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Abstract

Low-dose computed tomography (LDCT) denoising is an indispensable procedure in the medical imaging field, which not only im-
proves image quality, but can mitigate the potential hazard to patients caused by routine doses. Despite the improvement in perfor-
mance of the cycle-consistent generative adversarial network (CycleGAN) due to the well-paired CT images shortage, there is still a
need to further reduce image noise while retaining detailed features. Inspired by the residual encoder–decoder convolutional neural
network (RED-CNN) and U-Net, we propose a novel unsupervised model using CycleGAN for LDCT imaging, which injects a two-sided
network into selective kernel networks (SK-NET) to adaptively select features, and uses the patchGAN discriminator to generate
CT images with more detail maintenance, aided by added perceptual loss. Based on patch-based training, the experimental results
demonstrated that the proposed SKFCycleGAN outperforms competing methods in both a clinical dataset and the Mayo dataset. The
main advantages of our method lie in noise suppression and edge preservation.

Keywords: cycle-consistent adversarial network, selective kernel networks, unsupervised low dose CT, image denoising, clinical
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Introduction
X-Ray computed tomography (CT) as a common non-invasive ra-
diological diagnostic method is widely known to have potential for
the examination of various diseases such as pneumonia, tumor,
infarction and bleeding.1,2 The important role of CT in following-
up on the effects on lung tissue has been widely recognized for
clinical diagnosis and monitoring of COVID-19.3 One increasing
concern about CT is the threat of excessive radiation dose. Re-
search reducing CT dose under the guiding principle of ALARA (as
low as reasonably achievable) has aroused strong attention.4 The
universal and effective strategy to minimize the risk is to obtain
low dose CT (LDCT) by decreasing the tube current of the X-ray
tube and shorten the exposure time during shooting.5 However,
lowering radiation dose inevitably increases artifacts and causes
noise in reconstructed images, which could degrade the signal-
to-noise ratio and affect the judgment performance. Thus, how
to improve the image quality for LDCT has become a significant
topic in the field of image denoising.

To date, algorithms generally include sinogram domain filtra-
tion,6,7 iterative reconstruction (IR),8,9 and image processing.10,11

The common sinogram filtering methods are difficult to perform
on transparent raw data from commercial scanners before im-
age reconstruction, which can lead to resolution loss and edge
blurring. Simultaneously, these methods may induce artifacts in
the generated image during data processing. In comparison, IR
has contributed greatly to the field of LDCT. These algorithms op-
timize an objective function that incorporates an accurate sys-
tem model, a statistical noise model, and prior information in the

image domain. The common algorithms include total variation
and its variants,12–14 dictionary learning,15,16 low-rank17 and so on.
These iterative reconstruction algorithms greatly improve image
quality but images may still lose some detail and suffer from re-
maining artifacts. Also, they require a high computational cost,
which is a bottleneck in practical applications.

As an effective alternative, image post-processing has advan-
tages with regard to non-essential raw data and efficiency. Due to
developments in artificial intelligence and deep learning (DL),18–21

DL-based algorithms have attracted extensive attention to learn
the mapping pixels-to-pixels for the corresponding routine-dose
image by training with pairs of low-dose images and matched
high-dose CT data. Kang et al.22 have proposed the DL-model com-
bined with wavelet transform to effectively suppress noise and
artifacts in LDCT, but a long training time is required. Chen et
al.23 used the classical residual encoder–decoder convolutional
neural network (RED-CNN) for LDCT denoising, and five-layer to
simplify network structure and to outperform the state-of-the-
art methods. Noise reduction in the above-mentioned end-to-end
network notwithstanding, mean square error (MSE)-based meth-
ods have usually oversmoothed the subtle structural details by
minimized per-pixel MSE. Therefore, the generative adversarial
network (GAN) is used to overcome these limitations.24 Wolterink
et al.25 have applied GAN to achieve noise supersession in LDCT.
Yang et al.26 have introduced the Waserstin distance to design
WGAN-GP to better retain feature information in LDCT, simulta-
neously, perceptual loss is used to optimize the loss function. Du
et al.27 have brought a visual attention mechanism into GAN to
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Figure 1. The overall framework of the CT image denoising method based on adaptive feature selection. NDCT (normal-dose CT) and LDCT images are
generated by generators G and F, respectively. Discriminators Dx and Dy are used to distinguish which data-domain the input belongs to.
Cyclic-consistency loss and perceptual loss are used to constrain the generated CT image corresponding to the input image.

