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Abstract

Colonization of the infant gut by microorganisms over the first year of life is crucial for development of a balanced immune
response. Early alterations in the gastrointestinal microbiota of neonates has been linked with subsequent development of
asthma and atopy in older children. Here we describe high-resolution culture-independent analysis of stool samples from 6-
month old infants fed daily supplements of Lactobacillus casei subsp. Rhamnosus (LGG) or placebo in a double-blind,
randomized Trial of Infant Probiotic Supplementation (TIPS). Bacterial community composition was examined using a high-
density microarray, the 16S rRNA PhyloChip, and the microbial assemblages of infants with either high or low LGG
abundance were compared. Communities with high abundance of LGG exhibited promotion of phylogenetically clustered
taxa including a number of other known probiotic species, and were significantly more even in their distribution of
community members. Ecologically, these aspects are characteristic of communities that are more resistant to perturbation
and outgrowth of pathogens. PhyloChip analysis also permitted identification of taxa negatively correlated with LGG
abundance that have previously been associated with atopy, as well as those positively correlated that may prove useful
alternative targets for investigation as alternative probiotic species. From these findings we hypothesize that a key
mechanism for the protective effect of LGG supplementation on subsequent development of allergic disease is through
promotion of a stable, even, and functionally redundant infant gastrointestinal community.
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Introduction

There is growing evidence that failure to develop a balanced

immune response plays a key role in asthma and allergy

development [1,2,3], and that environmental microbial exposure

and host sampling of the developing gastrointestinal (GI) microbial

community over the first year of life are crucial to immune

response maturation [4,5]. Culture-based approaches have

suggested that the development of the GI microbiome is a

progressive event beginning at birth and continuing until infants

are weaned, with particular organisms acquired in distinct phases

[6]. More recent, culture-independent studies have demonstrated

that rather than a progressive colonization, the first year of life is

characterized by fluctuating diversity of the microbial assemblage

until convergence, with weaning, towards a GI community that

more resembles that of an adult [7,8,9,10]. As with adult GI

bacterial consortia, inter-personal differences in GI microbial

communities are evident in infants, particularly in the rate and

stability of communities colonizing neonates [10,11]. By 12

months old, the infant GI microbial community structure is

relatively stable and the consortium largely resembles that of an

adult, in which the Bacteroidetes and Firmicutes represent the two

most dominant phyla [8,9,10].

A direct association has recently been demonstrated between

the presence and abundance of specific microbial species in the GI

tract of infants during the first 6 months of life and subsequent

development of allergic disease at ages 1 and 2 [12,13],

demonstrating that early events in GI colonization precede

development of allergic disease later in life. The first indication

that a link existed between the GI microbiome and allergy was

reported in the early 1980’s in a study that described ‘‘dysbacter-

iosis’’ in infants with dermatological manifestations of food allergy,

primarily due to low Bifidobacteria and Lactobacilli in combina-

tion with high numbers of species from the Enterobacteriaceae

family [7]. Since then several studies have examined specific

bacterial species in GI samples and demonstrated that their
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abundance correlated with atopy and asthma development

[14,15,16,17,18]. A cross-sectional study of 1 year old infants in

Estonia (low allergy prevalence) and Sweden (high allergy

prevalence) demonstrated that more Estonian children possessed

Lactobacilli and Eubacteria in their stool compared to Swedish

children who were more likely to be colonized by Clostridium difficile

[11]. A follow-up prospective study of stool samples from Estonian

and Swedish children who were sampled over the first year of life

and clinically followed up to 2 years of age, demonstrated that

infants who developed allergy consistently exhibited lower levels of

Bifidobacterial colonization compared to those that did not

[16,18]. Species-specific q-PCR analysis of the feces of 957 one-

month-old infants in the KOALA birth cohort also demonstrated

that a high abundance of Escherichia coli or C. difficile [12,13] was

associated with the development of eczema or atopy respectively

[14].

