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An interactive single cell web portal identifies
gene and cell networks in COVID-19 host responses

Kang Jin,1,2 Eric E. Bardes,1 Alexis Mitelpunkt,1,3,4 Jake Y. Wang,1 Surbhi Bhatnagar,1,5 Soma Sengupta,6

Daniel Pomeranz Krummel,6 Marc E. Rothenberg,7 and Bruce J. Aronow1,5,8,9,*

SUMMARY

Numerous studies have provided single-cell transcriptome profiles of host re-
sponses to SARS-CoV-2 infection. Critically lacking however is a data mine that
allows users to compare and explore cell profiles to gain insights and develop
new hypotheses. To accomplish this, we harmonized datasets from COVID-19
and other control condition blood, bronchoalveolar lavage, and tissue samples,
and derived a compendium of gene signature modules per cell type, subtype, clin-
ical condition, and compartment. We demonstrate approaches to interacting with,
exploring, and functional evaluating thesemodules via a new interactiveweb portal
ToppCell (http://toppcell.cchmc.org/). As examples, we develop three hypotheses:
(1) alternatively-differentiated monocyte-derived macrophages form a multicelllar
signaling cascade that drives T cell recruitment and activation; (2) COVID-19-gener-
ated platelet subtypes exhibit dramatically altered potential to adhere, coagulate,
and thrombose; and (3) extrafollicular B maturation is driven by a multilineage cell
activation network that expresses an ensemble of genes strongly associated with
risk for developing post-viral autoimmunity.

INTRODUCTION

COVID-19 clinical outcomes are variable. The poorer outcomes due to this infection are highly associated

with immunological and inflammatory responses to SARS-Cov-2 infection (Shi et al., 2020; Tay et al., 2020)

and many recent single cell expression profiling studies have characterized patterns of immunoinflamma-

tory responses among individuals, mostly during acute infection phases. Different studies have revealed a

spectrum of responses that range from lymphopenia (Cao, 2020; Wang et al., 2020), cytokine storms (Mehta

et al., 2020; Pedersen and Ho, 2020), differential interferon responses (Blanco-Melo et al., 2020; Hadjadj

et al., 2020) and emergency myelopoiesis (Schulte-Schrepping et al., 2020; Silvin et al., 2020). However,

a variety of obstacles limit the ability of the research and medical communities to explore and compare

these studies to pursue additional questions and gain additional insights that could improve our under-

standing of cell type specific responses to SARS-Cov-2 infection and their impact on clinical outcome.

Although many studies have focused on the peripheral blood mononuclear cells (PBMC) (Arunachalam et al.,

2020; Guo et al., 2020; Lee et al., 2020; Schulte-Schrepping et al., 2020; Wilk et al., 2020) because of ease of pro-

curement, other studies have profiled airway locations via bronchoalveolar lavage (BAL) (Grant et al., 2021; Liao

et al., 2020), nasopharyngeal swabs, and bronchial brushes (Chua et al., 2020). Additional sampling sites that

could also be infected or affected have also been approached in autopsy-derivedmaterials from the central ner-

vous system (Heming et al., 2021; Yang et al., 2021), and other sites (Delorey et al., 2021). Moreover, as major

COVID-19 consortiumsworkingon the collection and integration of eachof their individual studies and interpret-

ing important features of these individual datasets as downloadable datasets or browsable versions, such as sin-

gle cell portal (https://singlecell.broadinstitute.org/single_cell/covid19) and COVID-19 Cell Atlas (https://www.

covid19cellatlas.org/), using these data beyond markers, cell types, and individual signatures is either not

possible or not accomplishable across-datasets. Thus, a well-organized and systematic study of immune cells

across tissues for in-depth biological explorations is an unmet need for a deeper understanding of the under-

lying basis of the breadth of COVID-19 host defense and pathobiology.

Here we harmonized and analyzed eight high quality publicly available single-cell RNA-seq datasets from

COVID-19 and immunologically-related studies that in total covered more than 480,000 cells isolated from
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Figure 1. Creating a COVID-19 signature atlas

(A) Representative aggregation of multiple single-cell RNA-sequencing datasets from COVID-19 and related studies. The present study is derived from a

total of 231,800 peripheral bloodmononuclear cells (PBMCs), 101,800 bronchoalveolar lavage (BAL) cells and 146,361 lung parenchyma cells from 43 healthy;

22 mild, 42 severe, and 2 convalescent patients. Data was collated from eight public datasets (right).

(B) Data analysis pipeline of the study using Topp-toolkit. It includes three phases: (1) clustering and annotation; (2) downstream analysis using Topp-toolkit;

(3) biological exploration. Output includes the evaluation of abundance of cell populations, cell type (cluster) specific gene modules, functional associations

ll
OPEN ACCESS

2 iScience 24, 103115, October 22, 2021

iScience
Article



peripheral blood, bronchial alveolar lavage and lung parenchyma samples, and assembled an integrated

COVID-19 atlas (https://toppcell.cchmc.org/). We established a framework for deriving, characterizing,

and establishing reference gene expression signatures from these harmonized datasets using modular

and hierarchical approaches based on signatures per class, subclass, and signaling/activation and clinical

status per each sample group. Leveraging these gene expression signature modules, we demonstrate data

mining approaches that allow for the identification of a series of fundamental disease processes: (1) an

intercellular monocytic activation cascade capable of mediating the emergence of hyperinflammatory

monocyte-derived alveolar macrophages in severe COVID-19 patients; (2) the generation of several alter-

natively differentiated platelet subtypes with dramatically different expression of sets of genes associated

with critical platelet tasks capable of altering vascular and tissue responses to infectious agents; and (3) a

multilineage and multi cell type cooperative signaling network with the potential to drive extrafollicular B

maturation at a lesion site, but do so with high risk for the development of B cell-associated immunity.

Additionally, immune hallmarks of COVID-19 patients were compared with other immune-mediated dis-

eases using single-cell data from patients with influenza, sepsis, or multiple sclerosis. Consistent and varied

compositional and gene patterns were identified across these implicating striking COVID-19 effects in

some individuals.

RESULTS

Creating the first COVID-19 signature atlas using ToppCell portal

To have a comprehensive coverage of cells, we collated single-cell data of COVID-19 patients from eight

public datasets, which in total contains 231,800 PBMCs, 101,800 BAL cells, and 146,361 lung parenchyma

cells from donors: 43 healthy; 22 mild; 42 severe; and 2 convalescent patients (Figure 1A, Table S1).

To assemble an integrated atlas of human cell responses to COVID-19, we sought to harmonize metadata

encompassing clinical information, sampling compartments, and cell and gene expression module desig-

nations. Doing so provides a rich framework for detecting perturbations of cell repertoire and differentia-

tive state adaptations. We first integrated single cell RNA-seq data in Seurat (Stuart et al., 2019) and anno-

tated cell types using canonical markers (Table S2). Further annotations of B cell and T cell subtypes were

completed using the reference-based labeling tool Azimuth (Hao et al., 2021). Sub-clustering was applied

for some cell types, such as neutrophils and platelets, to interrogate finer resolutions of disease-specific

sub-populations (Figure 1B). Using the ToppCell toolkit (https://toppcell.cchmc.org/), we created an atlas

of more than 3,000 hierarchically organized gene modules corresponding to differentially expressed genes

(DEGs) derived from all cell classes and sub-classes among all compartments and clinical subgroups such

as disease severity levels (Table S1). These modules were then used to infer gene networks within celltypes

and subtypes as well as cell-cell interactions that could be further combined for functional comparative

enrichment, interactions, and fuzzy network AI-based analyses using ToppCluster (Kaimal et al., 2010)

and ToppGene (Chen et al., 2009) (Figure 1B), such as differential functional enrichments of sub-clusters

of platelets. Integration of ToppCluster output of cells frommultiple compartments and disease conditions

built pathogenic heatmaps and networks, highlighted by the coagulation map of COVID-19 (Figure S12). In

addition, perturbation of cell abundance was evaluated either in one cell population, or in multiple

populations across diseases. Taken together, we investigated cell abundance changes, severity-associated

signatures, mechanisms of COVID-19 specific symptoms and unique features of COVID-19 as an immune-

mediated disease (Figure 1B).

