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Abstract: In this article we address the problem of phylogenetic inference from nucleic acid data containing missing bases. 
We introduce a new effective approach, called “Probabilistic estimation of missing values” (PEMV), allowing one to estimate 
unknown nucleotides prior to computing the evolutionary distances between them. We show that the new method improves 
the accuracy of phylogenetic inference compared to the existing methods “Ignoring Missing Sites” (IMS), “Proportional 
Distribution of Missing and Ambiguous Bases” (PDMAB) included in the PAUP software [26]. The proposed strategy for 
estimating missing nucleotides is based on probabilistic formulae developed in the framework of the Jukes-Cantor [10] and 
Kimura 2-parameter [11] models. The relative performances of the new method were assessed through simulations carried 
out with the SeqGen program [20], for data generation, and the BioNJ method [7], for inferring phylogenies. We also com-
pared the new method to the DNAML program [5] and “Matrix Representation using Parsimony” (MRP) [13], [19] con-
sidering an example of 66 eutherian mammals originally analyzed in [17].

Introduction
The presence of missing and ambiguous data in the sequences of nucleotides is one of the major prob-
lems in phylogenetic analysis of fossil taxa as well as of combined datasets (e.g. different genes, mor-
phology) that do not include identical sets of taxa [23], [29]. Huelsenbeck [9] and Makarenkov and 
Lapointe [16] pointed out that the presence of taxa comprising a big percentage of unknown nucleotides 
might considerably deteriorate the accuracy of the phylogenetic analysis. Obviously, gaps, which are 
caused by deletions and insertions of nucleotides, should not be considered as missing data. The fol-
lowing questions are often raised: (1) Should we consider or ignore sequences comprising missing data 
in the phylogenetic analysis? (2) Is it necessary to consider sites with unknown entries? In this study, 
we are mostly interested in the second question. The popular PAUP software [26] includes two methods 
for computing evolutionary distances between species from incomplete sequence data. The fi rst method, 
called IMS (“Ignoring missing sites”) is the most commonly used. It proceeds by the elimination of 
incomplete sites while computing evolutionary distances. According to Wiens [29], such an approach 
represents a viable solution only for long sequences. Philippe et al. [18] pointed out that in case of long 
sequences, the sites with missing data can be omitted because of the presence of a suffi cient number of 
nucleotides [30]. The second method included in PAUP, called PDMAB (“Proportional distribution of 
missing and ambiguous bases”), computes evolutionary distances taking into account missing bases in 
the 2 sequences while computing the pairwise distance. PDMAB assigns values corresponding to the 
missing characters comparing sequences on the one-to-one basis. In our opinion, it would be more 
accurate to compute the probability of each of the missing DNA nucleotides to be A, C, G or T, taking 
into account the whole set of aligned sequences. Thus, the new method will consider all available 
information associated to the similarities among the sequences, the nucleotide frequencies and the 
characters present in a specifi c site. Hence, we propose a new method, called PEMV (“Probabilistic 
estimation of missing values”), which estimates the identities of all missing bases prior to computing 
pairwise distances between species. This estimation tries to correct the weakened signal caused by the 
presence of missing data [30]. To estimate a missing base, the new method proceeds by computing a 
similarity score between the sequence comprising the missing base and all other sequences. A proba-
bilistic approach is used to determine the likelihood of an unknown base to be either A, C, G or T for 
DNA sequences, or A, C, G or U for RNA sequences. The main idea of the new method is to identify 
the probabilities of each missing data to be a particular nucleotide character and then to use them for 
computing the interspecies distances. Moreover, the obtained probabilities can be incorporated into the 
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distance computation formulas used in the frame-
work of different evolutionary models. We show 
how this method can be applied in the framework 
of the Jukes-Cantor [10] and Kimura 2-parameter 
[11] models. In the next two sections we introduce 
the new method for estimating missing entries in 
sequence data and compare it to the two methods 
available in the PAUP package. Then, we discuss 
the results provided by the three competing 
methods in a simulation study carried out with 
DNA sequences of different lengths, containing dif-
ferent percentages of missing bases (datasets were 
generated by the SeqGen program [20]). The accu-
racy of the phylogenetic inference is assessed by 
means of the Robinson and Foulds topological dis-
tance [21]. The BioNJ method by Gascuel [7], which 
was shown to provide better results for sequence data 
than the popular NJ method [22], was used in our 
simulations to reconstruct phylogenies. In the appli-
cation section we explore how PEMV copes with 
partial gene data comprising 15 nuclear genes of 64 
placental and 2 marsupial species comparing it to 
the Maximum Likelihood (DNAML) [5] and Matrix 
Tree Representation (MRP) [1], [13], [19] methods. 
Note that the problem of missing nucleotides is 
mostly relevant for the distance-based methods. 
Maximum Likelihood and Maximum Parsimony 
methods consider missing bases and take them 
implicitly into account in the computation process. 

