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Abstract: Gastric cancer is the common type of malignancy positioned at second in mortality rate
causing burden worldwide with increasing treatment options. Prunetin (PRU) is an O-methylated
flavonoid that belongs to the group of isoflavone executing beneficial activities. In the present study,
we investigated the anti-proliferative and cell death effect of the compound PRU in AGS gastric
cancer cell line. The in vitro cytotoxic potential of PRU was evaluated and significant proliferation
was observed. We identified that the mechanism of cell death was due to necroptosis through double
staining and was confirmed by co-treatment with inhibitor necrostatin (Nec-1). We further elucidated
the mechanism of action of necroptosis via receptor interacting protein kinase 3 (RIPK3) protein
expression and it has been attributed by ROS generation through JNK activation. Furthermore,
through computational analysis by molecular docking and dynamics simulation, the efficiency
of compound prunetin against RIPK3 binding was validated. In addition, we also briefed the
pharmacokinetic properties of the compound by in silico ADMET analysis.
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1. Introduction

Gastric cancer (GC) is a kind of common malignancy type that occurs in the gastrointestinal tract
with the burden of second mortality rate around the world. With earlier stages being asymptomatic,
by the time of diagnosis it reaches the advanced stages of malignancy [1]. Presently, the commonly
employed methods like surgical resection and chemotherapeutics are still far from satisfactory outcomes,
which makes it largely dismal [2]. The use of chemotherapeutics to treat various cancers at clinical
trials leads to failure with increased limitations in terms of high toxicity. Accordingly, there is an urge
to develop a new class of potentially safe drugs with effective action and reduced rate of cytotoxicity
on normal cells [3]. The focus of attention in the prevailing days is on the use of natural compounds
with anti-inflammatory, anti-allergic, antimicrobial, anti-oxidant, and anti-tumor activities as candidate
drugs [4].

Programmed cell death is a common form of targeting tumor cells through apoptosis which
provide multiple potential targets and strategies for developing anti-cancer drugs. Most of the
current anti-cancer drugs kill the cancer cells by triggering apoptosis and its related pathways [5].
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Alternative approaches that can induce cancer cell death via nonapoptotic process may provide new
insights in solving problems like development of apoptotic resistance and sensitivity of tumor cells
against drugs [6]. Necroptosis is an important form of programmed cell death mechanism, which is
independent of apoptosis and does not involve the activation of the caspase family of proteins [7].
Necroptosis is defined relatively as a regulated form of necrotic cell death which is characterized
by the morphological pattern of necrosis, involving the swelling of organelles, membrane rupture,
and degradation of cells [8]. The invention of necroptosis mediated cell death will lead to the
development of a novel therapeutic basis for alternative tumor treatment other than inducing apoptotic
cell death [9].

Necroptosis is mediated by the activation of receptor-interacting kinase-3 (RIPK3) with mixed
lineage kinase like (MLKL) protein [10]. RIPK3 belongs to the class of serine/threonine protein kinase
family that promotes necroptosis induced by receptor-interacting kinase-1 (RIPK1), and MLKL is
the main substrate for RIPK3 kinase activity to target the plasma membrane in inducing necroptosis
cell death [11]. The expression of RIPK3 is been varied in different cell types, making it crucial for
undergoing necroptosis and other pathways. Studies have also highlighted the additional role of
RIPK3 in promoting other signaling pathways such as mitogen activated protein kinase (MAPK),
and nuclear factor kB (NF-kB)-dependent transcriptional responses that eventually lead to necroptotic
cell death [12]. Thus, targeting RIPK3 through necroptosis mediated cell death would be a promising
approach in treating cancer cells.

The effectiveness and recent advances in the field of in silico analysis tools to characterize the
molecular interactions serves as an important device for drug discovery [13]. Molecular docking is one
of the widely adapted approaches applied to visualize the interaction among the protein and small
molecule ligand at the atomic level [14]. Similarly, molecular dynamics (MD) simulations-based free
energy computational methods are used to impart knowledge on the drug and protein binding pocket
in a simulated environment, determining the free energy convergence when it freely moves [15]. Thus,
virtual drug screening based on molecular docking technology and simulation models has become a
widely accepted strategy for effective drug development [16].

The development of in silico models can also represent the physicochemical parameters, ADME
properties, and toxicity evaluation of the drug molecules. The emphasis of a modeling approach with
drug-likeness prediction provides potential merits in the application of drug discovery [17]. With
the use of structure-based screening of drug molecules by ADMET prediction tools, the properties
of candidates can be evaluated in terms of human intestinal absorption (HIA), blood–brain barrier
(BBB) penetration, inhibition of cytochrome P450 2D6, plasma protein binding, aqueous solubility,
and toxicity [18]. This aids in the exclusion of lead compounds that have low drug ability which
reduces the cost and improves the efficacy of the drug in the development of pharmaceuticals [19].