Dynamic changes and balance of COVID-19 immune repository in blood and lung

After the aforementioned cell annotation procedure, we identified 28 and 24 distinct cell types in PBMC

and BAL, respectively (Figures 2A and 2C; Table S2). Shifts of Uniform Manifold Approximation and Projec-

tion (UMAP) of cell type distributions were observed in both compartments of mild and severe patients

(Figures 2A, 2C, S1A and 3A). In PBMC, conventional dendritic cells (cDC), plasmacytoid dendritic cells

(pDC), and non-classical monocytes displayed a prominent reduction in severe patients (Figures 2B and

S1C), consistent with prior reports (He et al., 2020; Laing et al., 2020; Wilk et al., 2020). In contrast, severe

patients demonstrated dramatic expansion of neutrophils, especially immature stages (Figures S1C and

Figure 1. Continued

of disease-associated cell classes and clusters, inference of cell-cell interactions, as well as comparative analysis across diseases, including influenza,

sepsis, and multiple sclerosis. Additional newer datasets not included in this manuscript are present and will continue to be added to ToppCell

(http://toppcell.cchmc.org). See also Table S1.
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S2). Integration with evoked pathways in the following analysis implicated that neutrophil expansion was

likely the consequence of emergency myelopoiesis (Wilk et al., 2021). In addition, a general down-regula-

tion of T cell and NK cell was observed, consistent with lymphopenia reported in clinical practices (Peder-

sen and Ho, 2020; Terpos et al., 2020) (Figures S1C and S2). However, the trend of T cell subtypes varies

across studies and individuals, apart from proliferative T cells which have a dramatic increase in mild

and severe patients (Figure S2). Notably, plasmablasts substantially increased in COVID-19 patients, and

especially so in severe patients, suggesting upregulated antibody production (De Biasi et al., 2020) (Figures

2B and S1C). Expansion of platelets is another significant change observed in severe patients, possibly

leading to immunothrombosis in the lung, which could be closely associated with the severity of the

disease (Middleton et al., 2020; Nicolai et al., 2020) (Figures 2B and S1C).

In samples obtained from patients’ lungs, we observed the depletion of FABP4high tissue-resident alveolar

macrophages (TRAM) and dramatic expansion of FCN1high monocyte-derived alveolar macrophages

(MoAM) in severe patients (Figures 2C, 2D, and S3D). Mild patients exhibited a moderate reduction of tis-

sue-resident macrophages, but no evidence of aggregation of monocyte-derived macrophages (Figures

2C, 2D, S3A, and S3D). Dynamic changes of these two subtypes suggest increased tissue chemoattraction

(Merad and Martin, 2020) and potential damage of patients’ lungs (McGonagle et al., 2020). In addition,

neutrophils were only identified in severe patients in the integrated BAL data (Figures 2C and S3A), which

might be related with neutrophil extracellular traps (NETs) in the lung (Barnes et al., 2020). However, more

samples are required to draw a solid conclusion. We also noted that conventional dendritic cells decreased

in the severe patients, which is consistent with the trend of the counterpart in PBMC data. Opposite to the

change in PBMC, an expansion of plasmacytoid dendritic cells is observed in both mild and severe patients

(Figure 2D). Other cell types, including T cell and NK cell in the BAL, also have converse changes of their

counterparts in PBMC, which could be attracted by lung macrophages or epithelial cells after infection or

damages (Chua et al., 2020) (Figures 2D and S3D). These changes were consistently observed in lung pa-

renchyma samples from severe COVID-19 patients (Figure S4). With cells well-annotated in the integrated

COVID-19 atlas, we drew a global heatmap for cells in both blood and lung using ToppCell gene modules

(top 50 DEG in each module) of all identified cell classes. While there was conservation of gene patterns

involved in healthy donors and severe COVID-19 patients, there were substantial differences most notably

in myeloid cells (Figure 2E). Such hierarchically ordered ToppCell gene modules were broadly used in

visualization, large-scale comparisons and fine-resolution investigations in the following analyses.

Myeloid cell atlas: functionally distinct neutrophils at different levels of maturation and

derailed macrophages in the lung

Dysregulated myeloid cells have been reported as an important marker of severe COVID-19 patients

(Schulte-Schrepping et al., 2020; Silvin et al., 2020). To gain a deeper and comprehensive understanding

of these cells, we applied the sub-clustering strategy on the integrated data of key cell types, such as neu-

trophils and macrophages, and then generated gene modules for comparative functional analysis and in-

teractome inference. We successfully identified 5 neutrophil sub-clusters after the integration of PBMC and

BAL data, including 3 FCGR3B+mature sub-clusters and 2 FCGR3B- immature sub-clusters (Figures 3A and

S5B; Table S3). They’re mainly from severe patients and their gene modules were generated and subjected

to comparative functional enrichment using ToppCell and ToppCluster (Figures 3C, 3D and S5A). We iden-

tified proliferative neutrophils (referred to as pro-neutrophils and Neu4) andMMP8high precursor immature

Figure 2. Modularized representation of cell type specific gene signatures and dynamic changes of cell abundance

(A) Uniform Manifold Approximation and Projection (UMAP) of 28 distinct cell types identified in the integrated peripheral blood mononuclear cell (PBMC)

data.

(B) Comparative analysis of cell abundance effects of COVID-19. Reproducible multi-study data present high impact effects on 5 cell types in PBMC.

Percentages of selected cell types in each sample are shown (where Vent: Ventilated patients; Non Vent: Non-ventilated patients). Significance between two

conditions was measured by the Mann–Whitney rank-sum test (Wilcoxon, paired = False), which was also used in following significance tests of cell

abundance changes in this study. *: p% 0.05; **: p % 0.01; ***: p% 0.001; ****: p% 0.0001. Boxplot figures: the lower and upper hinges correspond to the

25th and 75th percentiles; the upper whisker extends from the hinge to the largest value no further than 1.5 3 inter-quartile range (IQR); the lower whisker

extends from the hinge to the smallest value at most 1.5 3 IQR of the hinge. The line within the box corresponds to the median.

(C) UMAP of 24 distinct cell types identified in the integrated BAL data.

(D) Dynamic changes of cell abundances for cell types in two bronchoalveolar lavage (BAL) single-cell datasets. Statistical methods are same with (B).

(E) ToppCell allows for gene signatures to be hierarchically organized by lineage, cell type, subtype, and disease condition. The global heatmap shows gene

modules with top 50 upregulated genes (student t test) for each cell type in a specific disease condition and compartment. Gene modules from control

donors and severe COVID-19 patients were included in the figure. See also Figures S1–S4 and Table S2.
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Figure 3. Functional analysis of compartment-specific immature and subtype-differentiated neutrophils andmonocytic macrophages in COVID-19

patients

(A) Five sub-clusters and three cell groups were identified after the integration of neutrophils in peripheral blood mononuclear cells (PBMC) and

bronchoalveolar lavage (BAL) (Left). The distribution of compartments is shown on the right.

(B) Sub-clusters (Left) and COVID-19 conditions (Right) of monocyte-derived macrophages and tissue-resident macrophages were identified after

integration of BAL datasets.
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neutrophils (referred to as pre-neutrophils and Neu2) (Figures 3A and S5B) consistent with prior studies

(Schulte-Schrepping et al., 2020). Although immune response genes and pathways were barely activated

in the immature neutrophils, they displayed upregulation of granule formation pathways and NETosis-

associated proteins, including ELANE, DEFA4, and MPO, especially in Neu4 (Schulte-Schrepping et al.,

2020; Wilk et al., 2021) (Figures 3C, S5B, and S5C). Upregulated myeloid leukocyte mediated immunity

in Neu2 suggests involvement of this cell type in antiviral function (Figure S5D). Yet, the absence of cytokine

and interferon response pathways suggests the lack of mature immune responses (Figure 3D). Notably,

compared to mature neutrophils (Neu0 and Neu1) in the blood, the extravasated hyperinflammatory

sub-cluster (Neu3) from BAL of severe patients shows extraordinarily high expression of interferon-stimu-

lated genes, as well as prominent upregulation of productions and responses to cytokines and interferons

(Figures 3C, 3D, S5B and S5D).

MoAM and TRAMwere twomain macrophage types in the BAL (Figure 2C); both are known to have distinct

roles in immune responses in the lung (Liao et al., 2020). As described above, five sub-clusters among the

expanded COVID-19 patient-specificMoAM (Figure 3B; Table S3) were found, where the loss of HLA class II

genes and elevation of interferon-stimulated genes (ISGs) were consistently observed (Figures 3F and S6A).

