Figure S3: HPLC chromatogram and mass
spectra of sulfitolysed oxytocin.
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