Prunetin (PRU) is one representative O-methylated flavonoid from the group of isoflavone
extracted from several source of plants [20]. The compound has been shown to exhibit numerous
beneficial activities such as anti-inflammatory, anti-obesity, stress response, and also regulating
proteolytic activity [21]. Prunetin has been found to possess anti-obesity potential and has involved in
the inhibition of aldehyde dehydrogenase enzyme in human liver [22,23]. Prunetin is also shown to
regulate the proteolytic activity in articular chondrocytes in conditions of osteoarthritis [24]. However,
to the best of our knowledge there is no reported data on the anti-tumor potential of PRU on human
cancer cells. In the current study, we investigated the anti-proliferative effect of the compound PRU
extensively with in vitro and in silico approaches. We elucidated the in vitro cytotoxic potential and
mechanism of cell death initiated by PRU on AGS, human gastric cancer cell line. Furthermore,
we performed in silico analysis by molecular docking with the necroptosis target protein RIPK3 and
molecular dynamics simulations were conducted to elucidate the stability and conformational changes
of the PRU-RIPK3 complex. Additionally, the pharmokinetic properties of the compound in terms of
drug likeness were also predicted and extensively reported.
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2. Materials and Methods

2.1. Cell Culture and Reagents

Human gastric cancer cell line AGS and human keratinocyte HaCaT cells was obtained from the
Korean Cell Line Bank (Seoul, Korea). The cells were maintained in RPMI 1640 and DMEM medium
supplemented with 10% heat inactivated FBS from GIBCO (Thermo Fisher Scientific, Inc, Waltham,
MA, USA), and 100 U/mL penicillin, and 100 µg/mL streptomycin at a humidified atmosphere of 95%
air and 5% CO2 in an incubator. The compound prunetin was purchased from Sigma-Aldrich Co Ltd.
(St. Louis, MI, USA).

2.2. Measurement of Cytotoxicity of the Compound

Cell viability was determined using MTT assay. AGS gastric cancer cells and normal keratinocyte
HaCaT cells were seeded at a density of 1 × 104 cells/well in a 96 well plate and allowed to grow for
24 h at 37 ◦C in a 5% CO2 incubator, the cells were treated with different concentrations of prunetin
at 0, 10, 20, 40, 80, and 100 µM respectively. MTT assay was carried out after 24 h of incubation.
100 mL of 0.5% (w/v) MTT dissolved in 1× PBS was added to each well and incubated for 3 h at 37 ◦C
in dark condition. The medium was aspirated and the formazan crystals contained in the cell were
solubilized by 100 µL of DMSO. After 15 min of shaking, the absorbance was read at 540 nm with a
microplate reader. Similarly, MTT assay was carried out at different time interval (24 h, 48 h, and 72 h)
following the above procedure. The experiments were repeated up to three times and the average of
the independent experiments were considered for statistical analysis.

2.3. DNA Fragmentation Assay

AGS cells were seeded at a density of 4 × 105 cells on 100 mm plates for the DNA fragmentation
assay and incubated at 37 ◦C in a 5% CO2 incubator for 24 h. The cells were treated after overnight
growth with specified PRU concentrations (0, 40, and 80 µM). The cells were harvested after 24 h
treatment, and the amount of total DNA was extracted by performing lysis using lysis buffer containing
1% NP-40 in 20 mM ethylenediaminetetraacetic acid (EDTA), 50 mM Tris-HCl, and pH 7.5 for 30 min.
The cell lysate was centrifuged at 3000 rpm for 5 min and the supernatant was gathered. The collected
supernatant was incubated for 2 h at 56 ◦C in a water bath with 10 µL of 10% sodium dodecyl sulfate
(SDS) solution and 5 µL of 100 mg/mL RNase A. Followed by protein digestion was performed by
adding 10 µL of 25 mg/mL proteinase K enzyme and incubated at 37 ◦C for 2 h, then about 65 µL
of 5 M NaCl was added and the contents were mixed thoroughly with 500 µL of ice-cold ethanol.
The mixture was subjected to incubation at −80 ◦C for 2 h. It was then centrifuged for at 12,000 rpm
20 min and then the pellet was washed with 1 mL of 80% ice-cold ethanol and air-dried for 10 min at
room temperature. The pellet was dissolved using 20 µL of Tris-EDTA (TE) buffer. The total DNA
sample was then subjected to electrophoresis of 1.5% agarose gel and the UV light absorbance of the
DNA bands were visualized.

2.4. Observation of Cell Death by Hematoxylin Staining

Cell death was analyzed by performing hematoxylin staining assay. AGS cells were plated on
6-well plates at a density of 1 × 105 cells. After overnight growth at 37 ◦C in a 5% CO2 incubator,
the cells were treated with indicated concentrations of prunetin (0, 20, 40, and 80 µM). Upon treatment
for 24 h, the cells were washed with 1× PBS for two to three times and then fixed with 4× formaldehyde
solution for 1–2 h at room temperature. After fixation, the cells were further washed with 1× PBS
for about two times and then 500 µL per well of Mayer’s stain (Cancer Diagnostics, Inc., Durham,
NC, USA) was added. The cells were stained by keeping it for about 20–30 min at room temperature.
The stained cells were then viewed under microscope and photographs were taken upon using 90%
glycerol as mounting solution.
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2.5. Analysis of Cell Cycle Distribution by Flow Cytometry

The distribution of cell cycle on AGS cells treated with PRU was measured using flow cytometry
analysis. AGS cells were seeded at a density of 5 × 105 cells/well in a 60-mm plate and treated with
indicated concentrations of PRU (0, 20, 40, and 80 µM) for 24 h at 37 ◦C. The cells were washed
with ice-cold PBS after incubation, then trypsinized and centrifuged (1000× g) for 5 min. The pellet
containing the cells were fixed in 70% ethanol for about 30 min at 4 ◦C. After fixation, the cells were
subjected to washing with PBS, followed by staining with propidium iodide (50 µg/mL) including
RNaseA (0.1 mg/mL). The sample was kept for 30 min in dark prior to analysis using flow cytometer.
Flow cytometry analyses were performed with Cytomics FC 500 (Beckman Coulter, Brea, CA, USA).
In each sample, 10,000 cells were sorted approximately. The data obtained were analyzed by using
CXP Software (Beckman Coulter, Inc., Fullerton, CA, USA).