The hygiene hypothesis suggests that a lack of microbial

exposures during the crucial stages of immune maturation in

infancy, results in immune modulation (Th2-biased response) that

increases susceptibility to development of allergic disease [17].

Several studies have linked probiotic species with immunomodu-

lation [14,15,16,18,19,20,21] and demonstrated their efficacy in

protection against development of allergy and atopy. A random-

ized, controlled, double-blind study of 159 newborns, found that

early feeding of Lactobacillus casei decreased the rate of atopic

dermatitis at age two by 50% [22] and that this protective effect

was sustained past infancy [23]. In animal models, probiotic

supplementation has been shown to attenuate the respiratory

inflammatory response [24] and reduce allergen-induced skin

inflammation in sensitized mice [25]. Maassen and colleagues [26]

demonstrated that of the eight Lactobacillus species used in their

study of gut epithelial cytokine response, none induced local

production of TGF-beta or IL-10, both of which are associated

with a Th2 phenotype (a hallmark of atopic disease [27,28,29]).

These observations are supported by other studies, which suggest

that exposure to probiotics including Lactobacillus species, favors

development of a Th1 phenotype and suppression of Th2 secreted

cytokines [30].

The overall indication is that early events in gut microbial

colonization play a key role in development of inflammatory

disease at sites remote from the GI tract, and that a GI

microbiome composed of beneficial bacterial species protects

against allergy and atopic disease. Recent studies have demon-

strated that the human gut is a densely populated, diverse bacterial

microbiome [8,9,10], representing a complex host-microbial

interaction. Therefore, it is likely that the species identified in

previous studies may act as biomarkers for specific microbial

consortia associated with, or protective against, allergic disease

development. There is precedence for such a paradigm; several

studies have demonstrated that bacterial community composition

is dramatically altered in diseases such as obesity and periodontal

disease [8,31,32] and that these changes are associated with

altered consortium functionality [9].

While several studies have linked probiotics with improved

clinical outcome, no study to date has examined the effect of

supplementation on the overall GI microbiome to determine if the

beneficial effects are due solely to high abundance of the species

supplemented, or to a more global change in GI community

structure. Here we describe culture-independent analysis of stool

samples from 6-month-old infants at high risk for asthma

development in the Trial of Infant Probiotic Supplementation

(TIPS) study who were fed daily Lactobacillus casei subsp. rhamnosus

(LGG) or placebo from birth to 6 months. Bacterial community

composition was profiled using the 16S rRNA PhyloChip

[33,34,35], a high-density, culture-independent microarray that

can identify approximately 8,500 bacterial taxa (defined as groups

of organisms that share at least 97% 16S rRNA sequence identity)

in a single assay.

Materials and Methods

Ethics Statement
The Committee on Human Research at UCSF approved all

study protocols, and all parents provided written, informed

consent.

Sample Collection
Stool samples from 6-month-old infants (n = 16) randomized in

blocks of four to daily probiotic (Lactobacillus casei subsp.

Rhamnosus (LGG; ATCC 53103; 16109 CFU) or placebo

supplementation in the TIPS trial were used for this study.

Samples were collected on the day prior to, or the day of the 6

month clinical visit from diapers using a scoop attached to the lid

of a sterile collection vessel, prior to storage at 4uC and hand

delivery or overnight mail to the study team. Samples were

immediately banked at 280uC upon receipt.

Sample Processing
Stool samples were thawed on ice prior to extraction of DNA

using the UltraClean Fecal extraction kit according to the

manufacturer’s instructions (Mo Bio, CA). Universal primers 27F

(59-AGAGTTTGATCCTGGCTCAG-39) and 1492R (59-GGT-

TACCTTGTTACGACT T-39; [36]) were used to amplify the

16S rRNA gene using 12 PCR reactions per sample performed

across a gradient of annealing temperatures (48-58uC) to maximize

diversity recovered. PCR reactions contained 0.02 U/ml Takara

Ex Taq DNA Polymerase (Takara Bio Inc., Japan), 16 Takara

buffer, 0.8 mM Takara dNTP mixture, 0.4 mg/ml bovine serum

albumin (BSA) and 1.0 mM of each primer. PCR conditions were

1 cycle of 3 min at 95uC followed by 25 cycles of 95uC for 30 s,

the gradient annealing temperature for 30 s, 72uC for 2 min and a

final extension at 72uC for 10 min. A total of 100 ng of extracted

DNA from the stool samples was used per PCR reaction.