Relative to MoAM3,4, MoAM1,2,5 displayed an upregulation of interferon responses and cytokine produc-

tion (Figures 3D and S6B; Table S3), indicating their pro-inflammatory characteristics. Notably, MoAM5

shows dramatic upregulation of IL-6 secretion and cytokine receptor binding activities (Figures S7A–

S7D). However, cells in this sub-cluster were mainly from one severe patient (Figure S3C). We still need

more data to fully understand such dramatic upregulation of IL-6 secretion in some severe patients. Similar

to MoAM, we also identified two distinct groups of TRAM in BAL (Figures 3B and S6B), including quiescent

TRAM (TRAM1 and TRAM2) and activated TRAM (TRAM3). The quiescent group was mainly from healthy

donors with enriched pathways of ATP metabolism (Figure 3D), while the activated group from mild and

severe patients displays upregulation of ISGs and cytokine signaling pathways (Figure S6B; Table S3). How-

ever, the magnitude of activation and inflammatory responses in TRAM3 is smaller than MoAM1,2,5. Not

surprisingly, stronger antigen processing and presentation activities were observed in TRAM3 relative to

MoAM1,2,5 (Figures 3D and S6B; Table S3). Collectively, we concluded that tissue-resident macrophages

were greatly depleted in severe patients as the front-line innate immune responders in the lung. Pro-inflam-

matory monocyte-derived macrophages infiltrate into the lung, leading to the cytokine storm and damage

of the lung. Large amounts of infiltration of MoAM were not observed in mild COVID-19 patients, probably

due to the controlled infection, which could explain milder lung damages in those patients.

To develop insights into molecular and cellular interaction networks active in the lungmicroenvironment of

COVID-19 patients (Garvin et al., 2020), we focused on signaling ligands, receptors and pathways using

ToppCell and CellChat (Figures 3E, S8A and S8B). Notably, basal cells, MoAMs, neutrophils and T cells

all contributed to the cytokine, chemokine, and interleukin signaling networks. Strikingly, severe patient

specific MoAM2 shows the broadest upregulation of signaling ligands, including CCL2, CCL3, CCL7,

CCL8, CXCL9, CXCL9, CXCL10, CXCL11, IL6, IL15, and IL27, suggesting its role as a signaling network

hub that is distinct from the other major signaling ligand-expressing cells of BAL such as epithelial and

other myeloid cell types such as TRAM3 and proliferating myeloid cells (Figure S8A). Among the

MoAM2 top signaling molecules, attractants CXCL8, CXCL9, and CXCL10 are known to target CXCR3

on T cells, suggesting their role is to stimulate migration of T cells to the epithelial interface and into

BAL fluid (Figure 3E) (Liao et al., 2020). In addition, many of MoAM2’s ligands have the potential to cause

autocrine signaling activation via IL6-IL6R, IL1RN-ILR2, CCL7-CCR1, CCL2-CCR1, and CCL4-CCR1,

Figure 3. Continued

(C) Heatmap of gene modules from ToppCell with top 200 upregulated genes for each neutrophil sub-cluster. Important neutrophil-associated genes and

inferred roles of sub-clusters were shown on two sides.

(D) Heatmap of associations between subclusters of neutrophils and macrophages and myeloid-cell-associated pathways (Gene Ontology). Gene modules

with 200 upregulated genes for sub-clusters were used for enrichment in ToppCluster. Additionally, enrichment of top 200 differentially expressed genes

(DEGs) for comparisons in Figures S5D and S6B were appended on the right. Gene enrichment scores, defined as �log10(adjusted p value), were calculated

as the strength of associations. Pie charts showed the proportions of COVID-19 conditions in each cluster.

(E) Gene interaction network in the BAL of severe patients. Highly expressed ligands and receptors of each cell type in the BAL of severe patients were

selected based on Figure S8. Among them, genes with unique and distinct expression patterns in each cell type were chosen, for example, CCL17 for cDCs

and CXCR1 for neutrophils. Interaction was inferred using both CellChat database and embedded cell interaction database in ToppCell. The molecular

interaction between cell types is represented as a flow of arrows in such a way: secreting cells / ligands / receptors / receptor cells, where rectangles

represent various cell types and hexagons represent ligands and receptors. The color for a gene is consistent with the cell type with the highest expression

level. See also Figures S5–S11 and Table S3.
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Figure 4. COVID-19 driven reprogramming of platelets leads to drastically altered expression of genes associated with platelet adhesion,

activation, coagulation and thrombosis

(A and B) Uniform Manifold Approximation and Projections (UMAPs) show distributions of sub-clusters (A) and COVID-19 conditions (B) of platelets after the

integration of PBMC datasets.

(C) Severity-associated coagulation genes were selected and shown on the heatmap, with disease and sub-cluster specific gene patterns identified and

labeled. Their functional associations with coagulation pathways were retrieved from ToppGene and shown on the right.
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indicating its active roles in self-stimulation and development, which further amplify the attraction and

migration of T cells and other immune cells. Notably, CCR1 was also expressed in activated TRAM3, but

with a lower level. Although IL6 expression level is relatively low compared to other ligands in BAL data,

substantial expression of IL6R was observed in MoAMs. The CCL and CXCL signaling pathways of neutro-

phils are less strong than MoAMs (Figure S8B), but they displayed high expression levels of CXCR1 and

CXCR2, which binds with a large number of the chemokines from MoAM and epithelial cells (Figure 3E).

In addition, neutrophils exhibit an extraordinarily high level of IL1B, which could potentially in turn activate

macrophages (Figures S8A and S8B). TRAM3 also displayed a unique pattern of signaling molecules, with a

substantial level of CCL23 which could potentially attract MoAM by the interaction with CCR1. Secretion of

CXCL3 and CXCL5 in TRAM3 toward CXCR2 could be a potential chemoattraction pathway for neutrophils.

In turn, neutrophils could activate TRAM3 by secreting IL1B, which binds with IL1RAP. In addition, CD4+

T cells could also activate TRAM3 by IL10-IL10RB interaction (Figures 3E, S8A, and S8B).

In addition to substantial alterations of neutrophils and macrophages, the upregulation of ISGs was

observed in classical monocytes of both mild and severe patients (cMono4, cMono3), whereas the reduc-

tion of the MHC class II cell surface receptor HLA-DR genes was only observed in severe patients (cMono3)

(Figure S9). In cDCs, polarization of interleukin secretion was observed in mild-patient and severe-patient

specific clusters (Figure S10F). Collectively, dynamic changes of marker genes, transcriptional profiles,

signaling molecules, and biological activities reveal the heterogeneity of myeloid cell sub-clusters across

disease severity (Figure S11C). Pro-inflammatory gene expression was found in all major myeloid cell types,

including cMono4, DC1, and DC9 in PBMC and Neu3, DC10, MoAM1, MoAM2, and MoAM5 in BAL of

COVID-19 patients. The reduction of MHC class II (HLA-II) genes is a common feature of classical mono-

cytes and macrophages in COVID-19 patients and implies impaired capacity to activate T cell adaptive

immunity.

COVID-19 coagulation and immunothrombosis map

Individuals severely affected during acute phase COVID-19 infection, and in particular those with signifi-

cantly elevated risk of death, frequently demonstrate striking dysregulation of coagulation and thrombosis

characterized by hypercoagulability and microvascular thrombosis (endothelial aggregations of platelets

and fibrin) and highly elevated D-dimer levels. Yet, COVID-19 does not lead to wide scale consumption

of fibrinogen and clotting factors (Iba et al., 2020a; Levi et al., 2020; Middleton et al., 2020; Nicolai et al.,

2020; Rapkiewicz et al., 2020). At present, we lack a molecular or cellular explanation of the underlying basis

of this pathobiology (Aid et al., 2020; Middleton et al., 2020). To evaluate candidate effectors of this patho-

biology, we used a list of genes associated with abnormal thrombosis from mouse and human gene muta-

tion phenotypes and identified parenchymal lung sample endothelial cells and platelets in PBMC as cell

types highly enriched with respect to genes responsible for the regulation of hemostasis (Figure S12).