propose VAGAN, which focuses on the information needed to
achieve satisfactory performance and effectively suppress noise.
You et al.28 have proposed a semi-supervised network, which
achieves the generation of high-resolution CT from low-resolution
CT. In general, GAN has obtained widespread interest by generat-
ing different models in LDCT.

Despite the remarkable improvement in performance, well-
paired CT images for supervised training are difficult to obtain
in clinical practice. Furthermore, due to the potential mode-
collapsing characteristics of GAN, redundant features could be
generated to affect the accuracy of diagnosis in clinical practice.
Thus, unsupervised learning has caused public concern regard-
ing unmatched-pair LDCT images. The cycle-consistent genera-
tive adversarial network (CycleGAN) is an image-to-image conver-
sion algorithm, which is composed of two generators and two dis-
criminators to achieve cycle-consistency by performing input-to-
target image domain translation without well-paired data.29 How-
ever, unsupervised LDCT denoising using CycleGAN is not very
effective in noise suppression.30–32 In this study, we designed a
novel selective feature network using CycleGAN, where the unsu-
pervised learning model can reduce LDCT image noise by adap-
tively selecting features.

Methods
Overview of LDCT denoising model
The purpose of noise reduction is to make LDCT images as similar
as possible to normal dose CT (NDCT) images. This process can be
simplified to the following:

G = x → y

Where X images domain is defined as LDCT data and Y images
domain is defined as NDCT data. The overview structure of the
network is shown in Fig. 1.

When LDCT x (x ∈ X) is input, the corresponding NDCT yfake

(y fake ∈ Y) is generated by G. Then, the corresponding LDCT xres

(xres ∈ X) is regenerated from yfake (y fake ∈ Y) by F. Dx is used to dis-
criminate x and xfake, and Dy is used to distinguish y and yfake. The
cyclic-consistency loss function33 is introduced to constrain the
generated CT image corresponding to the input x. The perceptual
loss33 function is introduced to calculate the pixel-to-pixel dis-
tance between x and xres. When NDCT y (y ∈ Y) is input, the cor-
responding LDCT xfake (xfake ∈ X) and NDCT yres (yres ∈ Y) are gen-
erated, respectively. Similarly, the cyclic-consistency loss function
and the perceptual loss function are used to compute the distance
between y and yres.

Adaptive feature selection generator
RED-CNN applies convolution and deconvolution instead of pool-
ing and up-sampling, and shortcut connections which can reverse
the loss of LDCT image edges and structural information. How-
ever, RED-CNN is used as the generator for unsupervised training,
so noise and artifacts cannot be effectively suppressed in a clini-
cal CT dataset. In addition, pooling and up-sampling are used to
effectively remove noise and artifacts in U-NET,34 but result in se-
rious loss of structural detail and cause blurred edges of images.
Inspired by this, the combination of RED-CNN, U-NET, and a 1 × 1
convolutional layer as extractor, which is injected into SK-NET,35

is used to adaptively select features obtained from different net-
works with different convolution kernels. The overall structure of
the proposed generator is shown in Fig. 2A. The improved RED-
CNN and U-NET as a bilateral network with 1 × 1 convolutional
block is used to extract the features of LDCT. The three different
feature maps of U1, U2 and U3 are obtained by using the differ-
ent convolution kernels of SK-NET. Then different feature maps
are made by element-wise summation U = U1+U2+U3, and en-
code global information through global-average pooling to gen-
erate channel-level information S ∈ Rc. The formation is defined
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Figure 2. Network structure of the generator: (A) framework of generator, (B) RED-CNN block, and (C) U-NET block.

as:

Sc = Fgp (Uc ) = 1
H × W

H∑
i=1

W∑
j=1

Uc (i, j) (1)

The dimensionality of S is reduced to produce a compact global
feature Z ∈ Rd×1 from a fully connected layer.