Amplified products from all 12 annealing temperatures were

pooled, gel purified and processed for PhyloChip analysis as

previously described [33], except that 500 ng of each amplicon

was hybridized. Further details of the PhyloChip, its development

and use are provided elsewhere [37,38,39,40,41].

Microarray Analysis
Data sets were conservatively filtered, with taxa determined as

present if $90% of probes in a probe set (for an individual taxon)

were positive. Changes in probe-set fluorescence intensity are

equivalent to changes in taxon relative abundance between

samples. For taxa determined to be present in at least one sample,

PhyloChip probe-set fluorescence intensity data was log trans-

formed prior to analysis using packages in the R statistical

environment [42]. Hierarchical cluster analysis (HCA) was

performed on a Bray-Curtis dissimilarity matrix generated from

PhyloChip fluorescence intensity data using the vegan package [43],

followed by average linkage clustering.

A two-tailed Welch’s T-test was used to identify taxa that were

significantly altered in relative abundance in specific groups and

adjusted for false discovery using the qvalue package as previously

described. Significance was assigned with a p-value #0.05, q-value

of 0.057. The 16S rRNA sequences of significant taxa were used to

construct a neighbor-joining with nearest-neighbor interchange
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tree using FastTree [44] which was annotated using the Interactive

Tree of Life (http://itol.embl.de/; [45]).

Correlation analysis of each individual taxon abundance against

that of LGG (OTU_ID 3821) was performed using the multtest [46]

package available as part of the Bioconductor suite of analysis

programs [47]. Q-values were again generated for all p-values;

taxa with r60.5, p,0.05, q,0.15 were considered significant.

Indices of Bacterial Community Phylogenetic Structure
Nearest-taxon index (NTI) and Net-relatedness index (NRI;

[48,49]) were calculated using the picante package [50]. A

phylogenetic tree of representative sequences was constructed as

described above and used together with taxon richness to calculate

the mean phylogenetic distance (MPD) and mean nearest

phylogenetic taxon distance (MNTD) using the phylogeny shuffle

null model for each sample. MPD and MNTD values were used,

as previously described [49], to calculate NRI and NTI values

respectively for each sample. Inverse Simpson’s diversity index

[51] and Pielou’s evenness [52] were calculated using the vegan

package [43]. To accurately reflect community richness for this

calculation, individual taxa were deemed to have an abundance of

0 if they did not meet the pf $0.9 criterion.

Q-PCR Validation of LGG Presence and Relative
Abundance

Quantitative PCR (Q-PCR) was performed to validate the

presence and relative abundance of L. casei using primers based on

PhyloChip probe sequences (LcF 59-CGCATGGTTCT TG-

GCTGAAA-39 and LcR 59-ACAACAGTTA CTCTGCCGAC-

39). A total of 10 ng of DNA per reaction was used in triplicate,

25 ml Q-PCR reactions at an annealing temperature of 55uC.

Regression analysis of inverse cycle threshold values plotted

against array fluorescence intensity was used to confirm relative

abundance of L. casei reported by the array and concordance

between the two independent molecular methods.

