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Abstract: The influx of essential amino acids into skeletal muscle is primarily mediated by the large
neutral amino acid transporter 1 (LAT1), which is dependent on the glutamine gradient generated
by the sodium-dependent neutral amino acid transporter 2 (SNAT2). The protein expression and
membrane localization of LAT1 may be influenced by amino acid ingestion and/or resistance
exercise, although its acute influence on dietary amino acid incorporation into skeletal muscle
protein has not been investigated. In a group design, healthy males consumed a mixed carbohydrate
(0.75 g·kg−1) crystalline amino acid (0.25 g·kg−1) beverage enriched to 25% and 30% with LAT1
substrates L-[1-13C]leucine (LEU) and L-[ring-2H5]phenylalanine (PHE), respectively, at rest (FED:
n = 7, 23 ± 5 y, 77 ± 4 kg) or after a bout of resistance exercise (EXFED: n = 7, 22 ± 2 y, 78 ± 11 kg).
Postprandial muscle biopsies were collected at 0, 120, and 300 min to measure transporter protein
expression (immunoblot), LAT1 membrane localization (immunofluorescence), and dietary amino
acid incorporation into myofibrillar protein (∆LEU and ∆PHE). Basal LAT1 and SNAT2 protein
contents were correlated with each other (r = 0.55, p = 0.04) but their expression did not change
across time in FED or EXFED (all, p > 0.05). Membrane localization of LAT1 did not change across
time in FED or EXFED whether measured as outer 1.5 µm intensity or membrane-to-fiber ratio (all,
p > 0.05). Basal SNAT2 protein expression was not correlated with ∆LEU or ∆PHE (all, p ≥ 0.05)
whereas basal LAT1 expression was negatively correlated with ∆PHE in FED (r = −0.76, p = 0.04)
and EXFED (r = −0.81, p = 0.03) but not ∆LEU (p > 0.05). Basal LAT1 membrane localization was
not correlated with ∆LEU or ∆PHE (all, p > 0.05). Our results suggest that LAT1/SNAT2 protein
expression and LAT1 membrane localization are not influenced by acute anabolic stimuli and do
not positively influence the incorporation of dietary amino acids for de novo myofibrillar protein
synthesis in healthy young males.

Keywords: dietary protein; resistance exercise; protein; skeletal muscle; amino acid transporters

1. Introduction

Exogenous amino acid administration increases the uptake of amino acids into skeletal
muscle at rest and, to a greater extent, after resistance exercise [1]. Dietary amino acids, in
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particular the essential amino acids, are prime stimulators of skeletal muscle anabolism [2]
and have been suggested to be preferential substrates for muscle protein synthesis after
exposure to anabolic stimuli [3,4]. Muscle protein synthesis rates are stimulated within 2 h
post-feeding/exercise with rapidly digested amino acid sources [5–7] and are underpinned
by increases in extracellular and intracellular essential amino acid availability within 30 min
of amino acid intake [1,2]. The ability of dietary amino acids to stimulate muscle protein
synthesis is generally dependent on their delivery to intracellular sensors and effector
molecules associated with the mTORC1 pathway [8] of which amino acid transporters at
the plasma membrane are an essential but not rate limiting component [9,10]. The influx
of essential amino acids into skeletal muscle is primarily mediated by the large neutral
amino acid transporter 1 (LAT1), which is dependent on the glutamine gradient generated
by the sodium-dependent neutral amino acid transporter 2 (SNAT2) [11,12]. LAT1 is
the most highly expressed large neutral amino acid transporter in skeletal muscle [13],
although others such as LAT2, LAT3, and LAT4 [14,15] may be present and able to transport
essential amino acids. Importantly, however, in skeletal muscle lacking LAT1 expression,
phenylalanine uptake into skeletal muscle is drastically reduced, while intramuscular
leucine concentrations in response to intraperitoneal leucine administration remained
unchanged [13]. As such, LAT1 seems to be the primary contributor to both leucine and
phenylalanine influx into skeletal muscle. In addition to their role in inward amino acid
transport, membrane-bound transporters have been suggested to have auxiliary roles as
extracellular amino acid sensors [16–18]. Thus, amino acid transporters appear to play
an integral role in the anabolic response to dietary amino acids and exercise, although
the relationship between the protein expression and membrane content of key amino acid
transporters, and the subsequent incorporation of dietary amino acids to support de novo
protein synthesis, is lacking.