Z = Ffc (S) = δ (B (WS )) (2)

The softmax layer is used to generate three different weights a,
b and c, where ac + bc + cc = 1.

ac = eAcZ

eAcZ + eBcZ + eCcZ
, bc = eBcZ

eAcZ + eBcZ + eCcZ
, cc = eCcZ

eAcZ + eBcZ + eCcZ

(3)

Finally, the 1 × 1 convolutional layer is applied to obtain the
output feature V of CT images. The formation is defined as:

Vc = ac · U1 + bc · U2 + cc · U3 (4)

Both good denoising performance and clear structural details
can be gained. The details of the generator network are described
as follows.

Abundant structural detail
To reduce the distortion of structural detail caused by up-
sampling, a 1 × 1 convolution layer with 64 channels is added

to better achieve cross-channel interaction and retain the inte-
gration of LDCT information. In this study, RED-CNN, U-NET, and
a 1 × 1 convolutional block are used to extract the features of
LDCT, and are split into three different feature maps of the same
size 256 × 256 × 64.

Adaptive feature selection
Due to the redundancy of features extracted from different net-
works, the effective features can be selected in this study. Inspired
by SK-NET, based on split, fuse, and select, a network that can
adaptively select the features obtained by different neural net-
works is designed. Not only can the size of the receptive field of dif-
ferent convolution kernels be adjusted, but the features extracted
by different networks can be effectively fused.

Improved RED-CNN and U-NET
The network structure of RED-CNN is shown in Fig. 2B. It con-
sists of 14 layers, including 7 convolutional and 7 deconvolutional
symmetrical layers. The convolutional and deconvolutional layers
have the same kernel size of 3×3 and 64 channels. Rectified linear
units (ReLU)36 are added for each layer. The shortcuts connection
is matched between the convolutional and deconvolutional layers,
which improves the convergence speed. U-NET is composed of 7
convolutional and 7 deconvolutional layers with the same kernel
size of 4×4 and 64 channels. An ReLU is added for each layer. Fea-
ture maps of 256 × 256 × 64 are obtained. The network structure
of U-NET is shown in Fig. 2C.
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Discriminator design
The discriminator scores the generated images and guides the
training of the generator. Inspired by PatchGAN,22 the input im-
ages are mapped to a patch of size 4×4, which is the feature map
obtained by the convolutional layer. xi j is the probability of be-
longing to NDCT, which corresponds to each patch X of the input
image. The average of xi j is the output of the discriminator. For
training of the generated NDCT, the receptive field of the discrim-
inator can be effectively improved to retain high-definition details
of images. The network structure of the discriminator is shown in
Supplementary Fig. 1, see online supplementary material.

Loss function
The overall loss function is as follows:

Loss = LGAN(G, DY , X,Y ) + LGAN(F, DX,Y, X) + λLcyc(G, F) + Lperceptual

(5)

where LGAN is the adversarial loss, Lcyc is the cycle-consistency loss,
Lperceptual is the perceptual loss function.

Adversarial loss
Adversarial loss33 is used to calculate the two mapping functions.
The loss function is shown as follows.

LGAN(G, DY , X,Y ) = Ey∼Pdata(y) [log DY (y)]

+Ex∼Pdata(x) [log(1 − DY (G(x))] (6)

where X is LDCT; Y is NDCT; G is the generator for X→G(X). DY aims
to distinguish G(x) and Y. G aims to minimize the gap and max-
imize the difference of adversary, i.e. min

G
max

DY

LGAN(G, DY , X,Y ).

Similarly, the function F is introduced to map Y→F(X), i.e.
min

F
max

DX

LGAN(F, DX,Y, X).