Because platelet counts were greatly elevated in severe versus mild individuals, we further examined

platelet gene expression signatures and cell type differentiation and identified six distinct platelet sub-

clusters shared across all datasets after data integration (Figures 4A and 4B). Severe-patient-specific

PLT0 is an interesting sub-cluster with elevated integrin genes, including ITGA2B, ITGB1, ITGB3, and

ITGB5, as well as thrombosis-related genes, such as SELP, HPSE, ANO6, and PF4V1. Antibodies against

the latter are associated with thrombosis including adverse reactions to recent COVID-19 vaccine ChA-

dOx1 nCoV-19 (Schultz et al., 2021). In addition, upregulated pathways of hemostasis, wound healing

and blood coagulation were also observed in PLT0 (Figure S13A; Table S4). Importantly, PLT2 is an inflam-

matory sub-cluster with an upregulation of ISGs and interferon signaling pathways, whereas PLT4 is high-

lighted by upregulated post-transcriptional RNA splicing activities (Figure S13A and S13C).

Severity-associated gene patterns were also identified by selecting coagulation-associated genesmodules

(Figure 4C; Table S4), indicating distinct coagulation activities across platelets. Apart from pan-platelet

genes, we found dramatic upregulation of genes involved in platelet activation, fibrinogen binding and

blood coagulation in platelets of severe COVID-19, including procoagulant heparanase (HPSE) (Osterholm

et al., 2013), Anoctamin-6 (ANO6) (Swieringa et al., 2018), and selectin P (SELP) (Sparkenbaugh and

Figure 4. Continued

(D) Functional and phenotypical associations of coagulation-association genes in each gene pattern from (C). Associations were retrieved from ToppGene

enrichment output and eight enrichment categories are represented by rectangles with unique colors. Thicken colored edges represent associations of

highlighted functions, such as cell-matrix binding and regulation of coagulation. Hypothesized pathway cascade that potentially drives thromboembolism in

COVID-19 patients is drawn in red dotted line. See also Figures S12, S13 and Table S4.
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Pawlinski, 2013) (Figures 4C and 4D). Heparanase is an endoglycosidase that cleaves heparan sulfate con-

stituents, a major component of anti-coagulation glycocalyx on the surface of vascular endothelium (Edo-

vitsky et al., 2006; Iba et al., 2020b). Upregulated heparanase was related to upregulation of cell-matrix

adhesion and coagulation (Figure 4D). Thrombotic vascular damages could be caused by the degradation

function of heparinase enriched in platelets of severe patients. Elevation of ANO6 is known to trigger phos-

pholipid scrambling in platelets, resulting in phosphatidylserine exposure which is essential for activation

of the clotting system (Heemskerk et al., 2013). In addition, other upregulated genes involved in coagula-

tion-associated activities were also observed, including wound healing, fibrinolysis, platelet aggregation

and activation (Figure 4D), which likely collectively contribute to the clotting issue of severe COVID-19

patients.

Emergence of developing plasmablasts and B cell association with autoimmunity

Autoimmune disorders in COVID-19 patients such as immune thrombocytopenic purpura (ITP) is now

recognized as a known disease complication (Ehrenfeld et al., 2020; Fujii et al., 2020; Gruber et al., 2020;

Rodrı́guez et al., 2020; Zhou et al., 2020). However, little is known about the molecular and cellular mech-

anism behind it. To examine this further, we integrated B cells and plasmablasts from both PBMC and BAL

and conducted systematic analysis (Figures 5A, 5B, S14A, and S14B). Several COVID-19 specific sub-clus-

ters were identified in B cells, such as ISGhigh activated B cells (cluster 7) (Figure 5A). Importantly, activated

B cells showed dramatic upregulation of interferon signaling pathways and cytokine productions (Fig-

ure S15A), indicating its anti-virus characteristics. Notably, plasmablasts were mainly observed in severe

COVID-19 patients, where a group of proliferative cells was identified and labeled as developing plasma-

blasts (Figure 5B). In contrast, non-dividing plasmablasts displayed upregulation of immunoglobulin genes

(IGHA1, IGHA2, and IGKC), B cell markers (CD79A) (Mason et al., 1995), interleukin receptors (IL2RG) and

type II HLA complex (HLA-DOB) (Figure 5C; Table S5). In addition, non-dividing plasmablasts showed

unique isotypes of immunoglobulin (Ig) in sub-regions of UMAP, whereas developing plasmablasts dis-

played obscure Ig types (Figure S14E and S14F). Antibody production activities were upregulated in

non-dividing plasmablasts based on gene enrichment analysis (Figure S15A; Table S5). Collectively, we in-

ferred that non-dividing plasmablasts had definite immunoglobulin isotypes and were actively involved in

immune responses toward COVID infection, whereas developing plasmablasts were less mature but highly

proliferative to replenish the repertoire of plasma cells.

Because there are few clues of gene associations of autoimmunity in COVID-19, we brought up a hypoth-

esis-driven, prior knowledge-based approach to discover and prioritize genes for the specific phenotype

(Figure 5D). First, genemodules of B cells and other cells in severe patients were collected and subjected to

ToppGene (Chen et al., 2009) for enrichment analysis. Then we queried autoimmunity-associated terms in

the enriched output and identified associated genes. After that, we retrieved interaction pairs using the

ToppCluster and CellChat database (Jin et al., 2021). In the end, we identified genes that are not only

involved in autoimmunity, but have a mediator role in the immune signaling network. Using this approach,

we observed several candidate pairs of genes, including TNFSF13B-TNSRSF13, IL10-IL10RA, IL21-IL21RA,

IL6-IL6R, CXCL13-CXCR5, CXCL12-CXCR4, CCL21-CCR7, CCL19-CCR7, and CCL20-CCR6 in severe pa-

tients, which were enriched for autoimmune diseases, such as autoimmune thyroid diseases, lupus

nephritis, and autoimmune encephalomyelitis (Aust et al., 2004; Hirota et al., 2007; Kuwabara et al.,

2009; Lee et al., 2010; Steinmetz et al., 2008). Candidate cytokine and chemokine ligand genes were

Figure 5. Implicating a multi-lineage cell network capable of driving extrafollicular B cell maturation and the emergence of humoral autoimmunity

in COVID-19 patients

(A) Uniform Manifold Approximation and Projections (UMAPs) of sub-clusters (Left) and COVID-19 conditions (Right) of B cells after integration of peripheral

blood mononuclear cells (PBMC) and bronchoalveolar lavage (BAL) datasets.

(B) UMAPs of subtypes (Left) and COVID-19 conditions (Right) of plasmablasts after integration of PBMC and BAL datasets.

(C) Volcano plot depicts differentially expressed genes between plasmablasts and developing plasmablasts. Student t-tests were applied and p values were

adjusted by the Benjamini-Hochberg procedure. Thresholds of adjusted p values and log fold changes in the volcano plot are 1.0*10-6 and 1.0, respectively.

(D) Workflow of discovering and prioritizing candidate genes related to a disease-specific phenotype with limited understanding.

(E) The heatmap shows the normalized expression levels of candidate ligands and receptors for COVID-19 autoimmunity in multiple compartments in

healthy donors and COVID-19 patients. Binding ligands of receptor genes were shown in parentheses on the right. Hot spots of expression are highlighted.

(F) Network analysis of autoimmunity-associated gene expression by COVID-19 cell types. Prior knowledge associated gene associations include GWAS,

OMIM, mouse knockout phenotype, and additional recent manuscripts were selected from ToppGene enrichment results of differentially expressed ligands

and receptors and shown on the network. Orange arrows present the interaction directions from ligands (green) to receptors (pink) on B cells. Annotations

for these genes, including single-cell co-expression (blue), mouse phenotype (light blue), transcription factor binding site (purple) and signaling pathways

(green) are shown. See also Figures S14, S15 and Table S5.
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expressed in various cell types in PBMC and BAL, including IL21 and CXCL13 from exhausted T cells of BAL,

CXCL12 from mesenchymal cells, IL6, and CCL21 from endothelial cells, CCL19 from cDC and CCL20,

TNFSF13B, and TNFSF13 from lung macrophages (Figure 5E; Table S5). These interaction pairs have

been linked with auto-immunity (Klimatcheva et al., 2015; Wong et al., 2010). In addition, we analyzed sin-

gle-cell studies (Arazi et al., 2019; Zhang et al., 2019) of rheumatoid arthritis and lupus nephritis patients and

found that high expression levels of the candidate receptors in B cells and ligands in other cells were also

observed, such as CXCL13 in helper T cells and CXCR5 in B cells in both studies (Figures S15C and S15D).