There is evidence to suggest that, similar to muscle protein synthesis rates, amino acid
transporter expression in human muscle may be dynamic and acutely responsive to dietary
amino acids [19] and resistance exercise [20], which suggests these transporters may have a
role in the regulation of acute protein synthetic events. For example, amino acid ingestion
stimulates an increase in LAT1 and SNAT2 gene expression, an event which is followed by
increases in protein expression 3 h post-feeding [19]. These changes have also been reported
in response to resistance exercise alone [20] and after the combination of feeding and resis-
tance exercise [21], whereby LAT1 and SNAT2 gene expression increase 6 h post-exercise
followed by increases in protein expression over a 24-h recovery period. Changes in LAT1
and SNAT2 transporter expression have also been observed in isolated membrane fractions
during periods of low amino acid availability following acute resistance exercise [22].
Collectively, these data suggest that feeding and resistance exercise influence the gene
and protein expression of LAT1 and SNAT2 that could contribute to enhanced amino acid
transport and a greater protein synthetic response within skeletal muscle [1,2,8], although
we [23] and others [24] have failed to replicate these acute protein expression changes.
However, extracellular essential amino acid availability [1,2] and the inward transport of
amino acids in skeletal muscle [25] is increased early after feeding and, as a result, muscle
protein synthesis rates are stimulated within 2 h post-feeding/exercise [5–7]. Furthermore,
LAT1 must be associated with the sarcolemmal membrane to be active and carry free amino
acids into muscle cells [26]. Thus, it is unclear whether previously reported increases in
gene and/or protein expression without insight into the cellular location of LAT1 influence
the acute postprandial protein synthetic response and, more importantly, the incorporation
of dietary amino acids for muscle protein remodeling.

Therefore, the purpose of this study was to determine whether LAT1 and SNAT2 pro-
tein expression and the membrane localization of LAT1 are influenced by the anabolic effect
of amino acid ingestion at rest and after resistance exercise. Importantly, we provided a
complete amino acid beverage labeled with L-[1-13C]leucine and L-[ring-2H5]phenylalanine
to assess the physiological role for these transporters in the incorporation of dietary amino
acids for de novo muscle protein synthesis. We utilized a dual oral tracer model, as previous
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studies measuring dietary amino acid incorporation after feeding and resistance exercise
have only traced phenylalanine into skeletal muscle [5–7], which would represent only one
substrate (leucine being another) for LAT1 [27]. Furthermore, there is evidence to suggest
that leucine and phenylalanine are equivalent substrates for LAT1 [28] but that there may
be two pools of muscle intracellular leucine whereby exogenous leucine is primarily di-
rected toward oxidation, and intracellular leucine from protein breakdown is preferentially
reutilized for protein synthesis [29]. This influenced our decision to include two metabolic
tracers of different essential amino acids, one of which (leucine) is generally considered
to be the preeminent anabolic amino acid [11,30,31]. We hypothesized that, in line with
our previous findings [23], amino acid ingestion at rest and after resistance exercise would
not increase LAT1 and SNAT2 protein expression nor LAT1 membrane localization in the
early postprandial period but that there would be a positive association between basal
transporter expression/membrane localization and dietary amino acid incorporation into
myofibrillar protein.

2. Materials and Methods
2.1. Participants

Fourteen healthy males were included in the study (Characteristics in Table 1). Partici-
pants were recruited via postings at the University of Toronto and were recreationally active
(e.g., performed weightlifting, running, team-sport activity) 2–5 times per week for at least
six months before enrolment. Participants were considered healthy based on responses to
the PAR-Q+ and a medical history form. The data presented herein are part of a secondary
analysis to the primary outcome of a larger study, which was registered as a Clinical Trial
at ClinicalTrials.gov (accessed on 21 October 2021) (protocol code NCT04887727).

Table 1. Participant characteristics 1.