2.6. Investigating the Mechanism of Cell Death by Annexin V-Propidium Iodide Staining

The population of cell death on AGS cells treated with PRU was measured detected using
allophycocyanin (APC)/annexin V apoptosis detection kit according to the manufacturer’s protocol
(BD Biosciences, San Diego, CA, USA). AGS cells were seeded at a density of 5 × 105 cells/well in a
60 mm plate and treated with indicated concentrations of PRU (0, 20, 40, and 80 µM) for 24 h at 37 ◦C.
After incubation, the cells were harvested, washed with PBS, and then re-suspended in binding buffer
that comes along with the kit. Furthermore, staining was performed by adding APC/annexin V and
propidium iodide (PI) to the cells by keeping at room temperature in dark for about 30 min without
adding further binding buffer. Flow cytometry analysis was performed on the cell suspensions and
the data obtained were analyzed using a fluorescence-activated cell sorting machine (FACSVerseTM
flow cytometer; BD Biosciences, Franklin Lakes, NJ, USA). In total, 10,000 events per sample were
sorted and the data were analyzed using BD FACSuiteTM software (BD Biosciences, Becton & Dickson,
Mountain View, CA, USA).

2.7. Reactive Oxygen Species Determination

The measurement of ROS generation on PRU treated AGS cells were performed using reactive
oxygen species detection reagents kit by molecular probes, supplied by Invitrogen detention
technologies. AGS gastric cancer cells were seeded at a density of 1 × 104 cells/well in a 96 well plate
and allowed to grow for 24 h at 37 ◦C in a 5% CO2 incubator, the cells were treated with indicated
concentrations of prunetin 0, 20, 40, and 80 µM respectively. Similarly, other group co-treatment with
JNK inhibitor SP100125 at 10 µM then followed by PRU treatment (0, 20, 40, and 80 µM) respectively.
Molecular probe derivative of fluorescein carboxy-H2DCFDA (C4000) was prepared from stock solution
by dissolving in 100% ethanol freshly before experiment. About 5 µL of the working solution of the dye
was added to the treated AGS cells and the mixture was incubated not later than 15 min. The intensity
developed was measured in fluorescent absorbance spectrometer with an excitation/emission range of
492/520 nm and the relative amount of ROS generated was quantified.

2.8. Analysis of Protein Expression by Western Blot

The expression of proteins on AGS cells treated with PRU was measured using western blot
analysis. AGS cells were seeded at a density of 5 × 105 cells/well in a 60-mm plate and treated with
indicated concentrations of PRU (0, 20, 40, and 80 µM) for 24 h at 37 ◦C. After incubation, the cells
were harvested and the protein content was lysed using radioimmuno-precipitation assay (RIPA)
buffer (iNtRON Biotechnology, Seoul, Korea) containing phosphatase and protease inhibitor cocktail
(Thermo Scientific, Rockford, IL, USA) by keeping it in ice for 30 min. Furthermore, the protein lysates
were centrifuged at 10,000 rpm for 10 min at 4 ◦C and the extracted protein concentrations were
determined using a Pierce™ BCA assay (Thermo Fisher Scientific, Rockford, IL, USA). Protein samples
were prepared by mixing the required concentration amount with 5× sample buffer and allowed to
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be kept at 100 ◦C for 5 min. Electrophoresis was carried out on 8–15% SDS polyacrylamide gels and
then allowed to separate based on the molecular weight of each proteins. The separated proteins
were transferred onto a polyvinylidene difluoride (PVDF) membrane by electrophoretic mode and
the membranes were blocked with 5% BSA (bovine serum albumin) or 5% Phosphoblocking solution.
After blocking for 1 h at room temperature, each protein separated with specific molecular weight range
was incubated at 4 ◦C with β-Actin (1:10,000), PARP (1:1000), Cl.PARP (1:1000), RIPK3 (1:1000), p-RIPK3
(1:1000), MLKL(1:1000), p-MKL (1:1000), JNK (1:1000), p-JNK (1:1000), p38 (1:1000), p-p38 (1:1000),
ERK (1:1000), and p-ERK (1:1000) primary antibodies overnight. The incubated membranes were
washed with TBS-T buffer at 10 min interval for at least five minutes and then subjected to secondary
antibody incubation using horseradish peroxidase (HRP)-conjugated for 3 h in 1:1000 dilution at room
temperature. The obtained protein blots were developed under an electrochemiluminescence (ECL)
detection system (Bio-Rad Laboratory, Hercules, CA, USA). Protein quantification was analyzed using
ImageJ software program (U.S. National Institutes of Health, Bethesda, MD, USA). The densitometry
readings of the protein bands were normalized by comparing them with the expression of β-Actin.