Cycle-consistency loss
Theoretically, adversarial loss can compute which target domain
the generated output belongs to. However, with large enough ca-
pacity, the mapping of inputs to outputs in the target domain can
be randomly arranged, where the mapping cannot be guaranteed
to pair the output with the corresponding input. Therefore, to fur-
ther constrain the matching of the generated image and decrease
the data domain space of mapping functions, the cycle consis-
tency can be loaded in the mapping functions G and F. The cycle-
consistency loss33 is defined as

LCYC(G, F) = Ex∼Pdata(x)[
∥∥F(G(x)) − x

∥∥
1] + Ex∼Pdata(y)[

∥∥G(F(y)) − y
∥∥

1]

(7)

For the translation cycle of X→G(X)→F(G(X)), the cycle-
consistency function can give the generated images correspond-
ing to X by calculating the L1-norm between X and F(G(X)). This
is called forward cycle-consistency. Similarly, the mapping func-
tions G and F should also conform to backward cycle-consistency
for the translation of Y→F(Y)→G(F(Y)).

Perceptual loss
Cycle-consistency loss can calculate the pixel-level distance to
ensure the matching of generated image and input image; how-
ever, structural texture and details are lost. That is why the per-
ceptual loss is added to guide the generator to learn more feature
details of images. The perceptual loss37 is usually calculated from

the feature maps of VGG-16. The perceptual loss function is de-
fined as follows.

LOSSperceptual = Ex∼Pdata(x)

∥∥φ(x) − φ(F(G(x)))
∥∥

1

+Ex∼Pdata(x)

∥∥φ(y) − φ(G(F(y)))
∥∥

1 (8)

where φ is the feature maps. In this section, both the second max-
pooling layer with 128 channels and the last max-pooling layer
with 512 channels in VGG-16 are used to calculate the perceptual
loss.

Evaluation metrics
Root mean square error
Root mean square error (RMSE) is used to measure the deviation
between the generated CT image and NDCT. It is computed by
using the arithmetic square root of MSE. The definition is shown
in Eq. (9).

RMSE =
√

MSE, (9)

MSE = 1
mn

m−1∑
i=0

n−1∑
j=0

[I(i, j) − K(i, j)]2

where m × n is the size of the clear image I and the noise image K.

Peak signal-to-noise ratio
Peak signal-to-noise ratio (PSNR) reflects the ratio between the
maximum signal of the image and the noise of the image. It is
an evaluation index for calculating errors between corresponding
pixels. The higher the PSNR, the better the image quality. PSNR is
defined in Eq. (10).

PSNR = 10.log10

(
MAX2

I

MSE

)
(10)

where MAX2
I is the maximum of pixels.

Structural SIMilarity
Structural SIMilarity (SSIM) is applied to judge the similarity be-
tween X and Y, based on the brightness, contrast, and structure
of images. SSIM is defined in Eq. (11).

SSIM(x, y) = (2μxμy + c1)(2σxy + c2)
(μ2

x + μ2
y + c1)(σ 2

x + σ 2
y + c2)

(11)

where μx, μy are the mean of x, y; σ 2
x , σ 2

y are the variances of x and
y, respectively; σxy is the covariance of x, y; c1 = (k1L)2, c2 = (k2L)2

are constants, avoid division by zero, where L is the range of pixel
values. Usually, k1 = 0.01, k2 = 0.02 and c3 = c2/2.

Qualitative evaluation
In addition to quantitative indicators, a qualitative indicator may
also be needed to evaluate the quality of the generated CT image.
Since CT images are to help clinicians make pathological diag-
noses, the denoising results of LDCT are judged by the subjective
senses of two professionals.

Experimental design and results
Experimental datasets
Clinical dataset
A real unmatched-pair clinical database was applied for evaluat-
ing the performance of the proposed model. There were two differ-
ent 512 × 512 LDCT images, 10 ma and 30 ma respectively. 160ma
is the dose of NDCT image in both datasets. This clinical dataset
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was the main problem to be solved. The specific parameters of
two different LDCT images are shown in Supplementary Table 1,
see online supplementary material.