Probabilistic estimation of
missing values
The new method for estimating unknown bases in 
nucleotide sequences, PEMV, is described here in 
the framework of the Jukes-Cantor [10] and Kimura 
[11] models of sequence evolution. The Jukes-Can-
tor model assumes that all nucleotides A, C, G and 
T have the same frequency and that all substitutions 
are equally likely (e.g. the probability of transition 
is equal to that of transversion). To compute evo-
lutionary distances between any pair of sequences 
within this model, the following correction formula 
is used: d = −3/4 ln (1–4/3D), where D is the 
observed distance, computed as the number of 
mismatches between pairs of sequences divided by 
the number of compared sites. In the Kimura 2-
parameter model, the following formula is used: 
d = −1/2 ln ((1 − 2P − Q) ( )1 2− Q ) to compute the 
distance between a pair of sequences, where P is 
the transitional and Q is the transversional difference 
between them. This model gives better distance 

estimates than the Jukes-Cantor model when the 
transition and transversion rates are different. 

Assume that the base k in the sequence i is miss-
ing. To compute the distance between the sequence 
i and all other considered sequences, PEMV esti-
mates, using Equation 1 below, the probabilities 
Pik(A), Pik(C), Pik(G) and Pik(T) to have respectively 
the nucleotide A, C, G or T at site k of the sequence 
i. The probability that an unknown base at site k of the 
sequence i is a specifi c nucleotide depends on the 
number of sequences having this nucleotide at this 
site as well as on the distance (computed ignoring 
the missing sites) between i and all other considered 
sequences having known nucleotides at site k. First, 
we calculate the similarity score δ between all 
observed sequences while ignoring missing data. For 
a pair of aligned sequences, this score is equal to the 
number of matches between homologous nucleotides 
divided by the number of comparable sites.
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where Nk – is the number of known bases at site k 
(i.e. column k) of the considered aligned  sequences; 
δij – is the similarity score between the sequences 
i and j computed ignoring missing sites, C – is the 
matrix of aligned DNA sequences; Pik(A), Pik(C), 
Pik(G) and Pik(T) – are the probabilities of the 
missing base k of the sequence i to be A, C, G or 
T, respectively.

The following Theorem characterizing the 
probabilities Pik(A), Pik(C), Pik(G) and Pik(T), can 
be stated:

Theorem 1. For any sequence i, and any site k 
of the matrix C, such that Cik is a missing nucleotide, 
the following equality holds: Pik(A) + Pik(C) + 
Pik(G) + Pik(T) = 1.
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The proof of this theorem is presented in Appendix.
Once the different probabilities Pik are obtained, 

we can compute the matrix of distances D between 
all given sequences applying Equation 2. The 
PEMV distance d within the Jukes-Cantor model 
is computed as follows:
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where dij – is the distance between the sequences i and 
j, N – is the total number of sites (i.e. number of 
columns in the matrix C that have at least one known 
nucleotide); Nij

m – is the number of matches between 
homologous nucleotides in the sequences i and j; 
Nij

c – is the number of comparable pairs of nucleotides 
in the sequences i and j (i.e. when both nucleotides 
are known in the homologous sites of i and j ); Pij

k – is 
the probability to have a pair of identical nucleotides 
at site k of the sequences i and j.