However, more evidence is still required to infer the association between these interactions and autoimmu-

nity in COVID-19 patients. Supported by the evidence above, we drew a network for potential mediator

interactions of B cells and their associations with autoimmune disorders, where linkages with diseases,

such as rheumatoid arthritis, systemic lupus erythematosus, were highlighted, as well as linkages with

mouse phenotypes, such as abnormal immune tolerance and increased susceptibility to autoimmune dis-

order (Figure 5F). As a caveat, although using prior knowledge to prioritize gene and cell-associated

functions and interactions may introduce biases, such approaches also have the potential to highlight

key similarities and differences between different disease causes and clinical responses and improve our

understanding of the molecular and cellular mechanisms at work.

Functional map and immune cell interplay landscape in COVID-19

As above, where highly significant enrichments of unique functions and pathways could be identified in the sub-

types of multiple cell classes, such as neutrophils, platelets and B cells, we sought to get a more holistic under-

standing of COVID-19 specific cell class and subclass-level signatures, including T cell subtypes (Figures S16 and

S17), we built an integrative functional map of all cell types in three compartments across multiple disease

conditions using a highly integrated gene module set (Figure 6A; Table S6). All enriched functional associations

in ToppCluster for gene modules of cell types and sub-clusters were depicted. They were grouped by disease

conditions and compartments to show heterogeneity of cellular functions in different circumstances.

In the heatmap (Figure 6A), most enrichments were consistently observed across cells of healthy donors

and COVID-19 patients. However, some unique patterns were also identified. For example, T cells, and

NK cells in healthy donors show enrichments of mitochondrial transport and ATP metabolic process,

whereas activated T cells in mild patients show upregulation of type I interferon production and cytokine

signaling. Enrichments of macrophage differentiation and neutrophil migration regulation were uniquely

found in MoAM1 in severe patients (Figure 6A). The function map provides a high-level approach to inves-

tigate functional variations of cells across disease conditions and compartments. The predicted interplay of

immune cells across multiple compartments and disease conditions is displayed in Figure 6B. Cell propor-

tion changes, sub-cluster specific signatures, and cell-cell interaction are also depicted.

Similarity and heterogeneity between COVID-19 and other immune-mediated diseases

To further analyze COVID-19 specific immune signatures, we compared immune cells from COVID-19 patients

with cells in other immune-mediated diseases, including severe influenza (Lee et al., 2020), sepsis (Reyes et al.,

2020), and multiple sclerosis (Schafflick et al., 2020). 404,125 cells were included after the integration of PBMC

single-cell datasets (Figures 7A and S18; Table S7). Dynamic changes of cell abundance were compared in dis-

eases versus healthy donors. Similar toCOVID-19 patients, severe influenza patients also exhibited the reduction

of non-classical monocytes, pDC, cDC, and CD4+ TCM, but the effect of the former two types was smaller in

magnitude (Figure 7B). However, the reduction of non-classical monocytes is more significant in severe

COVID-19 patients than severe influenza or mild COVID-19 patients (Figure 7B). Notably, NK cell reduction is

associated with COVID-19 severity, whereas T cell depletion is a more dramatic perturbation in severe influenza.

Within these comparisons, the expansion of plasmablasts is consistently observed, whereas the accumulation of

platelets is unique to SARS-CoV-2 and in particular, to severe COVID-19 clinical status (Figure 7B).

Figure 6. Comparative analysis of cell type specific gene signatures associated with lineage, class, subclass, compartment, and disease state in the

COVID-19 atlas

(A) Enrichment scores of genemodules for all cell types across different compartments and COVID-19 conditions were generated by ToppCluster and shown

on the heatmap. ToppCluster enriched functions fromGeneOntology, Human Phenotype, Mouse Phenotype, Pathway and Interaction databases were used

to generate a feature matrix (cell types by features) and were hierarchically clustered. Hot spots of the disease-specific enrichments were highlighted and

details were shown on the left. More details can be found in STAR Methods.

(B) Summarizing predicted functions and interplay of immune cells in COVID-19 blood and lung. Aforementioned key observations in this study were shown

in peripheral bloodmononuclear cells (PBMC) and bronchoalveolar lavage (BAL) in healthy donors, mild and severe COVID-19 patients, including changes of

cell abundance, specific marker genes, upregulated secretion, cell development and cell-cell interactions. See also Table S6.
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IL3RA
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IL6
IL4R
IL16
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HLA-DRB5
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HLA-DQB1
HLA-DMB
HLA-DMA
HLA-DRA
HLA-DRB1
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IL7
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CXCR5
CCR6
IL5RA
IL23R
IL6ST
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IL23A
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IL24
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IL2RG
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CCL4
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PF4
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CXCL5

Gene Category
row min row max

Lineage

Lineage
Lineage

Cell class

Disease
n_cells

B memory B naive
CD14+ Monocyte
CD16+ MonocyteCD4+ T naive CD4+ Tcm cDCNK pDCPlasma cell CD8+ T naive CD8+ Tem

immature Neutrophil
Neutrophil Platelet

Disease
COVID-19 Mild
COVID-19 Severe
CTL

Influenza Severe
MS
SEP-ICU
SEP-Mild

A B

C
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In addition to dynamic changes of cell ratios, we also investigated the regulation of immune mediator

genes across various diseases (Figure 7C; Table S7). IL-6 is an important factor of cytokine storms in

COVID-19 (Zhao, 2020). As shown in the heatmap, naive B cells are the main sources of IL-6 in COVID-19

patients while CD14+ monocytes show the highest expression levels in severe influenza patients (Fig-

ure 7C). Specific ligands, including CXCL2, CXCL3, and CCL20 were upregulated in both severe COVID-

19 patients and severe influenza patients. CCR4 and IL2RA are uniquely high in CD4+ T cells of COVID-

19 patients. Interestingly, most PBMC myeloid cell types displayed upregulated levels of interferon-stim-

ulated genes in both COVID-19 and influenza, especially in COVID-19, where highest levels of ISGs in

CD14+ Monocytes, cDC and pDC were observed.

DISCUSSION

In this work, we have constructed an innovative immune signature atlas of the blood and lung of COVID-19

patients using the integrated single cell RNA-sequencing data and Topp-toolkit. By virtue of systemic anal-

ysis of large sample size frommultiple sampling sites, consistent immunopathology-associated changes of

cell abundance and transcriptional profiles were observed in the circulating and lung immune repertoire of

COVID-19 patients. The established single cell atlas and the provided public portal (https://toppcell.

cchmc.org/) enables the query of candidate molecules and pathways in each of these processes.

Leveraging this approach, we identified three major candidate mechanisms capable of driving COVID-19

severity: (1) a cascade-like network of proinflammatory autocrine and paracrine ligand receptor interactions

among subtypes of differentiating mononuclear, lymphoid, as well as other cell types; (2) the production of

emergency platelets whose gene expression signatures implicate significantly elevated potential for adhe-

sion, thrombosis, attenuated fibrinolysis, and potential to enhance the release of heparin-bound cytokines

as well as further influence the activation of neutrophils causing further inflammatory cell recruitment and

neutrophil netosis; and (3) the extrafollicular activation of naive and immature B cells via a multilineage

network that includes monocytic subtypes and exhausted T cells of cytokines and interleukins with the po-

tential to generate local antigen specific response to virus infected targets and collateral autoimmunity.

More details will be discussed below.

We identified dramatically expanded macrophages which were marked by the loss of HLA class II genes

and upregulation of interferon-stimulated genes. It implicates a key role for these activated macro-

phages involved in signaling networks and less so in activation of adaptive T cell immunity. Among

them, MoAM2 displayed hyperinflammatory responses and extraordinary high levels of signaling mole-

cules, which are involved in both autocrine (e.g., IL-6, CCL2, CCL4, and CCL8) and paracrine (e.g.,

CXCL2, CXCL9, CXCL10, and CXCL11) signaling pathways. The former pathway contributed to the

self-stimulation and development, which amplified the paracrine pathway for T cell and neutrophil che-

moattraction. The latter two cell types in turn activated MoAMs with cytokines genes (CCL5, IL10 of

T cells and IL1B of neutrophils, respectively). Based on the intercellular and multifactor complexity of

the signaling cascade we have outlined, to effectively control a malignant inflammatory cascade, it

may be essential to consider simultaneously targeting multiple nodes of this network of cytokines and

interleukins. In addition, HLA-DRlow monocytes, likely reflecting dysfunctional cells, were observed in

severe infection. This, along with evidence of emergency myelopoiesis with immature circulating neutro-

phils into the circulation was detected in severe COVID-19. These neutrophils had transcriptional pro-

grams suggestive of dysfunction and immunosuppression not seen in patients with mild COVID-19. As

such, we have presented evidence for the contribution of defective monocyte activation and dysregu-

lated myelopoiesis to severe COVID.