Results

Bacterial Community Composition
In the original TIPS trial, infants were randomized in groups of

4, therefore the cohort investigated in this study consisted of

subjects fed LGG and those fed placebo. However, to protect the

integrity of the TIPS trial, investigators remained blinded to the

nature of the daily supplement. A total of 1,988 taxa, representing

46 different bacterial phyla were detected across all samples (a

complete list of taxa detected is provided in Supplementary

material, Table S1). This represents considerably greater diversity

than previously reported in a clone library study of healthy infant

stool samples [10], likely due to the ability of the array to sample in

parallel and detect species that represent as little as 0.01% of the

bacterial community [34]. Community richness (number of taxa

present) was broadly similar across all samples studied (mean

number of taxa per sample was 11466125; Fig. 1A). This suggests

that none of these infants had received antibiotics, (characteristi-

cally associated with a rapid, dramatic decline in bacterial

community richness [53,54]), proximal to the date of sample

collection. Community richness ranged from 950 (TIPS 114) to

1,333 taxa (TIPS 103). Inter-subject microbiota variation has

previously been described in a study of infant GI microbiota [10],

suggesting that daily probiotic supplementation with LGG

(16109 CFU) did not result in dramatic domination of the

communities by this species. Consortia were typically composed

of members of the phyla Proteobacteria, Firmicutes, Actinobac-

teria and Bacteroidetes, which is in agreement with those detected

in previous culture-independent studies of infant gastrointestinal

microbiota [8,9,55]. At a more detailed phylogenetic level the

greatest number of taxa detected belonged to the family

Clostridiaceae, followed by the Enterobacteriaceae, Lachnospir-

aceae, Alteromonadaceae and Bacillaceae respectively.

Comparative analysis of LGG relative abundance in subject

samples demonstrated that substantial differences existed across

the cohort (Fig. 1B). To confirm differences in LGG abundance,

independent Q-PCR analysis was performed on all samples with

sufficient material (n = 11). Regression analysis demonstrated a

significant correlation between the two independent molecular

methods (r = 0.63; p,0.05), demonstrating concordance be-

tween the array and Q-PCR results and confirming the

variation in relative abundance observed by the array in infant

stool samples.

Effect of LGG Abundance on Bacterial Community
Structure

Hierarchical cluster analysis was performed on all samples using

a distance matrix representing differences in PhyloChip taxon

intensities. This demonstrated the existence of a clear cluster

which contained the majority of samples with high LGG relative

abundance (Fig. 2), suggesting that the presence of LGG in high

abundance was associated with a specific community composition.

To identify the organisms that characterized those communities,

all samples were ranked by abundance of LGG and the five

samples with the highest abundance were compared to the five

Figure 1. A. Community Richness. Bacterial community richness
(number of taxa detected by 16S rRNA PhyloChip) in stool samples from
6 month old study subjects. B. LGG Abundance. LGG abundance
(based on total fluorescence intensity) varies across subject samples.
doi:10.1371/journal.pone.0008745.g001
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with the lowest abundance using a two-tailed Welch’s t-test.

Following adjustment for false discovery a total of 682 taxa

demonstrated significant differences between the two groups, all of

which were more abundant in the high LGG samples (a complete

list of taxa exhibiting significantly different abundance is provided

in Supplementary Table, S2). The fact that the relative abundance

of a number of taxa was significantly higher in the high LGG

samples indicates that changes in community structure associated

with high abundance LGG are not simply due to a dilution effect,

but putatively to promotion of other members of the GI

microbiota. Taxa of interest that were significantly more abundant

in the high LGG samples included, amongst others, nine related

Lactobacillaceae (L. crispatus [two strains], L. salivarius, L.sakei, L.

manihotivorans, L. suntoryeus, L. kitasatonis, L. cypricasei and L.

fuchuensis), and a member of the Bifidobacteriaceae (Bifidobacter-

iaceae genomosp. C1).

To determine if a high relative abundance of LGG impacted the

abundance of phylogenetically related or, conversely phylogenet-

ically distinct bacteria, community structure metrics Nearest

Taxon Index (NTI) and Net Relatedness Index (NRI) were

calculated (Table 1). Taxa promoted in the high LBB abundance

communities had an NTI of 9.99 and NRI of 4.59, indicating that

the species promoted in these communities were phylogenetically

clustered at both the tips of the phylogenetic tree (NTI) and

throughout the tree (NRI) relative to all bacteria detected. This

clustering phenomenon is evident on a phylogenetic tree of all taxa

that increased or decreased significantly in relative abundance;

approximately 60% of the taxa that exhibited significantly higher

abundance in the high abundance LGG communities belonged to

the Proteobacteria and 37% of the total taxa were Gammapro-

teobacteria alone (Fig. 3). Various community metrics were also

calculated for each individual sample and compared between high

Figure 2. Hierarchical cluster analysis of infant stool samples. Hierarchical cluster analysis reveals that LGG abundance is associated with
specific bacterial community structures.
doi:10.1371/journal.pone.0008745.g002

Table 1. Diversity and Phylogenetic Indices.