2.9. Molecular Docking and Dynamics Simulation Studies

For the execution of molecular docking, the structure protein target was obtained through homology
modeling using Swiss-model program from (https://swissmodel.expasy.org/). The three-dimensional
structure of the compound prunetin and reference compound Ponatinib was obtained from PubChem
(https://pubchem.ncbi.nlm.nih.gov/). The protein and ligand were subjected to docking using USCF
Chimera software (https://www.cgl.ucsf.edu/chimera/) and all the possible conformations were obtained
with default parameters. The results were evaluated based on the estimated free energy of binding
and total intermolecular energy. The docked complexes were allowed to undergo molecular dynamics
simulations using Desmond by D.E.Shaw Research [25,26] as discussed by Gade et al., 2018. The binding
mode was subjected to simulation using TIP4PEW water solvent model and neutralized by adding
counter ions. During this process, the protein backbone was restrained, and the periodic boundary
conditions were fostered to avoid bad effects. Thereafter, the MD run was conducted for 10 ns and the
results were visually analyzed.

2.10. In Silico ADMET Prediction

The pharmacokinetics and drug-likeness prediction of the compound prunetin was evaluated
by online tool SwissADME41 of Swiss Institute of Bioinformatics (http://www.swissadme.ch/) and
the individual ADME behaviors of the compound was predicted. The 2D structural model of the
compound was obtained from PubChem and SMILES of the compound was translated using the
SMILES generator found in SwissADME and the analysis was carried out to check the various ADMET
properties in terms of pharmacokinetics and drug-likeness.

2.11. Statistical Analysis

All the experimental results were expressed as the mean ± standard error of the mean (SEM) of
triplicate samples. Significant differences between groups were calculated by Student two-sample
t-test assuming equal variances and p value < 0.05 was considered statistically significant.

3. Results and Discussion

The cytotoxicity of the compound prunetin (PRU) was determined in AGS, gastric cancer cell,
and normal human keratinocytes (HaCaT cells). AGS and HaCaT cells were treated with indicated
concentrations 0, 10, 20, 40, 80, and 100 µM of PRU, respectively. The cell viability was determined
24 h later using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results
shown in Figure 1b reveals that treatment with PRU inhibited the growth of AGS cells whereas
comparatively, PRU treatment did not affect the cell growth of HaCaT cells. These results indicate
that PRU inhibited cell growth specifically on gastric cancer cells without affecting the normal cells.

https://swissmodel.expasy.org/
https://pubchem.ncbi.nlm.nih.gov/
https://www.cgl.ucsf.edu/chimera/
http://www.swissadme.ch/
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Furthermore, the inhibition of cell growth on AGS cells at different time intervals—24, 48, and 72 h—was
measured in three fixed concentrations (20, 40, and 80 µM) which also showed significant cell growth
inhibition as represented in Figure 1c. With these cytotoxicity results, it suggests that PRU inhibits cell
growth in AGS cancer cells in both dose- and time-dependent manner. Also, the cytotoxic inhibition of
AGS cancer cell growth by PRU is found to be effective at a lower concentration level within 100 µM
compared to the reported flavonoid monomers like pectolinarigenin and scutellarein [27,28]. From this
cytotoxicity assessment, further experiments were carried out in the three indicated concentrations
(20, 40, and 80 µM) of PRU, respectively.

Biomolecules 2020, 10, x FOR PEER REVIEW 6 of 16 

growth inhibition as represented in Figure 1c. With these cytotoxicity results, it suggests that PRU 
inhibits cell growth in AGS cancer cells in both dose- and time-dependent manner. Also, the cytotoxic 
inhibition of AGS cancer cell growth by PRU is found to be effective at a lower concentration level 
within 100 μM compared to the reported flavonoid monomers like pectolinarigenin and scutellarein 
[27,28]. From this cytotoxicity assessment, further experiments were carried out in the three indicated 
concentrations (20, 40, and 80 μM) of PRU, respectively. 

 
Figure 1. Cytotoxic properties of the compound prunetin (PRU). (a) Chemical structure of the 
compound PRU. (b) Plot of cell viability measured by MTT assay on AGS cancer cells and human 
keratinocytes, and HaCaT cells with various concentrations of PRU (0, 10, 20, 40, 80, and 100 μM) 
respectively. Cell viability is represented in percentage relative absorbance compared to the controls. 
(c) Plot of cell viability measured by MTT assay on AGS cancer cells at three indicated concentrations 
(20, 40, and 80 μM) at three different time intervals from 24, 48, and 72 h respectively. Values are given 
as the mean ± standard error of the mean (SEM) of three independent experiments. * p < 0.05 vs. 
control, ** p < 0.01 vs. control, *** p < 0.001 vs. control. 

Upon identification of cell growth inhibtion by PRU, investigations were undertaken to check 
whether the cell death caused by PRU was mediated by apoptosis. To determine the involvement of 
apoptosis, morphological observations using phase contrast microscopy, DNA fragmentation assay, 
and western blot analysis were performed. The results of morphological pattern observed were found 
to show no apoptotic features like formation of apoptotic bodies; instead, the cells exhibited loss of 
cell membrane integrity and star shaped cell morphology was observed which is provided in Figure 
S1. Also, the results of DNA fragmentation assay do not show any visible fragmented nuclei in AGS 
cells treated with two concentrations of PRU (40 and 80 μM), which is an important indicator of non-
apoptotic cell death, shown in Figure 2a. The mechanism of apoptosis can be triggered by many 
factors and signals, among which the activated caspases are important effectors. The caspase 
activation leads to the cleavage of proteins including lamins, DNA-dependent protein kinase (DNA-
PK), and poly ADP ribose polymerase (PARP) [29]. The protein poly ADP ribose polymerase (PARP) 
is reported as an important nuclear enzyme cleaved during DNA injury that imparts cellular 
dysfunction and cell death through apoptosis [30]. Western blot analysis of the apoptotic marker 
protein poly ADP ribose polymerase (PARP) and its cleaved form (Cl.PARP) showed no significant 
increased expression in AGS cells upon treatment with PRU as shown in Figure 2b. These results 
suggest that the cell death caused by PRU was not induced or associated with apoptosis. 

