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B cells play a critical role in adaptive immune responses mainly due to antigen

presentation and antibody production. Studies about the tumor-infiltrating

immune cells so far demonstrated that the function of B cells in tumor

immunity is quite different among various tumor types. The antigen

presentation of B cells is mainly anti-tumoral, while the role of antibody

production is controversial. Moreover, the immunosuppressive regulatory B

cells are detrimental to anti-tumor immunity via the secretion of various anti-

inflammatory cytokines. This review briefly summarizes the different roles of B

cells classified by the primary function of B cells, antigen presentation, antibody

production, and immunity regulation. Further, it discusses the potential

therapeutic target of B cells in tumor immunity.
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Introduction

Cancer is still a threat to humanity due to its high death rate (1). Various therapies

have been developed to treat cancer, including surgery, radiotherapy, chemotherapy,

immunotherapy, etc. Among these therapies, immunotherapy has become more and

more attractive for researchers, companies, and clinicians in recent years (2). T cell-based

immunotherapy is critical and effective in cancer therapy, and the promising outcome of

the antibodies targeting immune checkpoints in the treatment of cancer created a grave

impact on immunotherapy (2, 3). Though the CD8+ T cells have an irreplaceable role in

the cytotoxicity in the tumor microenvironment (TME) (4) and immune checkpoint

inhibitors (ICIs) are quite efficient in many cancer types, most patients are still resistant

to ICIs (5). Increasing studies demonstrated the function of other immune cells in the

development of cancer in recent years (6, 7), which might be additional and optimal

targets for the treatment of cancer.

B cells are involved in adaptive immunity as the antigen-presenting cells (APCs) and

antibody-secreting cells (ASCs), while the function of B cells in cancer immunity is

controversial. B cell depletion in mice by anti-IgM treatment from birth showed
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resistance to syngeneic fibrosarcoma and reduced incidence of

pulmonary metastasis (8). In contrast, the lung adenocarcinoma

cell inoculation in µMT mice failed to show any difference to

WT mice (9), yet the µMT mice had faster tumor growth than

WT mice when the tumor cell line was transfected with B cell-

specific neoantigen (9). The function of B cells in tumor growth

seems to vary among different tumor cell lines. Moreover,

antibody production from B cells is not always beneficial. For

example, antibody-dependent cellular cytotoxicity (ADCC) is a

critical mechanism of the antibody in the anti-tumor effect of B

cells (10), while the immune complexes in circulation or TME

are correlated with poor clinical outcomes (11).

In this review, we will briefly discuss the immunological

mechanism of B cells in cancer immunity to elucidate the

controversial phenomenon in various tumor types and

potential therapeutic targets of B cells in different tumor types.

This review is classified by the basic functions of B cells, but not

anti- and pro- tumoral functions of B cells, which is already

discussed in other reviews (12).
Antigen-presenting cells

B cells are efficient APCs in T cell-dependent (TD) antigen-

induced humoral immunity. TD antigens are recognized and

engulfed by B cells through B cell receptor (BCR), degraded in

lysosome, and presented to CD4+ cells, resulting in CD4+ T cells

and further CD8+ cells activation (13). Several studies

demonstrated the antigen presentation of B cells plays a

critical role in tumor-specific CD4+ and CD8+ T cell

activation. B cells undoubtedly present antigen to induce T cell

activation in virus-induced tumor growth (14). In the syngeneic

B16 melanoma cell line transfer system, B cell depletion by anti-

CD20 antibody treatment resulted in a two-fold bigger tumor

volume and impaired interferon-g (IFN- g) and tumor necrosis

factor (TNF-a) production from CD4+ T cells and CD8+ T

cells (15).

A recent study elucidated how antigen presentation of B

cells plays a role in tumor immunity. T follicular helper (TFH)

cells are involved in B cell maturation and activation. Germinal

center (GC) B cells could be activated by TFH-B interaction

and further differentiate into short-term living plasma cells,

long-term living plasmablasts, and memory B cells. The single-

cell RNA sequencing result of tumor-infiltrating lymphocytes

in many studies revealed the presence of GC B cells in the TME

(9, 16), yet the role of GC B cells is not well known. The study

done by Cui et al. in lung adenocarcinoma patients elucidated

that GC B cells facilitate the function of CD8+ T cells in anti-

tumor immunity via the TFH-GC B cell interaction in a

neoantigen-dependent manner (9). They utilized a lung

adenocarcinoma cell line (KP) with limited somatic

mutations, which means that there are few or no neoantigen
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expression and weak B/T cell responses so that B cell or T cell

depletion doesn’t affect the tumor growth. With the

transfection of HELLO fusion protein, which contains HEL,

GP33, and GP66 that can be recognized by MD4 transgenic

BCR, GP33-specific CD4 TCR, and GP66-specific CD8 TCR,

respectively, KP-HELLO cells are able to activate specific B/T

cells. The inoculation of KP-HELLO cells in B cell knockout or

TFH knockout mice showed much faster tumor growth and

weaker CD8+ T cell function compared to tumor growth

inoculated in WT mice, suggesting that the GC B cells that

recognize the neoantigen and further interact with activated

CD4+ T cells are able to support CD8+ T cells function in TME.