Due to the diversity of the human body, different window
widths are required for observing and displaying CT images. Win-
dow widths of 0.2–0.28 and 0–0.33 were selected, respectively,
where 0.2–0.28 was used for observing the tissue and 0–0.33 was
used for observing the lung. Some typical CT images are shown in
Supplementary Fig. 2 (see online supplementary material). The 10
ma LDCT dataset was composed of 337 pairs of LDCT and NDCT
images from 6 anonymous patients. In our experiments, 218 pairs
of LDCT and NDCT images from 5 patients were randomly se-
lected for training and the remaining pairs were used for testing.
To effectively train the network, patch-based extraction was per-
formed to obtain CT images with local details required for denois-
ing training and to increase the number of samples. All CT images
were cropped into a 256 × 256 patch every 16 pixels, and 81 209
pairs of 256 × 256 LDCT and NDCT images were obtained.

The 30 ma LDCT dataset contained 562 pairs of LDCT and
NDCT images from 10 anonymous patients. A total of 498 pairs of
LDCT and NDCT images from 9 patients were randomly selected
for training and the remaining pairs were used for testing. Sim-
ilarly, 143 922 pairs of 256 × 256 LDCT and NDCT images were
obtained.

Mayo dataset
Mayo,38 a publicly available dataset with paired NDCT and LDCT
images, was created in “the 2016 NIH-AAPM-Mayo Clinic Low Dose
CT Ground Challenge” to evaluate the performance of LDCT de-
noising algorithms. The dataset included 5936 NDCT images with
512 × 512 and quarter-dose simulated LDCT images from 10 pa-
tients. In this paper, 135 250 pairs of 256 × 256 CT image patches
from 9 patients were randomly extracted as the training set, and
the remaining data from 1 patient was used as a testing set. For
the research of unsupervised LDCT image denoising, all pairs were
in disorder. This was used to validate the effectiveness of the pro-
posed model.

Training parameter
In this study, the model was optimized by the Adam39 algorithm.
The initial learning rate was 10-5 which decreased linearly from it-
erating 100 000 steps. It remained unchanged until it was reduced
to 10-7 at 700 000 steps. The weight parameter λ of the generator
was set to 10 and the batch size was set to 1. The experiment was
based on Tensorflow14 and Python 3.6. The model was trained on
a PC (Intel i7 processor and 11G video memory) with a graphics
processing unit card (Nvidia 2080TI). The final model was obtained
when 1 million steps was reached.

The experiments were performed on two different LDCT
datasets. Multiple different state-of-the-art algorithms were com-
pared with ours in the clinical dataset, including BM3D,40 K-
SVD,41 and unsupervised models CCADN30 and CycleGAN. More-
over, BM3D, K-SVD, supervised methods such as RED-CNN23 and
Q-AE,42 and unsupervised algorithm CycleGAN and CCADN were
compared with ours on Mayo dataset. Due to the unpaired clini-
cal dataset, it was impossible to calculate quantitative indicators
such as PSNR, RMSE, and SSIM. Therefore, qualitative evaluations
were mainly carried out by the visual sense of experts.

Experimental results
Clinical dataset
0.2-0.28 window width

Two LDCT images were used to test the performance of the model,
with window widths of 0.2–0.28 and 0–0.33, respectively. The ex-
perimental results and the magnified images for a region of inter-
est (ROI) with window width of 0.2–0.28 are shown in Fig. 3A and B.
The tissue can be observed, i.e. the areas with higher gray values.
For the LDCT of Fig. 3A, image noise and artifacts exist near the
structure with a high attenuation coefficient. All methods sup-
pressed image noise to different extents. For multiple comparison
results, our method has achieved the best experimental results.

However, other methods could not effectively suppress noise or
cause blurring of CT images to various degrees. As seen in Fig. 3A,
the noise of LDCT could be effectively suppressed for BM3D, but
the generated CT images were so blurred that there was serious
loss of structural details. K-SVD can also cause blurring of edges
and a good quality CT image is not obtained. Compared with tra-
ditional algorithms, the unsupervised algorithm CCADN achieved
better denoising, but there was still noise and artifacts. It can be
seen, particularly from Fig. 3B, that with CCADN and GycleGAN
the noise was not effectively suppressed and artifacts in the gen-
erated CT images could cover the local details of the images. How-
ever, it is clear that compared to the above-mentioned algorithms,
the noise was more effectively suppressed and clearer structural
features are retained.