Characteristic FED (n = 7) EXFED (n = 7)

Age, y 23 ± 5 22 ± 2
Height, cm 179 ± 5 177 ± 9

Body mass, kg 77 ± 4 78 ± 11
Fat-free mass 2, kg 66 ± 4 69 ± 11

Body fat, % 14 ± 4 12 ± 5
Habitual dietary intake 3

Protein, g·kg−1·d−1 1.8 ± 0.5 1.9 ± 0.6
Carbohydrate, g·kg−1·d−1 3.4 ± 1.1 4.0 ± 1.6

Fat, g·kg−1·d−1 1.5 ± 0.8 1.1 ± 0.3
1 Values are means ± SD; all comparisons, p > 0.05. 2 Fat-free mass measured via BOD POD (COSMED USA Inc.,
Chicago, IL, USA). 3 Habitual dietary intake based on 48h diet record analysis (ESHA).

2.2. Experimental Design

A group design was used in the present study. Participants reported to the laboratory
for baseline testing 5–7 d before the metabolic trial. Participants were familiarized with
the whole-body resistance exercise protocol and underwent 1-repitition maximum (1-RM)
testing for the following exercises: (i) dumbbell bench press; (ii) dumbbell bent over row;
(iii) leg press; and (iv) leg extension. After baseline testing participants were randomly
assigned to a rested-fed (FED) or exercise-fed (EXFED) condition. Participants were in-
structed to refrain from alcohol/caffeine consumption and vigorous exercise for 48 h before
the metabolic trial and to consume their typical diet. Dietary intake was analyzed for
energy and macronutrient content using The Food Processor® Nutrition Analysis Software
(ESHA, Salem, OR, USA).

2.3. Metabolic Trial

Participants reported to the laboratory at ~0700 h after an overnight fast for the
metabolic trial. Participants rested in a supine position and a baseline skeletal muscle
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biopsy (PRE) was obtained from the middle region of the vastus lateralis using a 5 mm
Bergström needle modified for manual suction [32] under 2% lidocaine local anesthesia
to determine background enrichments of L-[1-13C]leucine and L-[ring-2H5]phenylalanine
and basal LAT1/SNAT protein expression. Muscle samples were freed from visible blood,
fat, and connective tissue, rapidly frozen in liquid nitrogen, and stored at −80 ◦C until
further analysis. Immediately after this biopsy, participants in EXFED performed a bout
of whole-body resistance exercise consisting of 4 × 10 repetitions each of dumbbell bench
press, dumbbell bent over row, leg press, and leg extension, while participants in FED
rested. Each exercise was performed at 75% of their pre-determined 1-RM with ~90 s
rest between sets. Whole-body resistance exercise was selected as the exercise stimulus
for the measurement of whole-body amino acid kinetics (not presented here) and to
provide ecological validity for exercised individuals included in the study. Immediately
after cessation of exercise, all participants ingested a beverage containing 0.25 g·kg−1

protein as crystalline amino acids (Ajinomoto Co., Inc., Raleigh, NC, USA) modeled on
the composition of egg protein [33] with 0.75 g·kg−1 carbohydrate (TANG, Kraft Canada
Inc., Mississauga, ON, Canada) dissolved in 500 mL water. The leucine and phenylalanine
content of the beverage was enriched to 25% and 30% with L-[1-13C]leucine (99% at, CIL
Canada Inc., Montreal, PQ, Canada) and L-[ring-2H5]phenylalanine (99% at, CIL Canada
Inc.), respectively. This enrichment level is similar to what we [34] and others [35] have
obtained with intrinsically-labeled proteins and is suitable to detect changes in tracer-to-
tracee ratio (TTR) within skeletal muscle. Subsequent muscle biopsies were obtained from
separate incisions (~2–3 cm apart) in alternating legs at t = 120 and 300 min after beverage
ingestion to measure time-course changes in LAT1 and SNAT2 protein expression and
LAT1 membrane content. Changes in dietary amino acid incorporation were determined
from the TTR of L-[1-13C]leucine (∆LEU) and L-[ring-2H5]phenylalanine (∆PHE) over the
entire postprandial period using the 300-min biopsy [36].