Further results demonstrated that interaction between

neoantigen-specific TFH and GC B cells and interleukin-21

(IL-21) secreted by TFH cells are necessary for the cytotoxicity

of CD8+ T cells (9).
Antibody-secreting cells

B cells play an essential role in the adaptive immune

responses by producing antibodies (17). At the same time, the

role of antibody-secreting B cells is a double-edged sword in

tumor immunity. Once the B cells are activated by recognizing

the neoantigen, B cells participate in a two-pathway

differentiation process that induces both short-lived

plasmablasts and long-lived plasma cells and memory B cells

(17). Therefore, these plasmablasts, plasma cells, memory B cells,

and the secreted antibodies are neoantigen-specific. Both BCR

signaling that provides binding to the antigen, and the B-T cell

interaction are essential in the TD antigen-involved long-term

antibody production (17).

Commonly, the antibodies are thought to be anti-tumoral.

Antibodies with high FcgR affinity and target neoantigens

expressed on tumor cell surface induce ADCC, antibody-

dependent cellular phagocytosis (ADCP), and complement-

dependent cytotoxicity (CDC), which are significant

mechanisms of antibody drugs for cancer therapy. For

example, the Fc domain of the monoclonal antibody (mAb)

has a different affinity to different FcgR expressed on various

immune cells (18), among which natural killer (NK) cell is

involved in ADCC and is discussed in many mAb treatments in

cancer (10, 19). Several mAbs have been used in the clinic based

on their cytotoxicities, such as anti-GD2 mAb for melanoma and

neuroblastoma treatment (20–23) and chimeric anti-CD20 mAb

and anti-CD22 mAb for leukemia treatment (24–27).

Unfortunately, not all of the antibodies contribute to anti-

tumoral immunity. Antibodies bind to various antigens released

by tumor cells and form circulating immune complexes (CICs),

which correlate with poor outcomes (11). In the squamous cell

carcinoma mouse model, CICs accumulate in the dermal stroma

of neoplastic tissue, activate FcgR on residents, and recruit pro-
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tumoral and angiogenic myeloid cells (especially mast cells and

macrophages) to faci l i tate tumor cell survival and

angiogenesis (28).

Except for IgG, IgA is also a double-edged sword for

tumor growth. Many studies have found the accumulation of

IgA-producing B cells in TME (29, 30), yet the role of IgA in

tumor growth is still controversial. In ovarian cancer patients,

tumor-infiltrating B cell-derived IgA dampens tumor growth

through the unspecific transcytosis and neoantigen-specific

phagocytosis (29). Yet the function of IgA in other cancers is

entirely different. Several cancer types have shown that the

proportion of IgA-producing cells is highly associated with

poor outcomes (31–33). IgA is pro-tumoral in these cases and

has the following mechanisms. Firstly, the IgA production is

not induced by neoantigen presentation but by the

immunosuppressive microenvironment, and the IgA cannot

mediate ADCC (34, 35). Secondly, IgA is immunosuppressive

in mucosal immunity (36). IgA deficiency leads to a higher

risk of inflammation (37–39), and the interaction between

IgA and marginal zone B and B1 cell-specific protein (MZB1)

may be an important factor (36). What’s more, IgA induces

ant i - inflammatory cytokine inter leukin-10 (IL-10)

production from monocytes and further inhibits the

immune system (40).
Regulatory B cells

The discovery of a population of the suppressive function of

B cells can be retrospect to 1974 since B cells could delay

hypersensitivity (41, 42). Subsequently, more and more papers

found that some B cells inhibit the development of various

diseases such as experimental autoimmune encephalomyelitis

(EAE) (43), allograft rejection (44, 45), lupus nephritis (LN)

(46), type 1 diabetes (T1D) (47, 48), anti-neutrophil cytoplasmic

antibody (ANCA)-associated vasculitis (AAV) (49) and so on.