Figure 7. Comparative analysis of differentially-expressed immunoregulatory genes between COVID-19 and other immune-mediated diseases

(A) Uniform Manifold Approximation and Projection (UMAP) shows the distributions of cell types (Left) and diseases (Top right) after the integration of

datasets in multiple studies. MS: multiple sclerosis; IIH: idiopathic intracranial hypertension. IIH patients were recruited as controls in the multiple sclerosis

study.

(B) Dynamic changes of immune cell types in different immune-mediated diseases compared to healthy controls. Log2(ratio) was calculated to show the

levels of changes. *, p < 0.05, **, p < 0.01, ***, p < 0.001. Statistical models can be found in the STARMethods. Leuk-UTI: sepsis patients that enrolled into UTI

with leukocytosis (blood WBC R12,000 per mm3) but no organ dysfunction. Box features are same with Figure 2B.

(C) Normalized expression values of key genes involved in immune signaling and responses are shown for cell types across multiple diseases. Lowly

expressed genes (maximal average expression level across all cell types in the heatmap is less than 0.5 after Log2CPM normalization) were removed. See also

Figure S18 and Table S7.
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Platelet expansion is uniquely observed in COVID-19 versus other immune-mediated diseases. Strikingly,

these activated platelets were highlighted with abnormal thrombosis and upregulated heparanase, a pro-

coagulant endoglycosidase that cleaves anti-coagulation heparan sulfate constituents on endothelial cells

and potentially causes thrombotic vascular damages. In addition, heparanase-cleaved heparan sulfate (HS)

fragments were capable of stimulating the release of pro-inflammatory cytokines, such as IL1B, IL6, IL8,

IL10, and TNF through the TLR-4 pathway in PBMC (Goodall et al., 2014), further contributing to the hyper-

inflammatory environment in COVID-19 patients. Because heparanase is recognized as a hallmark in tumor

progression and metastasis (Jayatilleke and Hulett, 2020), we hypothesize COVID-19 infection could be

associated with higher occurrence of lung tumor metastasis. However, more data is required to support

it. Pro-neutrophil secreted proteins (e.g., ELANE, DEF4) of neutrophil extracellular trap (NET), which

have been reported to be associated with higher risk of morbid thrombotic events (Zuo et al., 2021).

Approaches for combating NETs could be a potential anticoagulation treatment (Thålin et al., 2019).

We propose a signaling network which potentially shapes the differentiation of B cells toward the formation of

autoantibodies. Proliferation and activation of inflammatorymyeloid cells and the formation of exhausted CD4+

T helper around an area of direct or indirect viral tissue injury leads to the production of a set of interleukins and

cytokines known to have both direct cell activating andmaturing effects on naive and immature B cells. Previous

report had revealed the exaggerated extrafollicular B cell response, which is part of amechanism that stimulates

somatic mutation and maturation of B cells to produce plasma cells with specificity for antigens present in the

vicinity of tissue damage sites (Farris and Guthridge, 2020). In the absence of macrophages or dendritic cells to

restrict self vs non-self, the presence of IL-10, IL-21, CXCL13 CXC10, IL-6, and others acting on receptors present

in naive and immature B cells leads to the selection and maturation of self-reactive maturation of B cells clones

with formation of autoantibodies. Many of these COVID-19-activated genes (e.g., CXCL13, CCL19, CCL20, and

TNFRSF13) are known to be genetically associated with rheumatoid arthritis, lupus, and risk of developing auto-

immune disease in humans andmousemodels. The development of different patterns of autoimmunity may be

a hallmark of ‘‘Long Haul’’ Covid disease and could explain why some individuals develop different autoanti-

bodies and suffer different forms of clinical consequences depending on which antigens drive the B-cell matu-

ration. Thus, an additional prediction that could bemadebased on these findings and our networkmodel is that

among individuals treated with corticosteroids at the time these auto-immunogenic processes are activated,

there should be a protective effect and lower likelihood of developing post acute sequela of Covid.

Consistent and varied compositional changes and gene patterns of immune cells were identified in COVID-

19, influenza and sepsis. Expansion of plasmablasts, as well as the reduction of non-classical monocytes,

are more significant changes in severe COVID-19 patients, whereas the depletion of T cells is more

dramatic in severe influenza patients. The accumulation is a unique immune hallmark of COVID-19 within

the selected diseases, which contributes to the coagulation abnormalities and thrombosis, a key cause of

fatality in COVID-19 patients. Different signaling gene patterns were identified across immune-mediated

diseases, with CCR4 only highly expressed in CD4+ T cells of COVID-19 patients, which might be related

with extravasation of these cells (Spoerl et al., 2021). Upregulated interferon-stimulated genes of myeloid

cells in PBMC revealed the inflammatory environment of COVID-19.

Collectively, using the COVID-19 single cell atlas data exploration environment, we have illustrated is that

researchers are now enabled to systematically explore, learn, and formulate new hypotheses within and

between compartments, cell types, and biological processes, and provided access to these reprocessed

datasets through a suite of explorative and evaluative tools. Moreover, we have shown different hypothe-

ses can be developed and explored using the approaches that we have outlined and the database that we

have provided. Certainly additional critical information will also be obtained using approaches that include

in situ spatial, temporal data as well as those of viral products and viral and inflammatory-process affected

complexes. Next steps for improving its ability to be mined more deeply will be based on additional sta-

tistical methods that extend the current ToppCell/ToppGene Suite based on fuzzy measure similarity,

Page-Rank, and cell-cell signaling approaches.

Limitations of study

There are several limitations in our study. Different studies used various standards of COVID-19 severity

definition. To generalize conclusions, we simplified disease conditions into several universal groups.

Prospectively, a standardized definition of disease stages will assist in the accuracy of future studies. In ad-

ditionn, the timing of sample collection was not considered as a variable in this study, rather disease stages
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were used to consolidate data across samples. We lack follow-up data of patients with sequela, which will

be helpful for understanding the long-haul effects of the disease.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead

Contact, Bruce Aronow (bruce.aronow@cchmc.org).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d Public single-cell RNA-seq datasets of PBMC in COVID-19 patients are available on NCBI Gene Expres-

sion Omnibus (GEO) and European Genome-phenome Archive, including GSE150728, GSE155673,

GSE150861, GSE149689 and EGAS00001004571 (or Schulte-Schrepping_2020_COVID19_10x_PBMC un-

der FastGenomics). BAL single-cell RNA-seq datasets of COVID-19 patients are available on GSE145926

and GSE155249. Lung Parenchyma single-cell RNA-seq data are available on GSE158127. Single-cell

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

scRNA-seq for COVID-19 PBMC Arunachalam et al., 2020 GSE155673

scRNA-seq for COVID-19 PBMC Guo et al., 2020 GSE150861

scRNA-seq for COVID-19 PBMC Lee et al., 2020 GSE149689

scRNA-seq for COVID-19 PBMC Schulte-Schrepping et al., 2020 EGAS00001004571

scRNA-seq for COVID-19 PBMC Wilk et al., 2020 GSE150728

scRNA-seq for COVID-19 BAL Liao et al., 2020 GSE145926

scRNA-seq for COVID-19 BAL Grant et al., 2021 GSE155249

scRNA-seq for COVID-19 Lung Biopsy Bharat et al., 2020 GSE158127

scRNA-seq for Sepsis PBMC Reyes et al., 2020 SCP548, SCP550

scRNA-seq for Multiple-Sclerosis PBMC Schafflick et al., 2020 GSE138266

Integrated COVID-19 scRNA-seq data This paper Mendeley Data: https://doi.org/10.17632/

vrxdg7mm6x.1

Integrated COVID-19 scRNA-seq

interface

This paper cellxgene: https://cellxgene.cziscience.com/

collections/b9fc3d70-5a72-4479-a046-

c2cc1ab19efc

Software and Algorithms

Seurat (v4.0) Hao et al., 2021 https://satijalab.org/seurat/

R (v3.6.1) N/A https://www.r-project.org/

Scanpy (v1.7.2) Wolf et al., 2018 https://scanpy-tutorials.readthedocs.io/en/

latest/index.html

Python (v3.7.0) N/A https://www.python.org/

CellChat (v1.0.0) Jin et al., 2021 http://www.cellchat.org/

ToppGene Chen et al., 2009 https://toppgene.cchmc.org/

ToppCluster Kaimal et al., 2010 https://toppcluster.cchmc.org/

ToppCell this paper https://toppcell.cchmc.org/

EnhancedVolcano (v1.4.0) Blighe et al., 2021 https://bioconductor.org/packages/release/

bioc/html/EnhancedVolcano.html

Cellxgene N/A https://github.com/chanzuckerberg/cellxgene
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RNA-seq data of sepsis patients are available on the Single Cell Portal SCP548 and SCP550. Data of mul-

tiple sclerosis patients are available on GSE128266. Data of severe influenza patients are available on