Figure 1. Cytotoxic properties of the compound prunetin (PRU). (a) Chemical structure of the compound
PRU. (b) Plot of cell viability measured by MTT assay on AGS cancer cells and human keratinocytes,
and HaCaT cells with various concentrations of PRU (0, 10, 20, 40, 80, and 100 µM) respectively.
Cell viability is represented in percentage relative absorbance compared to the controls. (c) Plot of
cell viability measured by MTT assay on AGS cancer cells at three indicated concentrations (20, 40,
and 80 µM) at three different time intervals from 24, 48, and 72 h respectively. Values are given as the
mean ± standard error of the mean (SEM) of three independent experiments. * p < 0.05 vs. control,
** p < 0.01 vs. control, *** p < 0.001 vs. control.

Upon identification of cell growth inhibtion by PRU, investigations were undertaken to check
whether the cell death caused by PRU was mediated by apoptosis. To determine the involvement of
apoptosis, morphological observations using phase contrast microscopy, DNA fragmentation assay,
and western blot analysis were performed. The results of morphological pattern observed were found
to show no apoptotic features like formation of apoptotic bodies; instead, the cells exhibited loss of cell
membrane integrity and star shaped cell morphology was observed which is provided in Figure S1.
Also, the results of DNA fragmentation assay do not show any visible fragmented nuclei in AGS
cells treated with two concentrations of PRU (40 and 80 µM), which is an important indicator of
non-apoptotic cell death, shown in Figure 2a. The mechanism of apoptosis can be triggered by many
factors and signals, among which the activated caspases are important effectors. The caspase activation
leads to the cleavage of proteins including lamins, DNA-dependent protein kinase (DNA-PK), and poly
ADP ribose polymerase (PARP) [29]. The protein poly ADP ribose polymerase (PARP) is reported as
an important nuclear enzyme cleaved during DNA injury that imparts cellular dysfunction and cell
death through apoptosis [30]. Western blot analysis of the apoptotic marker protein poly ADP ribose
polymerase (PARP) and its cleaved form (Cl.PARP) showed no significant increased expression in AGS
cells upon treatment with PRU as shown in Figure 2b. These results suggest that the cell death caused
by PRU was not induced or associated with apoptosis.
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Figure 2. Analysis of apoptosis induction by prunetin. (a) Nuclear fragmentation assay on AGS cells
treated with two concentrations of PRU (40 and 80 µM), respectively. (b) Western blot analysis of
important apoptotic marker proteins PARP and Cl.PARP on PRU (20, 40, and 80 µM) treated AGS cells
for 24 h.

The event of cell growth and cell survival process are regulated by pathways that involves
various cell cycle checkpoints in relation with programmed cell death and DNA repair mechanism [31].
With observed induction of cell death by microscopic examinations and cytotoxicity assay, further
investigations on the mechanism of cell cycle arrest by PRU on AGS cells was carried out using flow
cytometry analysis. The results obtained as shown in Figure 3a,b reveal that there is no cell cycle arrest
caused by PRU in any of the phases. From this, it was found that PRU induces cell death, but does not
cause any cell cycle arrest on AGS cells.
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Figure 3. Analysis of cell cycle by flow cytometry. (a) The effect of PRU on cell cycle arrest was
examined by flow cytometry analysis, AGS cells were treated with PRU at indicated concentrations
(20, 40, and 80 µM) for 24 h. Followed by propidium iodide (PI) staining and subjected to flow cytometer
analysis. (b) The population of cells identified on different phases of the cell cycle were represented
graphically. Values are given as the mean ± standard error of the mean (SEM) of three independent
experiments. * p < 0.05 vs. control, ** p < 0.01 vs. control, *** p < 0.001 vs. control.

Furthermore, to explore the exact mechanism of cell death, allophycocyanin (APC)/annexin V and
propidium iodide (PI) double-staining by flow cytometry was performed on PRU treated AGS cells.
The results obtained reveal that there is a substantial increase in the proportion of cells in necrotic states
when compared to the apoptotic fraction of cell population which is shown in Figure 4a,b. The data
obtained through double staining using APC/PI suggest that PRU induces necrotic related cell death in
AGS cells.
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Figure 4. Effect of prunetin on necroptosis related cell death. (a) The effect of PRU on cell cycle arrest
was examined by flow cytometry analysis, AGS cells were treated with PRU at indicated concentrations
(20, 40, and 80 µM) for 24 h. Followed by allophycocyanin (APC)/annexin V and propidium iodide
(PI) double-staining was performed which was analyzed by flow cytometry. (b) The population of
cells identified on the different state of cell death were represented graphically. (c) Cell viability
assay performed on PRU treated AGS cells with and without co-treatment with necrostatin-1 inhibitor
(0.1 mM). (d) Hematoxylin staining on PRU treated AGS cells with visible necroptic morphology such
as cell swelling, visible disruption of cell organelles, and formation of vacuoles. Values are given as the
mean ± standard error of the mean (SEM) of three independent experiments. * p < 0.05 vs. control,
** p < 0.01 vs. control, *** p < 0.001 vs. control.