0-0.33 window width

CT images of lungs could be observed with a window width of
0–0.33, i.e. the black area marked by the blue rectangle in Fig. 4.
The results were similar to the training results with the 0.2–0.28
window width. It can be concluded that ours achieved the best
denoising performance compared with other algorithms, and the
best quality of CT image was generated. The experimental results
and magnified images of an ROI based on the different algorithms
are shown in Fig. 4A and B.

Although most image noise and artifacts were eliminated, the
structural details were smoothened by BM3D and K-SVD. Mean-
while, for the unsupervised learning algorithms CCADN and Cy-
cleGAN, obviously, there was still more noise and artifacts com-
pared with ours, especially for the results based on CycleGAN. SK-
FCycleGAN can generate a clear lung CT image.

Usually, the five metrics including noise suppression, artifact
reduction, lesion discrimination, contrast retention, and overall
quality are used for subjective evaluation by doctors (5 is best,
1 is lowest). On the basis of the different algorithms, two radiolo-
gists with 6 years of clinical experience respectively provided their
scores. The unpaired NDCT images were references, and the aver-
age scores of the two experts were used as final results. The statis-
tical results are shown in Supplementary Table 2, see online sup-
plementary material. From the five indicators, all of the methods
could suppress LDCT noise and effectively reduce artifacts, but
our algorithm produced better scores than the other methods.

Mayo dataset
To better verify the robustness and generalization of the proposed
method, it was tested on the Mayo dataset and compared with
the traditional algorithms such as BM3D and K-SVD, the classi-
cal supervised learning algorithms RED-CNN and Q-AE, and the
unsupervised learning algorithms CycleGAN and CCADN. The ex-
perimental results on the Mayo dataset are shown in Fig. 5.
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Figure 3. Results and magnified images over a ROI of a 30 ma dataset with 0.2–0.28 window width for comparison. The BM3D, K-SVD, and
unsupervised algorithms CCADN and CycleGAN have been compared in this study. The area indicated by a red rectangle is the ROI that was magnified
to show the experimental results.

For Fig. 5A, the denoising result of BM3D was over-smoothed,
and noise and artifacts were not effectively suppressed in the
K-SVD image. Even if RED-CNN gave the best performance, our
method had better denoising results compared to traditional al-
gorithms, CCADN and CycleGAN. The results and the magnified
ROI for the Mayo dataset are shown in Fig. 5B.

In the magnified ROI of BM3D, the experimental results ob-
tained still presented too blurred CT images. Since MSE-based
algorithm is usually trained by minimized per-pixel MSE, the
generated CT has higher quantitative value and is closer to NDCT
images. For the unsupervised learning algorithm, there was a
lack of matched LDCT and NDCT images, thus denoising results
could only be obtained and compared visually. A comparison of
the quantitative results obtained using the different methods is
shown in Table 1.

It can be seen that the MSE-based supervision learning meth-
ods had the best evaluation metrics compared with other mod-

els. RMSE, PSNR, and SSIM were also calculated by MSE. Com-
pared with traditional algorithms and unsupervised learning
algorithms, the best performance was obtained for RMSE, PSNR,
and SSIM with our algorithm, with values of 0.0085, 41.45 and
0.9535, respectively.

Different model and performance trade-offs
In these experiments, to verify the effectiveness of designed gener-
ator networks, ours was compared with four different models, in-
cluding a generator with only RED-CNN, a generator with only U-
NET, and a generator with concatenated three-feature vectors and
without a 1 × 1 convolutional block. In addition, a model without
a perceptual loss function was also examined to prove the avail-
ability of the added perceptual loss function. To ensure fairness,
the remaining parameters remain unchanged in the comparison.
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Figure 4. Results and magnified images of a ROI of a 30 ma dataset with 0–0.33 window width for comparison. The BM3D, K-SVD, and unsupervised
algorithms CCADN and CycleGAN were compared in this study. The black area indicated by the blue rectangle is the ROI that was magnified to show
the experimental results.

The experimental results and the magnified ROI for the different
models are shown in Fig. 6.