GSE149689. Accession numbers are also listed in the key resources table. Original and processed

data can be downloaded on Mendeley Data (https://doi.org/10.17632/vrxdg7mm6x.1). Gene modules

of all datasets analyzed using ToppCell web portal are available on COVID-19 Atlas in ToppCell

(https://toppcell.cchmc.org), including gene modules from either a single dataset or an integrated data-

set. Gene modules from the integration of specific cell types, such as B cells and neutrophils are also

listed in ToppCell. More details are listed in Figure1A and Table S1. An interactive interface of integrated

PBMC data and subclusters of immune cells will be public on cellxgene (https://cellxgene.cziscience.

com/collections/b9fc3d70-5a72-4479-a046-c2cc1ab19efc).

d Codes of preprocessing, normalization, clustering and plotting of single-cell datasets are available on

github: https://github.com/KANG-BIOINFO/COVID-19-Atlas.

d Any additional information required to reanalyze the data reported in the paper is available from the lead

contact upon request.

METHOD DETAILS

Single-cell RNA-seq data source

To have a comprehensive understanding of immune cells in different repertoires, we collected 8 public

COVID-19 single-cell RNA-seq datasets of multiple compartments, including peripheral blood mononu-

clear cells, bronchoalveolar lavage and lung biopsy, which in total covered over 43 healthy donors, 22

mild/moderate, 42 severe and 2 convalescent COVID-19 patients. More details can be found in Figure 1A

and Table S1 andData Availability. Lung biopsy samples were taken from the explanted lung or postmortem

lungs of COVID-19 patients (Bharat et al., 2020). Various criteria were used in these publications to describe

COVID-19 severity. For example, we found asymptomatic, mild, moderate and floor COVID-19 patients un-

der the definition of non-severe COVID-19 patients in our data sources. A recent paper used theWHO score

of COVID-19 severity to categorize disease conditions of patients (Wilk et al., 2021), which is a more stan-

dardized and robust approach for the description of disease stages. However, in order to address the issue

of missing information for disease stratification and to simplify the comparison, we grouped disease condi-

tions into three groups, including healthy donors, mild COVID-19 patients and severe COVID-19 patients.

Convalescent patients were excluded in some of our analysis for simplification. Sequencing data of healthy

donors in Guo et al. was excluded since it was not from the same institute (Guo et al., 2020).

We also collected PBMC single-cell RNA-seq data from 29 sepsis patients (Reyes et al., 2020) and 4multiple

sclerosis (Schafflick et al., 2020) patients for comparative analysis of immune-mediated diseases (Figure 1A;

Table S1). Data sources can be found in Data Availability.

Data preprocessing and normalization

For datasets with raw UMI counts, we first removed cells with less than 300 detected genes or less than

600 UMI counts. Then cells with more than 15% counts of mitochondrial genes were filtered out. Genes ex-

pressed in less than 5 cells were removed.

To remove doublets and low-quality cells which might pass the filtering (Ding et al., 2020), we further inter-

rogated cell qualities in individual datasets. Distributions of UMI counts or number of genes per cell were

used as criteria of clusters with low sequencing depth, which is one of important features of low-quality

cells. Doublets usually express marker genes of multiple cell types (DePasquale et al., 2019), which is an

important evidence that we used for doublet cluster detection. Before we integrated cells, we first inves-

tigated cell qualities and filter low-quality cells in each individual dataset. Original data without quality con-

trol can be found in Data Availability.

Cluster 14 in Arunchalam et al.’s data was removed due to its low-sequencing depth; Cluster 13 in Guo

et al.’s data and cluster 9 in Schulte-Schrepping et al.’s data were removed for the same reason; the bottom

region of cluster 2 on the UMAP, which is close to platelets but expresses high levels of T cell markers, was

defined as T cell – platelet doublets and removed using cellxgene.
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For some datasets that only provide processed and normalized h5ad or rds files, we checked their prepro-

cessing procedures in the original publications and confirmed that stringent quality control procedures

were used.

After quality control, we finally harvested 483,765 high-quality cells from 8 studies (Table S1). Both original

and processed data can be found in Data Availability. We normalized the total UMI counts per gene to 1

million (CPM) and applied log2(CPM+1) transformation for heatmap visualization and downstream differ-

ential gene expression analysis. Steps above were done in Scanpy (Wolf et al., 2018).

Integration of PBMC datasets and BAL datasets using reciprocal PCA in seurat

We input raw count files of 5 preprocessed PBMC datasets into Seurat and created a list of Seurat objects.

Reciprocal PCA procedure (https://satijalab.org/seurat/v3.2/integration.html#reciprocal-pca) was used for

data integration. First, normalization and variable feature detection were applied for each dataset in the

list. Then we used SelectIntegrationFeatures to select features for downstream integration. Next, we

scaled data and ran the principal component analysis with selected features using ScaleData and RunPCA.

Then we found integration anchors and integrated data using FindIntegrationAchnors and IntegrateData.

RPCA was used as the reduction method. After integration, we scaled data and ran PCA on integrated

expression values. UMAP was generated using the top 30 reduced dimensions with RunUMAP. The

same approach was also used in BAL data integration and multi-disease integration. We also used it for

the integration of specific cell types across multiple datasets, for example, the integration of neutrophils

from PBMC and BAL datasets. Compared with standard workflow and SCTransform (https://satijalab.

org/seurat/v3.2/integration.html) in Seurat, we found Reciprocal PCA is much less computation-intensive

and time-consuming, making the integration of multiple large single-cell datasets feasible.

Cell annotations using canonical markers after unsupervised clustering

Cell annotations were assigned in each dataset and then mapped to the integrated data. For some data-

sets without available cell annotations, we first used unsupervised clustering in Scanpy. Detailed steps

include (1) detecting top 3,000 highly variable genes using pp.highly_variable_genes; (2) scaling each

gene to unit variance on highly variable genes using pp.scale; (3) running PCA using arpack approach in

tl.pca; (4) finding neighbors using pp.neighbors; (5) running leiden clustering with resolution of 1 using

tl.leiden (resolutions were determined swiftly based on the size and complexity of data). More details

can be found in the code (point to it). For datasets with available annotations, we checked their validity

and corrected wrong annotations. For example, hematopoietic stem and progenitor cells (HSPC) were

mistakenly annotated as ‘‘SC&Eosinophil’’ in the original paper (Wilk et al., 2020) and were corrected in

our annotation.

After unsupervised clustering, well recognized immune cell markers were used to annotate clusters,

including CD4+ T cell markers such as TRAC, CD3D, CD3E, CD3G, CD4; CD8+ T cell markers such as

CD8A, CD8B, NKG7; NK cell markers such as NKG7, GNLY, KLRD1; B cell markers such as CD19,

MS4A1, CD79A; plasmablast markers such as MZB1, XBP1; monocyte markers such as S100A8, S100A9,

CST3, CD14; conventional dendritic cell markers such as XCR1, plasmacytoid dendritic cell markers such

as TCF4; megakaryocyte/platelet marker PPBP; red blood cell markers HBA1, HBA2; HSPC marker

CD34. Exhaustion-associated markers, including PDCD1, HAVCR2, CTLA4 and LAG3 were used to identify

exhausted T cells.