Necrostatin-1 (Nec-1) is a specific small molecule potent inhibitor of necroptosis and it can
specifically inhibit RIP1-RIP3 interaction [32,33]. Thus, to confirm the involvement of necroptic cell
death, the cell viability of AGS cells were measured upon co-treatment with necroptosis inhibitor Nec-1
(0.1 mM) followed by PRU treatment (20, 40, and 80 µM). From the results obtained by assessing the
cytotoxicity levels by MTT, it was observed that the growth of AGS cells inhibited by PRU treatment
were reversed upon co-treatment with Nec-1 as shown in Figure 4c. Additionally, hematoxylin
staining on PRU treated AGS cells showed visible necrotic cell death morphology including swelling
of organelles, loss of plasma membrane integrity, and formation of vacuoles which are the primary
characteristic features of necroptosis [34] as shown in Figure 4d. Collectively, these data suggest that
compound PRU may induce necroptotic cell death in AGS gastric cancer cells.

The event of necroptosis mediated cell death is as caspase-independent regulated type of cell death
that involves the formation of necrosome complex which is mainly composed of the receptor-interacting
protein kinase-1 (RIPK1), receptor-interacting protein kinase-3 (RIPK3), and mixed lineage kinase
domain-like protein (MLKL) respectively [35]. With the obtained results from morphological
observations and double staining supporting the induction of necroptosis by PRU, and the necroptosis
marker proteins RIPK3, MLKL, the phosphorylation of RIPK3 and MLKL was evaluated by western
blot analysis. The results obtained from western blot show that there is an increase in the expression of
RIPK3 and MLKL along with its phosphorylated forms p-RIPK3 and p-MLKL elevated in PRU treated
cells as shown in Figure 5a.
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Figure 5. PRU induces necroptosis related cell death via RIPK3 and MLKL expression in AGS cells.
(a) Western blot analysis of necroptosis protein markers RIPK3, p-RIPK3, MLKL, and p-MLKL protein
expression on PRU treated AGS cells. The expression levels of phosphorylated form of RIPK3 and
MLKL are represented graphically based on its densitometry. (b) Protein expression of p-RIPK3 and
p-MLKL analyzed by western blot on PRU treated AGS cells with and without co-treatment with
necrostatin-1 inhibitor (0.1 mM). The expression of the protein levels is represented graphically based on
its densitometry. Values are given as the mean ± standard error of the mean (SEM) of three independent
experiments. * p < 0.05 vs. control, ** p < 0.01 vs. control, *** p < 0.001 vs. control.

Necroptosis signaling converges in the assembly of cytosolic component necrosome formed by
the activation of effector molecule MLKL [36]. RIPK3 is a key component involved in the formation
of necrosome-driven activation by phosphorylation of MLKL, which is the chief executioner of
necroptosis [37]. The over expression or elevated levels of RIPK3 protein has shown to induce cell
death and activation of inflammatory mediated mechanism in cancer cell lines [38]. Additionally,
to further confirm whether the induction of necroptosis has led to the elevated expression of p-RIPK3
and p-MLKL, inhibitor assay was performed. Western blot was performed on the proteins p-RIPK3
and p-MLKL in PRU-treated cells upon co-treatment with inhibitor Nec-1 at 0.1 mM concentration.
Nec-1 is a small effective molecule that inhibits the process of necroptosis by causing reduction in
RIPK1/RIPK3 kinase activity leading to the inhibition of several residues of serine-phosphorylation
during the formation of the necrosome complex [35,39]. The results as depicted in Figure 5b show that
the elevated expression of p-RIPK3 and p-MLKL in the PRU treated cells were found to be reduced
upon co-treatment with the inhibitor Nec-1. This supports that the inhibitor has a positive effect on
the action of necroptosis cell death induced by PRU in AGS cells. Taken together, these data reveal
that PRU activated RIPK3 expression leads to the phosphorylation of MLKL, inducing necroptosis
cell death.

Given the impressive results observed in AGS cell line by PRU treatment, we were
curious to determine the mechanism of its action or pathway leading to necroptosis cell death.
The mitogen-activated protein kinase (MAPK) pathway is an important signaling pathway involved in
oxidative stress, necroptosis, inflammation, and various pathological mechanisms [40]. In this aspect,
we studied the expression levels of mitogen-activated protein kinase (MAPK) family of proteins JNK,
p38, ERK, and its phosphorylated active forms—p-JNK, p-p38, and p-ERK—by western blot analysis.
As shown in Figure 6a, among the MAPK family of proteins, the protein JNK has been shown to
be activated with visible increase in its phosphorylated form p-JNK in a dose-dependent manner.
Whereas, comparatively, the phosphorylated forms of other proteins p-p38 and p-ERK does not show
significant increase in its expression level upon treatment with PRU in AGS cells as shown in Figure 6b.
Sustained increase in JNK activation has been proposed in causing cell death via cytochrome c release
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in mitochondria [41]. Also, treatment of cancer cells has been reported to trigger necroptosis through
RIPK3 complex with JNK activation and increased mitochondrial ROS levels [42].
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be observed in silico. Investigation on the interaction of RIPK3 and PRU was performed through 
molecular docking analysis. Structure of the compound RIPK3 was modelled by homology modeling 

Figure 6. PRU induces cell death by ROS generation through JNK activation. (a) Western blot
analysis of JNK, p-JNK, p38, p-p38, ERK, and p-ERK on PRU treated AGS cells. (b) The expression
of phosphorylated proteins p-JNK, p-p38, and p-ERK are represented graphically based on their
densitometry. (c) The effect of ROS generation was measured by fluorescent intensity detection in AGS
cells with and without co-treatment with specific JNK inhibitor SP100125 (10 µM). (d) Cell viability
assay performed on PRU treated AGS cells with and without co-treatment with JNK inhibitor SP100125
(10 µM). Values are given as the mean ± standard error of the mean (SEM). * p < 0.05 vs. control,
** p < 0.01 vs. control, *** p < 0.001 vs. control.