Sample Taxon Richness Pielou’s Evenness Inverse Simpson’s Index Nearest Taxon Index Net Relatedness Index

TIPS103 1333 0.9906 1185.09 21.50 2.26

TIPS104 1014 0.9934 933.92 21.04 20.05

TIPS105 1061 0.9932 974.79 1.25 1.39

TIPS106 1285 0.9938 1187.24 20.02 25.30

TIPS108 1158 0.9942 1076.34 20.30 20.33

TIPS110 1203 0.9949 1129.03 20.64 20.25

TIPS111 1278 0.9938 1183.64 22.40 20.67

TIPS114 950 0.9875 814.61 22.77 22.01

TIPS116 1032 0.9943 962.01 1.24 1.20

TIPS117 1161 0.9935 1069.16 20.72 22.31

TIPS122 1253 0.9911 1124.22 22.11 22.56

TIPS123 1064 0.9926 970.82 0.16 1.94

TIPS124 1117 0.9938 1033.53 0.82 22.12

TIPS301 1319 0.9939 1223.26 21.74 21.30

TIPS501 1020 0.9938 945.40 0.76 1.52

TIPS601 1100 0.9932 1010.23 22.22 21.95

Samples in bold text were used as the examples of high LGG abundance and those in italics as examples of low LGG abundance in the t-test analysis.
doi:10.1371/journal.pone.0008745.t001
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the LGG and low LGG samples by a two-tailed Welch’s T-test

(Table 1). Though the difference was small, Pielou’s species

evenness index was significantly higher in high LGG samples

(p,0.041), demonstrating that communities with high abundance

LGG were significantly more even than those with a low

abundance of this species. Given the large size of the communities

even this small, significant change in evenness is indicative of

fundamental differences in the two communities. Species richness,

community diversity (calculated using Inverse Simpson’s index)

Nearest Taxon Index (NTI) and the Net Relatedness Index (NRI)

were not significantly different (p.0.05) between the two groups.

Correlation of LGG with Other Members of the
Microbiota

We hypothesized that a proportion of the taxa that differenti-

ated high LGG samples from other samples would be due to

LGG-dependent interactions. Therefore we performed correlation

analysis to identify the significant relationships that existed

specifically between LGG and other taxa detected using all

available samples. LGG was significantly correlated with 361 taxa

(41% of which were also identified as significantly more abundant

in high LGG samples; supplementary table S2). A total of 358 of

these correlations were positive, 3 were negative. Positively

correlated taxa included known probiotic species such as

Lactobacillus fuchuensis and Bifidobacterium bifidum as well as several

members of the Helicobacteraceae and a number of species that

are known to produce antimicrobial compounds e.g. Streptomyces

coelicolor. Interestingly S. coelicolor has been detected in the intestines

of earthworms where it is particularly antagonistic to the anaerobic

spore-forming bacteria [56]. Many of the positive relationships

identified were with poorly characterized species, for example, the

taxa most highly correlated with high LGG abundance were three

Verrucomicrobia, two of which are unclassified and the third has

the representative species Prosthecobacter dejongeii [57]. Characterized

members of this recently described genus are fermenters and have

been shown to encode a multitude of eukaryotic genes; their

Figure 3. Significant Differences in Abundance of Taxa. Phylogenetic tree displaying taxa significantly increased in relative abundance in LGG
dominated samples as a heatmap of fluorescence intensities in the outer ring. The inner ring displays the phylogenetic affiliation of each bacterial
taxon at the level of class or higher. The scale bar indicates 0.01 nucleotide substitutions per base.
doi:10.1371/journal.pone.0008745.g003
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ancestors are hypothesized to have played an important role in the

evolution of a proto-eukaryotic organism [58]. The three negative

correlations revealed by this analysis were with Bacteroides uniformis,

B. merdae and a swine intestinal clone classified as a member of the

Lachnospiraceae.