Additionally, other markers were used for annotations of lung-specific cells, including AGER, MSLN for AT1

cells; SFTPC, SFTPB for AT2 cells; SCGB3A2, SCGB1A1 for Club cells; TPPP3, FOXJ1 for Ciliated cells; KRT5

for Basal cells; CFTR for Ionocytes; FABP4, CD68 for tissue-resident macrophages; FCN1 for monocyte-

derived macrophages, TPSB2 for Mast cells. More details can be found in Table S2.

Cell annotations using Azimuth

To better annotate T cells in our study, we applied Azimuth (https://satijalab.org/azimuth/), a tool for refer-

ence-based single-cell analysis developed in Seurat version 4.0 (Hao et al., 2021). High-quality PBMC sin-

gle-cell data in Azimuth was used as the reference for label projection. After removing annotations with low

prediction scores or low mapping scores, we got a collection of well-annotated T cell subtypes, including

CD4+ Cytotoxic T cell, CD4+ Naive T cell, CD4+ Central Memory T cell, CD8+ Naive T cell, CD8+ Effector

Memory cell, gamma-delta T cell, double-negative T cell. CD4+ Effector Memory T (CD4+ TEM) cell and
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CD8+ Central Memory T (CD8+ TCM) cell were found by Azimuth. However, we manually re-annotated

them into other T cell subtypes, such as CD4+ TCM and CD8+ TEM cells, based on expression levels of

marker genes. There’re several reasons for the re-annotation: (1) There’s no clear cluster or boundary for

these two predicted cell types on reduced dimension (UMAP), which indicates that they may have no

distinct transcriptomic pattern compared with other T cell subtypes; (2) Many marker genes didn’t show

significant expression patterns in these two cell types. For example, CD4+ TEM markes from Azimuth,

such as TMSB10 and ITGB1, didn’t show higher expression levels in Azimuth-predicted CD4+ TEM cells

in Arunchalam et al.’s data; (3) Although developers and researchers of Azimuth spent a lot of time anno-

tating cells, the existence of CD4 TEM and CD8 TCM in single-cell data was not widely observed by other

groups. In addition, we didn’t use CITE-seq data like the reference dataset of Azimuth. Thus, the power

of detecting fine resolution of CD4 and CD8 T cell subtypes might be relatively low.

Apart from annotations of T cell subtypes, we also found CD56-bright NK cell, intermediate B cell and

memory B cell using Azimuth.

Sub-clustering for specific cell types

Sub-clustering was used for the discovery of subtypes or distinct stages of a specific cell type. In our work,

we applied sub-cluster for various immune cell types, including classical monocytes, neutrophils, conven-

tional dendritic, B cells and platelets. First, all cells in the specific cell type were integrated using the same

procedure as PBMCdata integration. Then Louvain clustering (resolution = 0.5, except for sub-clustering of

classical monocytes where resolution = 0.3) was applied to detect sub-clusters of those cells. Importantly,

neutrophils, cDCs and B cells were retrieved from both PBMC and BAL, whereas classical monocytes and

platelets were only retrieved from PBMC.

Generation of ToppCell gene modules

ToppCell (https://toppcell.cchmc.org/) was designed to parallelly analyze transcriptional profiles of single-

cell datasets by organizing differential expressed genemodules hierarchically as a function of sample types

and compartments, clinical subgroups, and cell lineage, class, and subclass designations that emerge from

post-hoc cell type evaluations. All the cells were grouped into specific hierarchical categories. For example,

‘‘PBMC_severe COVID-19_myeloid cells_classical-monocytes_cMono1’’ represents cells belonging to

cMono1 (a sub-cluster of classical monocytes) in PBMC of severe COVID-19 patients. Within hierarchically

ordered cell annotations, we calculated corresponding DEGs in a hierarchical way as well and consistently.

We defined customized ranges for comparisons and applied t-test based on normalized expression values.

More details can be seen on ToppCell website. Usually, the top 200 most differentially genes in each com-

parison were picked up as the gene modules for the selected cell group, which are the starting point of

downstream analysis, including gene enrichment in ToppGene and interaction inference in ToppCluster.

All gene modules in our study were curated in COVID-19 Atlas (https://toppcell.cchmc.org/biosystems/

go/index3/COVID-19 Atlas) and ImmuneMap (https://toppcell.cchmc.org/biosystems/go/index3/

ImmuneMap) on the ToppCell website.

Gene enrichment analysis using ToppGene

Gene modules generated with ToppCell were individually analyzed using the ToppGene/ToppFun, and

comparatively analyzed using ToppCluster. Principle annotation categorizations used were GO-Molecular

Function, GO-Biological Process, GO-Cellular Component, Mouse and Human Mutation Phenotypes, as

well as ImmGen reference signatures, MSigDB Pathways, NCBI Pub2Gene and Protein Interactions, and

DisGeNet Curated sources. P values of enrichment results were adjusted using the Benjamini-Hochberg

procedure.

Generation of functional association heatmap using ToppCluster

Genes in gene modules of selected cell types or sub-clusters were sent to ToppCluster (https://

toppcluster.cchmc.org/). Then multi-group functional enrichment was drawn for input gene modules

and �log10(adjusted p-value) was used as the gene enrichment score to represent the strength of associ-

ation between gene modules and pathways. Scores greater than 10 were trimmed to 10. Pathways from

GeneOntologies, includingMolecular Functions, Biological Process and Cellular Component in the option

list were used for the enrichment of gene modules in myeloid cells, B cells and platelets. In order to gain a

broader knowledge of immunothrombosis-related pathways, ‘‘Pathway’’ and ‘‘Mouse Phenotype’’ in the
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option list were also selected for enrichment. Morpheus was used for visualization of the heatmap (https://

software.broadinstitute.org/morpheus/).

Cell interaction inference in immunothrombosis activities and cytokine signaling pathways

CellChat was used to infer the signaling network in the BAL of severe patients (Figure S8B). All 3 categories

of interactions were used in the database CellChatDB.human. Over-expressed ligands or receptors in

each cell type were first identified for further identification of over-expressed interaction pairs. Then

cytokine, chemokine and IL signaling probability between multiple cell types was inferred using compute-

CommunProb and computeCommunProbPathway.

ToppCell was used to infer interactions in immunothrombosis. We first selected genes related to coagu-

lation or immunothrombosis pathways from subtypes of endothelial cells, platelets, neutrophils, classical

monocytes and monocyte-derived macrophages by filtering the output of ToppCluster (Figure S12A).

Then we used CellChatDB as the knowledge base to find the subset of genes participating in cell-cell

interaction, including genes involved in signaling via secretion, cell-cell contact and extracellular matrix

interaction. These genes in each cluster were sent to ToppCluster to infer the interaction network using

protein-protein interactions (PPI) between those genes.

Generation of volcano plots

We first calculated differential expressed genes using tl.rank_genes_groups in Scanpy. Adjusted p values

and log fold changes in the output were used as the input of volcano plots. R package EnhancedVolcano

(Blighe et al., 2021) was used to draw figures.

Construction of COVID-19 functional enrichment map

In order to characterize functional properties of cell types and subtypes observed in BAL, PBMC, and lung

parenchymal samples from control, mild, and severe COVID-19 patient samples, we used the library of

gene expression signatures (‘‘Gene Module Report’’ from ToppCell) as an input to the ToppCluster enrich-

ment analyzer web server (Kaimal et al., 2010). Using categories of Gene Ontology, Human Phenotype,

Mouse Phenotype, Pathway and Protein Interaction, amatrix was constructed usingminus log P enrichment

values for each celltype gene list and then all cells and enriched features could be clustered and ordered

based on their shared or distinct properties that could then be associated with lineage, cell subclass, tissue

compartment, and disease state.

QUANTIFICATION AND STATISTICAL ANALYSIS

Cell proportion differences between disease groups for specific types and subtypes (Figures 2, S2–S4)

shown on box plots weremeasured byMann-Whitney test (Wilcoxon, paired = False). Significance between

two disease conditions were shown on the top of figures. More details can be found in figure legends.

To investigate the dynamic changes of cell proportions across various immune-mediated diseases, we

followed the approach in recent literature (Lee et al., 2020) (Figure 7B). For each disease condition, we

computed the relative ratio of each cell type in individual disease samples divided by individual healthy

samples. Log2 transformed values were shown in the box plot. Then we calculated relative ratios of each

cell type between all sample pairs of healthy donors as a control. To compute the significance, we used

a two-sided Kolmogorov-Smirnov (KS) test using relative ratios in diseases and those values in healthy

donors. More details can be found in figure legends.
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