ROS are important highly reactive inducers of cellular malfunctions that can damage DNA,
proteins, and lipids. Thus ROS inducers are employed in treatment strategies in clinical trials
preferentially for killing cancer cells [43]. Necrosomes have been reported to impair mitochondrial
energy metabolism by disturbing ROS homeostasis, leading to cell death [42]. A growing number of
reports also suggest that ROSs could disturb the mitochondrial disturbance in the event of inducing
necroptosis cell death [44,45]. To uncover the relation of ROS generation through JNK activation,
the amount of intracellular singlet oxygen generated in AGS cells treated with PRU (0, 20, 40,
and 80 µM) was measured with or without specific JNK inhibitor (SP100125) at 10 µM concentration.
The accumulation of ROS was measured upon 24 h incubation through spectroscopic fluorescence. Our
results as presented in Figure 6b, showed an increased level of ROS in the group of cells treated with
only PRU compared to the control, whereas the group of cells co-treated with JNK inhibitor did not
show steady increase in the generation of ROS. These results show the significant correlation between
the activation of JNK and ROS generation in PRU treated AGS cells. Thus, it suggests that PRU initiated
the activation of JNK, leading to ROS accumulation and subsequently causing necroptosis cell death.

Similarly, to establish the correlation of cell growth inhibition via JNK activation, the percentage
of cell viability upon co-treatment with JNK inhibitor on PRU treated AGS cells were analyzed using
MTT assay. Results indicate that the growth of AGS cells were inhibited in the only PRU treated group,
whereas the cell viability was found to not be affected in the co-treatment group with JNK inhibitor as
shown in Figure 6b. This data further supports that JNK has contributed to the induction of necroptosis
cell death in PRU treated AGS cells.
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Encouraged with these in vitro results, the next step was to determine if the efficacy would also
be observed in silico. Investigation on the interaction of RIPK3 and PRU was performed through
molecular docking analysis. Structure of the compound RIPK3 was modelled by homology modeling
using Swiss-Model program (https://swissmodel.expasy.org/). Furthermore, the three-dimensional
structure of RIPK3 was made to undergo ligand docking with the structure of PRU and a known
inhibitor of RIPK3 (ponatinib) adopted as a reference compound. To the best of our knowledge, there
is no well-established agonist compound for the activation of RIPK3 protein. Thus, molecular docking
approach was studied by comparing with a reported inhibitor (ponatinib), which is an allosteric
inhibitor that can bind on the allosteric site of the protein RIPK3 to produce its mechanism of action [46].
Molecular docking results show that the two ligands (prunetin and ponatinib) have occupied the
same binding pocket of the target RIPK3 as shown in Figure 7a,b. The molecular dock score has been
put forth that the reference compound ponatinib as revealed an estimated free binding energy of
−8.9 kcal/mol and the compound PRU generated an estimated free binding energy of −8.6 kcal/mol.
Interestingly, both prunetin and ponatinib have shown similar amino acid residues—namely THR94,
LEU92, VAL35, and ASP160—via hydrogen bonding and van der Waals interactions with RIPK3
complex. These data demonstrate that both prunetin (activator) and ponatinib (inhibitor) bind to the
allosteric site of the protein RIPK3 and execute their respective mechanism. This molecular docking
analysis explains the mechanism of activation of RIPK3 as a preliminary in silico confirmation on its
interaction with PRU.
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contacts with the most interacted amino acid being ASP 462, followed by GLY 461 and VAL 458 as 
shown in Figure 8a. In addition, interaction with amino acids such as ILE 541, ILE 539, VAL 460, and 
ILE 452 had negligible impact on the overall interaction profile (Figure 8c). Furthermore, in the 
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only a transient impact was recorded on ILE 541 hydrophobic interactions were prominent with VAL 
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Figure 7. In silico molecular docking analysis of the ligands prunetin and ponatinib at the same binding
pockets of the target. (a) The 3D structure of RIPK3 bound efficiently with compound prunetin with its
interacting amino acids MET97, THR94, LEU92, VAL35, and ASP160. (b) The 3D structure of RIPK3
bound efficiently with the known inhibitor compound ponatinib with its interacting amino acids
LEU150, ASP160, VAL35, SER146, THR94, and LEU92. The common amino acid residues involved in
the interaction are circled in red color.