Discussion

The protective effect of specific probiotic species against diseases

such as atopy (reviewed in [59]), irritable bowel syndrome

[60,61,62] and neonatal necrotizing enterocolitis [63] amongst

others has previously been demonstrated in a number of clinical

studies. However, the species-specific mechanism of protection

conferred by feeding commensal organisms remains elusive. We

took advantage of an on-going clinical study, the Trial of Infant

Probiotic Supplementation (TIPS), to pose the question whether

probiotic supplementation results in a species-specific increase in

relative abundance that accounts for protection or if there is a

global effect on the complex GI microbial consortium. In the latter

case, we hypothesized that comprehensive analysis of these

communities would identify the consortia that act in concert to

protect against allergic disease development.

PhyloChip analysis of stool collected from 6-month old infants

who had received daily probiotic or placebo supplements

permitted high-resolution profiling of the microbial assemblages

present in these samples. Although we remained blinded to the

identity of which infants received probiotic supplementation,

comparative analysis of LGG relative abundance amongst the

samples demonstrated clear differences in the abundance of this

species. While we cannot be sure that all of these infants received

probiotic supplementation, the fact that substantial differences in

LGG abundance existed amongst our subjects allowed us to focus

our analysis efforts on the effect of LGG abundance (high or low)

on GI community composition. Though it is likely that those with

the highest abundance received supplements and those with the

lowest did not, it is difficult to determine whether samples

TIPS114 and TIPS601 represent supplemented infants that have

not retained the LGG as efficiently as other infants in the study, or

whether they have received placebo but have higher than average

abundance of LGG from other dietary sources. Cluster analysis of

these samples, supported the hypothesis that LGG abundance was

associated with a distinct community composition. The majority of

samples with high LGG abundance clustered together and formed

a group distinct from those with low LGG abundance.

Analysis of the phylogenetic differences characteristic of samples

with high LGG revealed a large number of taxa increased in

relative abundance in these communities. These included a

number of known beneficial species belonging to the Lactobac-

illaceae and Bifidobacteriaceae in addition to species that, through

their secondary metabolite production could conceivably influence

GI consortium composition. Community phylogenetic metrics

(NTI and NRI) demonstrated that the promoted taxa were

strongly phylogenetically related. This suggests functional redun-

dancy within GI communities that possess LGG in high

abundance. Ecologically this attribute is characteristic of a stable,

resilient consortia, resistant to sub-population overgrowth that can

reduce host fitness [64]. In addition, samples with high LGG

abundance were significantly more even; initial evenness of

microbial communities has been suggested to preserve the

functional stability of an ecosystem [65]. In the case of human

hosts, overgrowth by pathogens, such as Escherichia coli in 1-month

old neonates has previously been shown to be associated with a

higher risk of developing eczema and this risk is increased with

greater numbers of this species [12]. These observations point to a

protective mechanism by which high LGG abundance results in

promotion of other protective species in a community that is

functionally redundant, more even, and possibly resistant to

pathogen overgrowth.

Given these data, it is tempting to suggest that perturbation of

the GI community, due to antibiotic administration or viral

infection early in life, may affect microbial colonization patterns

and permit outgrowth of specific resistant members of the

community that influence immune development. Putatively, this

provides an explanation for the relationships demonstrated

between these factors and subsequent allergic disease development

[66,67]. Certainly there is support in the literature for such a

model; several recent studies have demonstrated that host

susceptibility to enteric pathogens is influenced by the GI bacterial

community composition [68,69] and Hrncir et al showed a link

between gut microbiota, diet and development of T reg cells (key

to maintaining immunological homeostasis) in germ-free mice

[70]. Given the extent of GI community diversity and the inherent

inter-personal variability in consortium composition, a compre-

hensive analysis of the pattern of colonization over the first year of

life in well defined groups is necessary to address this, and many

other questions fundamental to understanding the complexity of

GI microbial factors that impact development of allergic disease.