2.4. Skeletal Muscle Analyses

Myofibrillar protein-enriched fractions were isolated from ~25 mg wet muscle tissue
in the Iovate/MuscleTech Metabolism and Sports Science Lab at the University of Toronto
as previously described [23]. Myofibrillar-bound protein enrichments of L-[1-13C]leucine
were determined by gas chromatography-combustion-isotope ratio mass spectrometry [37]
and L-[ring-2H5]phenylalanine enrichments were determined by liquid chromatography-
tandem mass spectrometry [23]. Immunoblotting procedures were conducted according
to previously described methods [23,38]. Antibodies utilized were as follows: LAT1
(ab85226) and SNAT2 (ab90677) purchased from Abcam (Toronto, Canada) and diluted in
5% BSA (1:1000). Values of basal LAT1 and SNAT2 protein expression were determined by
placing raw band intensity values in relation to the corresponding Ponceau value. LAT1
visualization via immunofluorescence microscopy was conducted as described previously
by our group with dystrophin demarking the cell membrane [38]. Membrane localization
of LAT1 was then quantified as LAT1 signal intensity within the outer 1.5 µm of fibers and
membrane-to-fiber ratio was calculated as ‘membrane’ LAT1 signal intensity expressed
in relation to LAT1 signal intensity in the remainder of each fiber. All immunofluorescent
image analysis was conducted on ImageJ software (Fiji plugin, v. 1.5, National Institutes of
Health, Bethesda, MD, USA).

2.5. Statistical Analyses

Statistical analyses were performed on SPSS Statistics (Version 26, IBM, Armonk, NY,
USA). Differences in amino acid transporter expression and LAT1 membrane localization/
membrane-to-fiber ratio were tested using a mixed-design two-factor ANOVA with time as
the within-subject factor and condition as the between-subject factor. Where sphericity was
violated a Greenhouse–Geisser correction was applied to all main effects and interactions,
and if data were not normally distributed, logarithmic transformations were conducted.
Where significant interactions were identified in the ANOVA a Bonferroni post hoc test
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was performed to determine differences between means for all significant main effects
and interactions. An unpaired t test was used to test differences in dietary amino acid
incorporation. Simple linear regression was applied to test for correlations between amino
acid incorporation and basal LAT1/SNAT2 protein expression and LAT1 membrane local-
ization. For all analyses, the level of significance was p < 0.05. Results are presented as the
means ± SD.

3. Results
3.1. Participant Characteristics

There were no differences (all comparisons, p > 0.05) between conditions with respect
to participants’ baseline characteristics (Table 1).

3.2. Amino Acid Transporter Expression

Protein expression of LAT1 and SNAT2 (Figure 1A,B) were not influenced by amino
acid ingestion at rest or after exercise. Specifically, protein expression of LAT1 (Figure 1A)
and SNAT2 (Figure 1B) did not differ across time points (LAT1, time effect: p = 0.60; SNAT2,
time effect: p = 0.50) and there were no differences between conditions (LAT1, condition
effect: p = 0.13; SNAT2, condition effect: p = 0.84) at any time point (LAT1, interaction
effect: p = 0.33; SNAT2, interaction effect: p = 0.58). When collapsed across conditions,
basal LAT1 protein content was positively correlated (r = 0.55, p = 0.04) with basal SNAT2
protein content (Figure 1C).

3.3. LAT1 Membrane Localization

Membrane localization of LAT1 did not change in response to amino acid ingestion at
rest or after exercise when measured as outer 1.5 µm intensity (Figure 2A) or membrane-
to-fiber ratio (Figure 2B). Specifically, LAT1 membrane content when measured as outer
1.5 µm intensity did not differ across time points (time effect: p = 0.40) and there were no
differences between conditions (condition effect: p = 0.96) at any time point (interaction
effect: p = 0.93). When measured as membrane-to-fiber ratio, LAT1 membrane content
did not differ across time points (time effect: p = 0.08) and there were no differences
between conditions (condition effect: p = 0.13) at any time point (interaction effect: p = 0.12)
(Figure 2C).

3.4. Dietary Amino Acid Incorporation

Resistance exercise did not influence dietary amino acid incorporation. Specifically,
myofibrillar protein-bound TTR representing dietary incorporation of L-[1-13C]leucine
(∆LEU; Figure 3A) did not differ (p = 0.20) between conditions. Myofibrillar protein-
bound TTR representing dietary incorporation of L-[ring-2H5]phenylalanine (∆PHE;
Figure 3B) did not differ (p = 0.16) between conditions.