These B cells regulate immune responses by secreting anti-

inflammatory cytokines such as IL-10 (50–54), IL-35 (55–57),

and transforming growth factor-b (TGF-b) (58, 59) to dampen

CD4+ T cells (60), CD8+ T cells (53), antibody production (61)

and facilitate regulatory T (Treg) cells (62, 63). These B cells are

so-called Breg cells. Breg cells are not restricted to a specific B

cell phenotype. Therefore, IL-10-producing B cells, for example,

are usually utilized to detect Breg cells. Since Breg cells vary in

various phenotypes, those types of B cells all have an inhibitory

function in immune responses. The phenotype of Breg cells

mainly includes transitional B cells (CD19+CD24hiCD38hi) (64)

and plasmablasts (CD19+CD27intCD38+) (65) in human,

follicular B cells (CD19+CD23+CD21int), marginal zone B cells

(CD19+CD23-CD21hi), plasma/plasmablasts (CD19+/B220lo/-

CD138+), transitional B cells and B10 cells (CD19+/B220lo/-

CD1d+CD5+) in mice (50).
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Breg cells can not only impair immune responses in TME

by secreting antibodies as described above but many anti-

inflammatory cytokines production and pathways also

contribute to immunosuppression in TME. IL-10 is the

most important anti-inflammatory cytokine defining the

Breg cells , several pathways are involved in IL-10

production (66, 67). For example, IL-10 production is

increased from B cells when stimulated with LPS or CpG

(68–70), and MyD88, the downstream of TLR, is necessary for

IL-10 production from B cells under LPS stimulation (71),

suggesting that TLR activation is able to induce Breg cells

differentiation. CD40 and BCR signaling are also related to IL-

10 production, as anti-CD40 antibody treatment in vivo and

in vitro expands the IL-10+ B cells, and antigen-stimulated B

cells transfer in the EAE mouse model rescued IL-10

production in a CD40-dependent manner (72, 73). B cell-

derived IL-10 is a strong immunosuppressive cytokine in

various autoimmune diseases, it is also important in tumor

growth. B cell-deficient mice showed slower tumor growth

than WT mice when the mice bearing MC38 carcinoma and

EL4 thymoma, and this effect is related to the B cell-derived

IL-10 (74, 75). IFN- g production reduced from B cell-knock

out splenic cells when cocultured with WT B cells, and IL-10

production from B cells increased after coculturing with

irradiated melanoma cells, not sarcoma cells, indicating that

Breg cells suppress the anti-tumor immunity to certain

tumors (75). IL-10 production from B cells impairs

inflammatory cytokines, including TNF-a and IFN-g,
secretion from cytotoxic T cells to promote tumor growth.

While in the chemical carcinogenesis of skin, TNF-a is a

promoter for tumor growth, IL-10 produced by B cells

facilitates tumor growth in a TNF-a-dependent manner

(76). Moreover, IL-10-producing B cells are also being

found to promote tumor growth in non-Hodgkin B cell

lymphoma (77).

TGF-b is another critical anti-inflammatory cytokine

secreted by Breg cells. In the breast tumor model, TGF-b is

highly expressed on tumor-infiltrating B cells and associated

with the conversion of resting CD4+ T cells to Treg cells (78, 79).

Furthermore, IL-35 produced by Breg cells also plays a

promotion role in pancreatic tumor growth (80, 81).

Altogether, Breg cells suppress anti-tumor immunity via the

secretion of anti-inflammatory cytokines such as IL-10, TGF-b
and IL-35.
Anti- and pro-tumorigenic factors
secreted by B cells

Except for the antibodies and cytokines described above, B

cells also secrete some other factors that affect tumor growth.

Lymphotoxin a1b2 (LTa1b2) plays a critical role in the
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lymphoid organ development and especially in ectopic tertiary

lymphoid organs (82–84). Indeed, the presence of B cells in

tertiary lymphoid organs is associated with better anti-tumor

immunity in lung cancer (85). Though the remodeling of

lymphoid organs contributes to the anti-tumor immunity,

some studies found that lymphotoxin derived from B cells

supports tumor growth. Androgen promotes prostate cancer

(CaP) growth by binding to the androgen receptor expressed on

both normal and cancerous prostate cancer cells. Androgen

ablation by castration induces cell death of cancer cells and

lymphocyte infiltration in TME, and it is effective for androgen-

dependent CaP patients, while many patients are castration-

resistant (CR). B cells are abundant in TME of CaP, and the B

cell-derived lymphotoxin in TME activates IKKa, which is

involved in nuclear factor kB (NF-kB) signaling and promotes

metastasis, and STAT3, leading to CR-CaP and prostate tumor

growth (86, 87).