To secure the results obtained from molecular docking, the molecular dynamics simulations were
performed on the ligand–receptor complex. The MD simulation was initiated on the bound complex
and the behavior was monitored for a period of 10 ns. The stability of the complex is determined
in terms of RMSD and RMSF of the protein along with the ligand. Root mean square fluctuation
(RMSF) is useful for characterizing the local changes along the protein chain and root mean square
deviation (RMSD) is used to measure the average change in displacement of selection of atoms for
particular frame with respect to reference frame [47]. The protein ligand fit was observed to be in
stable confirmation up to 10 ns and the stability was at a higher RMSD value as shown in Figure 8b.

https://swissmodel.expasy.org/
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Structurally, the protein RIPK3 is a third member of RIPK kinase family of proteins comprised if N-
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family of proteins [49].  
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flexibility, lipophilicity, saturation, size, polarity, and solubility. The solubility properties based on 
the consensus log p value of 2.43 in lipophilicity and log S (ESOL) value of −3.92, overall it can state 
that the compound PRU has a good lipophilic character and belongs to the water soluble class [50].  
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model, the compound PRU shows high gastrointestinal absorption and it is slightly permeable to the 
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which means there would not be any issue in the excretion of the drug, since P-gp appears to have a 
significant role in limiting the cellular uptake of drugs from blood circulation and excretion [51]. Also, 

Figure 8. In silico molecular dynamics simulation. (a) Ligplot 2D summary showing the interaction of
amino acids in the protein with the ligand. (b) The protein RMSD plot showing the ligand protein fit up
to 10 ns during molecular dynamic simulation. (c) Protein–ligand interaction timeline with intensity of
the each interacting amino acids during molecular dynamic simulation. (d) Interaction fractions of
various residues during molecular dynamic simulation.

Over the simulation period, the protein–ligand contact ranges from one to more than nine contacts
with the most interacted amino acid being ASP 462, followed by GLY 461 and VAL 458 as shown in
Figure 8a. In addition, interaction with amino acids such as ILE 541, ILE 539, VAL 460, and ILE 452
had negligible impact on the overall interaction profile (Figure 8c). Furthermore, in the simulated
model, the hydrogen bonds were recorded efficiently with GLY 461 and ASP462; however, only a
transient impact was recorded on ILE 541 hydrophobic interactions were prominent with VAL 460,
ILE 541, and VAL 458 amino acids. Water bridges were recorded with minor impact on ASP 462, GLY
461, THR 532, and GLY 542 (Figure 8d). During the period of 10 ns simulation, the deviations in the
molecular properties—such as ligand RMSD, radius of gyration (rGyr), molecular surface area (MolSA),
solvent accessible surface area (SASA), and polar surface area (PSA)—were recorded with minimal
range with few intramolecular hydrogen bonds, provided in Figure S2. Collectively, the results of in
silico validation through dynamics simulation of the docked complex supports the in vitro outcomes
by confirming the effective interaction of PRU with RIPK3.

With these impressive results observed by PRU, we also predicted its targets using Swiss Target
Prediction (http://www.swisstargetprediction.ch/). Interestingly, the compound PRU has a high number
of predicted class of targets in the kinase family of proteins which is shown in Figure S3. Structurally,
the protein RIPK3 is a third member of RIPK kinase family of proteins comprised if N-terminal kinase
domain with a unique C-terminal domain that differs from other protein domains [48]. This further
adds significance to our study with our target RIPK3 that belongs to the kinase family of proteins [49].

Similarly, the pharmokinetic properties and drug-likeliness of the compound PRU was analyzed
using SwissADME online version (http://www.swissadme.ch/) and the predicted data are shown in
Figure S4. The bioavailability radar, as shown in Figure S4a, depicts the suitable physicochemical
space for oral bioavailability of the compound PRU in colored zone including parameters such as
flexibility, lipophilicity, saturation, size, polarity, and solubility. The solubility properties based on the

http://www.swisstargetprediction.ch/
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consensus log p value of 2.43 in lipophilicity and log S (ESOL) value of −3.92, overall it can state that
the compound PRU has a good lipophilic character and belongs to the water soluble class [50].

According to the pharmacokinetic properties represented in Figure S4b using the boiled egg
model, the compound PRU shows high gastrointestinal absorption and it is slightly permeable to the
blood–brain barrier. From Figure S4c, it can be seen that the compound PRU is not a P-gp substrate
which means there would not be any issue in the excretion of the drug, since P-gp appears to have
a significant role in limiting the cellular uptake of drugs from blood circulation and excretion [51].
Also, essential information about the interaction with cytochrome P450 isoforms (CYP1A2, CYP2C19,
CYP2C9, CYP2D6, CYP3A4) has been predicted, because inhibition of these enzymes is certainly an
important cause of drug interaction leading to toxicity [52]. The drug likeness parameter was found to
be high as it follows the rule of five Lipinski, Ghose, Veber, Egan, and Mugge with a bioavailability
score of 0.55. Based on the in silico ADMET analysis, it was found that the compound accomplished
the ADMET descriptors criteria at an optimal level with no violations [53]. In combination, the results
presented above demonstrate the anti-proliferative effect of compound PRU on AGS gastric cancer
cells elucidated in vitro with supporting in silico validation.

4. Conclusions

In conclusion, the compound prunetin (PRU) was shown to be efficacious and executes
anti-proliferative action on AGS cancer cells. PRU was found to induce necroptosis mediated
cell death by the activation of RIPK3 protein, leading to the phosphorylation of MLKL which was
confirmed in vitro and validated by in silico molecular docking and simulation studies. Furthermore,
the cell death induced by PRU associated with the elevation of ROS generation through JNK activation
was also confirmed. Additional analysis on the ADMET properties of PRU gives insight about the
drug likeness of the compound. Thus, collectively, the data obtained from the study demonstrate a
preliminary approach that PRU possesses anti-proliferative effect as and with further validations it
would be potential in the treatment of gastric cancer.
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