In addition to a large number of commonly isolated or identified

gut microorganisms, the PhyloChip also identified a range of taxa

that are not commonly associated with this environment

(supplementary table 1). There are a number of possible

explanations for this, firstly the PhyloChip is a highly sensitive

technique, rather than detecting the most abundant taxa present

in a sample, it detects taxa in parallel to as little as 0.01% of the

total abundance. Secondly, the representative organism for a given

taxon (Table S1) may not have been reported previously in the gut

environment, but other, related organisms in that taxonomic

group may have been identified. Other culture-independent

studies using high-throughput sequencing have also detected

unexpected organisms in specific host niches; Eckburg et al [71]

noted the presence of a novel, deeply branching lineage related to

the Cyanobacteria by high-throughput sequencing in mucosal

tissue and fecal samples while Andersson et al also identified a

diverse stomach microbiota which included Cyanobacteria and

Chlamydia sequences [72]. The more frequent use of high-

coverage culture-independent approaches and repeated detection

of these species in specific niches, validates their presence and

suggests a role for these unusual organisms in human health.

Mucosal recognition and discrimination between commensal

and pathogenic species is key to the regulation of immune

homeostasis. This study certainly suggests that the relationship

between LGG abundance and the immune response is signifi-

cantly more complex than is inferred from studies of single species

in vitro. Supplemental analysis to determine which taxa exhibited a

relationship specifically with LGG abundance demonstrated that

41% of taxa differentiating high LGG from low LGG samples also

exhibited significant correlations with LGG. Proposed mecha-

nisms by which probiotic species are believed to elicit a beneficial

effect include direct antimicrobial activity, competitive coloniza-

tion, stimulation of immune responses and inhibition of virulence

gene or protein expression by pathogenic species [73]. In addition

to these possible factors, LGG also appears to elicit a profound

effect on GI community composition. The beneficial effect of this

species appears not to be due solely to its high abundance, but to

the global changes in the bacterial community composition of the

infant gut when it is present in high abundance. It is clear that a

large number of other taxa detected in this study that have not

previously been associated with, but are now potentially implicated
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in protection against allergic disease development, merit further

study. To fully understand the functional implications of probiotic

supplementation, parallel microbial consortium and host response

gene expression analyses in clearly defined groups of probiotic or

placebo supplemented infants are necessary.

The overall health effects of probiotic supplementation are

strain-specific [59]. Nevertheless, there are potential general

implications from this LGG-focused study which demonstrate

that high abundance of this species is associated with a dramatic

change in GI microbial community composition, impacting the

relative abundance of a large number of taxa previously associated

with either an increased or decreased risk for the development of

allergy and atopy. Recent findings demonstrate that the GI

microbiome is a unique, personalized assemblage at the species

level [74]. Therefore there is potential for multiple components of

this consortium to confer a protective effect. The data presented

here suggests that promotion of a phylogenetically even,

functionally redundant infant GI community, composed of a

multitude of probiotic species, rather than a community

dominated by a single beneficial species, may represent a key

factor in protection against allergic disease development.

Supporting Information

Table S1 Total taxa detected by PhyloChip. A list of all taxa

detected by the 16S rRNA PhyloChip in all samples.

Found at: doi:10.1371/journal.pone.0008745.s001 (0.38 MB

XLS)

Table S2 Significantly correlated and T-tested taxa. A list of

taxa that are significantly correlated, positively or negatively, with

LGG together with those that demonstrate significant differences

in abundance between high LGG (G1) and low LGG samples.

Found at: doi:10.1371/journal.pone.0008745.s002 (0.25 MB

XLS)
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