In addition, a recent study found that g-Aminobutyric acid

(GABA) derived from B cells promotes tumor growth by facilitating

IL10+ macrophages in TME (88). In the study of MC38 colon

cancer cell line inoculation in vivo, which is reported that B cells

suppress anti-tumor T cell responses in this cell line (89, 90), and B

cells secreted GABA promotes tumor growth by facilitating IL-10

production from macrophages. Though GABA production is not

restricted to B cells, GABA production from B cells is much more

than other immune cells in draining lymph nodes. In addition, B

cell-specific GABA depletion restored anti-tumor immunity (88).
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Therefore, the metabolism network of tumor-infiltrating immune

cells could be a valuable target for therapy.
Discussion

The function of B cells in cancer development is

controversial. Different B cell phenotypes play a different role

in various cancer (Figure 1). When the tumor cells express

neoantigens containing BCR epitope, B cells can present these

neoantigens and interact with neoantigen-activated TFH cells to

facilitate the cytotoxicity of CD8+ T cells. Activated B cells

further differentiate into ASCs. The IgG antibodies secreted by

ASCs induce ADCC, ADCP, and CDC to promote anti-tumor

immunity. Immunosuppressive IgA production in TME

supports tumor growth. In addition, CIC accumulation is

associated with poor outcomes. IL-10+ IgA-producing B cells

could be categorized as a part of Breg cells, which suppress the

anti-tumor immunity, other Breg cells such as TGF-b-producing
B cells or IL-21-producing B cells also limit anti-tumor

immunity. Moreover, B cells-derived lymphotoxin supports

lymphoid organ development but promotes tumor growth and

relapse by inducing angiogenesis. And GABA produced by B

cells in TME impairs tumor growth by supporting IL-

10+ macrophages.

Though there are many controversial functions of B cells in

tumor immunity, the role of B cells in different tumor types is
FIGURE 1

The role of B cells in tumor immunity. The antibodies produced by plasma cells induce ADCC mediated by NK cells, ADCP by macrophages,
and CDC mediated by C1q, which target and kill tumor cells. IgA-expressing Breg cells dampen anti-tumor immunity by secreting anti-
inflammatory cytokines such as IL-10 and TGF-b to suppress CD4+ T cells, CD8+ T cells and dendritic cells (DCs), and facilitate Treg cells. B
cells also promote anti-tumor immunity by presenting antigen to CD4+ T cells and further interacting with activated T cells to induce TFH cells,
thus promoting the function of CD8+ T cells. In addition, the production of lymphotoxin from B cells enhances anti-tumor immunity by
facilitating tertiary lymphoid organ formation while promoting tumor growth by the induction of angiogenesis. Moreover, B cells produce GABA
to impair anti-tumor immunity by facilitating IL-10-producing macrophages.
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different. Therefore, it is still possible to look for an adequate B

cell-based therapy in some specific tumors. For example, IgA+

Breg cells express PDL1, secrete IL-10 in TME and suppress local

immune responses in several cancer types, such as human

prostate and liver cancer (91, 92). PD-L1/PD-1 blockade can

restore the anti-tumor immunity by reactivating CD8+ T cells

since Breg cells suppress CD8+ T cells by producing anti-

inflammatory cytokine IL-10. Simply depleting B cells couldn’t

well demonstrate the function of B cells in a specific tumor cell

type, thus, further studies may be needed to elucidate which

phenotype of B cells or which mechanism is predominant. Yet, if

the depletion of B cells largely impairs tumor growth, it can still

be considered a potential treatment. Breg cells play a critical role

in suppressing tumor immunity in some cases. Therefore, for

these tumor cells, it is valuable to deplete Breg cells. However,

since there is no good marker for Breg cells, it is challenging to

deplete Breg cells specifically. In the case that B cell deficiency

promotes tumor growth, antibody production, and antigen

presentation might be essential. Therefore, B cell activation

seems feasible in those BCR epitope-containing neoantigen

expressing tumor cells. Though STAT3 activation and CD5+ B

cell proportion are correlated with poor outcomes in B16 skin

tumor cell lines (93, 94), adoptive transfer of activated B cells in

tumor cell inoculated mice leads to slower tumor growth (95).

In summary, increasing studies found that B cell-targeted

therapy could be a prospective candidate in immunotherapy.

However, based on the mouse experiment, B cell-targeted

therapy may not be as efficient as T cell-based therapy.

Therefore, the combination of B cell and T cell-targeted

therapy could be promising in cancer therapy.
Frontiers in Oncology 05
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