3.5. Correlations

There was no association between basal LAT1 protein expression and dietary amino acid
incorporation assessed by L-[1-13C]leucine (Figure 4A) in FED (r = −0.04, p = 0.93) or EXFED
(r = 0.05, p = 0.90). However, there was a negative correlation between basal LAT1 protein
expression and dietary amino acid incorporation assessed by L-[ring-2H5]phenylalanine
(Figure 4B) in FED (r = −0.76, p = 0.04) and EXFED (r = −0.81, p = 0.03). There was no
association between basal SNAT2 protein expression and dietary amino acid incorporation
assessed by L-[1-13C]leucine (Figure 4C) in FED (r = 0.37, p = 0.41) or EXFED (r = −0.21,
p = 0.65). There was no association between basal SNAT2 protein content and dietary amino
acid incorporation assessed by L-[ring-2H5]phenylalanine (Figure 4D) in FED (r = −0.21,
p = 0.66) or EXFED (r = −0.14, p = 0.76). There was no association between basal LAT1
membrane-to-fiber ratio and dietary amino acid incorporation assessed by L-[1-13C]leucine
(Figure 4E) in FED (r = 0.52, p = 0.23) or EXFED (r = 0.38, p = 0.40). There was no association
between basal LAT1 membrane-to-fiber ratio and dietary amino acid incorporation assessed
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by L-[ring-2H5]phenylalanine (Figure 4F) in FED (r = 0.18, p = 0.70) or EXFED (r = 0.59,
p = 0.16).
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4. Discussion

The incorporation of exogenous amino acids, in particular the essential amino acids,
into skeletal muscle is facilitated by amino acid transporters LAT1 and SNAT2 [12]. These
transporters work in tandem to transport dietary leucine and phenylalanine into the cell
via a bi-transport system which simultaneously exports glutamine and histidine [10]. LAT1
forms a heterodimeric amino acid transporter with ancillary glycoproteins and catalyzes
the substrate transporting capacity of the transport complex [39]. Thus, unsurprisingly,
basal LAT1 and SNAT2 protein expression were positively correlated in the present study,
which likely reflects the inter-dependence of LAT1 on SNAT2 for the transport, uptake,
and incorporation of essential amino acids such as leucine and phenylalanine into skeletal
muscle [9]. It is noteworthy that both feeding and resistance exercise increase the rates
of tracer-derived uptake of SNAT2 substrates (e.g., alanine, glutamine) in conjunction
with LAT1 substrates leucine and phenylalanine [1,40,41]. However, in our study, LAT1
and SNAT2 protein expression did not change in response to amino acid ingestion at
rest or after resistance exercise, nor did the membrane localization of LAT1 change when
measured as outer 1.5 µm intensity or membrane-to-fiber ratio. These results are in contrast
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to previous studies showing an increase in LAT1 and SNAT2 protein expression after both
feeding [19] and resistance exercise [20], but consistent with our previous work [23] and that
of others [24] who have observed no change in amino acid transporter protein expression
following acute exposure to anabolic stimuli. Thus, while limited in sample size, the present
results do not support a role for anabolic stimuli to alter the protein expression of these
amino acid transporters, nor the membrane localization of LAT1 as a means to increase
amino acid-induced muscle protein anabolism during the acute postprandial period.

Amino acid feeding at rest, and to a greater extent after resistance exercise, enhances
muscle protein synthesis rates via increased amino acid uptake into skeletal muscle [1].
Indeed, it has been suggested that exogenous amino acids may be used as a preferential
substrate for stimulating muscle protein synthesis rates after exposure to anabolic stim-
uli [3,4]. In contrast to our hypothesis, we did not observe a positive association between
basal SNAT2 protein expression and dietary leucine or phenylalanine incorporation into
skeletal muscle after amino acid ingestion at rest and after resistance exercise. Although the
antiporter LAT1 requires intracellular glutamine for inward essential amino acid transport,
glutamine is the most abundant amino acid in skeletal muscle (~20 mM) and its inward
transport substantially increases in response to exogenous amino acids and insulin [41,42],
suggesting its intracellular concentration is not rate-limiting for essential amino acid uptake
in otherwise healthy individuals. In contrast, the basal expression of LAT1 did not influence
dietary leucine incorporation, but was negatively correlated with phenylalanine incorpora-
tion into myofibrillar protein. These disparate findings between presumably equivalent
LAT1 substrates [28] may be explained in part by the potential for separate intracellular
leucine pools that favor the oxidation of externally derived amino acids [29]. In contrast,
phenylalanine is oxidized in the liver [43] and would only be utilized for protein synthesis
within skeletal muscle, which may explain our ability to delineate a correlation (albeit
negative) between dietary phenylalanine incorporation and LAT1 expression. However, it
should be noted that LAT1 is a bidirectional transporter and can coordinate both the influx
and efflux of amino acids from skeletal muscle, both of which are enhanced in response
to exogenous amino acids at rest and after exercise [1,44]. Therefore, it is possible that a
higher basal LAT1 expression in skeletal muscle may promote a greater phenylalanine
transmembrane flux, which could reduce the ability of exogenous phenylalanine to be
utilized for de novo protein synthesis.