In Fig. 6B, the generated CT images obtained still had noise,
and artifacts were introduced. CT image contrast was reduced
only for RED-CNN as the generator. Detailed features of the gen-
erated CT image were severely lost when the improved U-NET
was used as generator. Some artifacts appeared when the three-
feature vectors were directly concatenated. Additionally, using
our designed network without perceptual loss, the noise could not
completely be removed and a certain amount of blurring was pro-
duced. The 1 × 1 convolutional layer was added to achieve bet-
ter cross-channel correlation and retain the integration of LDCT

information. It also introduced more nonlinearity and improves
generalization ability. It is clear that there was still noise and dis-
tortion of structural detail without the 1 × 1 convolutional block.
Finally, our method effectively suppressed noise and artifacts, re-
tained more structure and the edges of detailed features, and out-
performed competing models.

Different dose and performance trade-offs
Based on the reduced dose, ensuring the completeness of the im-
age details as much as possible is suitable for clinical practice. In
clinical datasets, 10 ma and 30 ma images have differences for
the preservation of detailed information and the degree of noise.
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Figure 5. Results of the Mayo dataset and a magnified ROI for comparison of the BM3D, K-SVD, RED-CNN, CCADN and CycleGAN algorithms used in
this study. The area indicated by a red rectangle is the ROI that was magnified to show the experimental results.

In this paper, 30 ma LDCT images were used as the main research
data, and 10 ma LDCT images were tested to verify the signifi-
cance of the proposed method. The unsupervised learning algo-
rithm CCADN was compared with ours. Discussion of different
doses of CT images has also demonstrated the applicability of our

method. The experimental results and the magnified ROI of dif-
ferent doses are shown in Fig. 7.

From Fig. 7B it can be seen that our method achieved good de-
noising results on the 10 ma CT dataset, and existing structural
details were properly retained, as indicated by yellow and purple
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Table 1. Comparison of quantitative results associated with the Mayo dataset.

Model RMSE PSNR SSIM

BM3D 0.0097 40.23 0.9385
K-SVD 0.1284 37.83 0.9455
RED-CNN 0.0065 43.71 0.9686
CCADN 0.0089 41.09 0.9471
CycleGAN 18.8017 22.65 0.8469
Ours 0.0085 41.45 0.9535

Figure 6. Experimental results and the magnified ROI of the different models. The four different models were compared, including a generator with
only RED-CNN, a generator with only U-NET, and a generator with concatenated three-feature vectors and without a 1 × 1 convolution block. A model
without perceptual loss function was also examined to prove the availability of the added perceptual loss function. To ensure fairness, the other
parameters remain unchanged in the comparison. The area indicated by a red rectangle is the ROI that was magnified to show the experimental
results.
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Figure 7. The experimental results and magnified parts of different 10 ma and 30 ma dose datasets for comparison. CCADN have been compared with
ours in this paper. The red and blue rectangles indicate the magnified images of an ROI of 10 ma and 30 ma dose datasets, respectively. More structural
details can be seen, as highlighted by the yellow and purple circles.

circles. Compared with 30 ma LDCT, 10 ma data was processed
with noise reduction, and although lost features were restored to a
certain extent, there was still detail loss. For 30 ma LDCT data, CT
images with completely detailed information is obtained after de-
noising processing. In clinical diagnosis, excessive loss of detailed
information can lead to changes of results. Hence, 30 ma CT im-
ages were selected as the main experimental dataset to evaluate
the proposed model. The proposed model could effectively reduce
the harm caused by CT detection without affecting the quality of
diagnosis.

Conclusion
Considering the shortage of well-paired CT images, inspired by
RED-CNN and U-Net, we propose a novel unsupervised learning
model based on CycleGAN for LDCT image denoising. An adap-
tive feature selection generator is designed, and a patchGAN dis-
criminator is used to generate CT images maintaining more de-
tail, that is aided by added perceptual loss. Compared with tradi-

tional methods and other unsupervised learning algorithms, the
experimental results have confirmed that our proposed model is
superior with both a clinical dataset and the Mayo dataset. The
main advantages of our method lie in noise suppression and edge
preservation.

Supplementary data
Supplementary codes are available at https://github.com/tcq1122
/SKFCycleGAN.git. Other supplementary data is available at PCME
DI Journal online.
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