Dietary amino acids were incorporated into skeletal muscle without a concomitant
increase in amino acid transporter expression in the present study, which may be ex-
plained in part by the dissociation between amino acid transporter expression and loca-
tion/activity [45]. For example, treatment of skeletal muscle cells with insulin increases
SNAT2 activity and recruitment into the plasma membrane [46] which, if this occurred in
the present study, our mixed muscle lysate would preclude our ability to detect. However,
LAT1 is the principal transporter of leucine and phenylalanine into muscle cells [27] and
must be associated with the sarcolemmal membrane in order to be active and carry free
leucine (and phenylalanine) into muscle cells [26]. LAT1 is in close proximity to capillaries
in young skeletal muscle [38] which may suggest that peripheral localization of mTOR
within the muscle cell, which we observed in response to anabolic stimuli [47,48], could
position it in closer proximity to amino acid substrates of LAT1 (e.g., ingested leucine
and phenylalanine). Post-translational modifications and/or altered membrane expres-
sion of LAT1 and SNAT2 can also occur in response to anabolic stimuli [22,49], which
may ultimately be more influential for the regulation of dietary amino acid incorporation
into human skeletal muscle. However, we did not observe alterations in the membrane
localization of LAT1 in response to feeding and rest or feeding after resistance exercise,
which is supported by findings from Agergaard and colleagues [22] who showed that LAT1
expression in isolated membrane fractions did not change in response to bolus protein
ingestion but only during periods of low amino acid availability following placebo and
pulse feeding. This could suggest that membrane bound LAT1 increases only when large
amounts of exogenous amino acids are not readily available to muscle fibers. Furthermore,
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although chronic resistance exercise was shown to elevate LAT1 protein content in whole
muscle lysates, membrane associated LAT1 was not affected [50]. As such, available evi-
dence suggests that membrane associated/localized LAT1 is unaffected by both acute and
chronic anabolic stimuli. LAT1 must also form a heterodimer with 4F2hc/CD98(SLC3A2)
in order to localize to membranes and be optimally active [51] so it is possible that changes
in localization/expression of this support protein may also be implicated in skeletal mus-
cle dietary amino acid incorporation. However, previous data in human skeletal muscle
have failed to observe changes in 4F2hc protein expression following essential amino acid
feeding [19] or lower-body resistance exercise [20]. As such, we hypothesize 4F2hc protein
expression would also remain unchanged in the current study. Alternatively, the inside-out
stimulation of mTORC1 by leucine and other essential amino acids via V-ATPases has
been suggested to require the recruitment of LAT1 to the lysosomal membrane [52], which
would align with our previous observations of the lysosome being a focal point of mTORC1
activation with feeding and exercise in human muscle [48,53,54].

5. Conclusions

In conclusion, we demonstrated that, despite basal correlation in protein expression,
amino acid ingestion at rest and after resistance exercise did not increase the expression of
skeletal muscle amino acid transporters LAT1 and SNAT2, nor did it increase the membrane
localization of LAT1. Moreover, despite the ability of exogenous amino acids to stimulate
acute muscle protein anabolism, basal amino acid transporter protein expression and LAT1
membrane localization do not positively influence the incorporation of essential amino
acids leucine and phenylalanine after feeding and resistance exercise. Thus, despite sugges-
tions that dietary amino acids represent primary substrates for skeletal muscle anabolism
(i.e., muscle protein synthesis), our results suggest that this process is not dependent on the
basal expression of amino acid transporters nor the membrane localization of LAT1 when
characterized over the acute postprandial period.
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