When both nucleotides at site k of the sequences 
i and j are missing, Pij

k is computed as follows:

 Pij
k  = Pik (A) Pjk (A) + Pik (C) Pjk(C) +

  Pik (G) Pjk (G) + Pik (T) Pjk(T), (3)

where the values of Pik and Pjk are determined  
according to Equation 1. Then, the Jukes-Cantor 
logarithmic transformation can be applied to dij to 
transform it into the corrected distance.

In the case of the Kimura 2-parameter model, we 
have fi rst to compute the probabilities Pij

k for each 
missing nucleotide of the matrix C, and then, calcu-
late, using Equation 4, the transitional difference P(i,j) 
and the transversional difference Q(i,j) prior to apply-
ing the Kimura logarithmic transformation:
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where P′(i,j) – is the number of transitions between 
the sequences i and j computed ignoring missing 
sites; P′(i,j,k) – is the probability of transition 
between the sequences i and j at site k when the 
nucleotide at site k is missing either in i or in j 

(e.g. if the nucleotide at site k of the sequence i is 
A and the corresponding nucleotide in j is missing, 
we have to evaluate the probability that the missing 
base of the sequence j is G); Q′(i,j) – is the number 
of transversions between the sequences i and j 
computed ignoring missing sites; Q′(i,j,k) – is the 
probability of transversion between the sequences 
i and j at site k when the nucleotide at site k is 
missing either in i or in j (e.g. if the nucleotide at 
site k of the sequence i is A and the corresponding 
nucleotide in j is missing, we have to evaluate the 
probability that the missing base of the sequence 
j is either C or T). 

When both nucleotides at site k of the sequences 
i and j are missing, P′(i,j,k) and Q′(i,j,k) are com-
puted as follows:

P′(i, j,k)  = Pik (A)Pjk (G) + Pik (C) Pjk (T) +
  Pik (G)Pjk (A) + Pik (T) Pjk (C),
Q′(i, j,k) = Pik (A)(Pjk (C) + Pjk (T)) + 

(5)
 

  Pik (C)(Pjk (A) + Pjk (G)) +
  Pik (G)(Pjk (C) + Pjk (T)) +
  Pik (T)(Pjk (A) + Pjk (G)).

A numerical example
In this section, we present a numerical example to 
show the difference between the new sequence-to-
distance transformation method (PEMV) and the 
two methods available in PAUP (IMS and 
PDMAB). We use the dataset reported in Table 1 
comprising 3 sequences of 8 nucleotides each (the 
character ‘–’ represents a missing base).

We apply the three transformation methods to 
the matrix C (Table 1) to compute the distances d12, 
d13 and d23 using the Kimura 2-parameter model. 
We explain how the computation should be carried 
out in the case of IMS, PDMAB, and PEMV:
1) Using the IMS method, which ignores missing 

sites when computing d12, we consider only the 
6 complete sites in the sequences 1 and 2. There 

Table 1. Matrix C used to show the difference between 
the methods PEMV, IMS and PDMAB.
Matrix C 1 2 3 4 5 6 7 8
Sequence 1: A C G G G A A –
Sequence 2: A C G T – A A A
Sequence 3: A C G T – A G C
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is one difference between them due to a 
transversion. Under the Kimura 2-parameter 
model the distance d12 is equal to 0.1925. In the 
same way, we determine that d13 equals 0.4479 
and d23 equals 0.3639.

2) Using the PDMAB method to compute d12, we 
fi rst distribute missing bases according to the 
unambiguous changes between the two 
sequences (see the documentation of PAUP [26] 
for more details). When computing the distance 
between the sequences 1 and 2, we consider all 
pairs of corresponding bases such that the nucle-
otide in the sequence 1 is G (missing nucleotide 
must be compared to G). Two such pairs of 
bases, GG and GT, can be identifi ed. According 
to the method, the probability to have the nucle-
otide either G or T in the site 5 of the sequence 
2 will be 1 (0.5 for G and 0.5 for T). On the 
other hand, the value of 4 for AA is obtained by 
summing 3 (coming from the three pairs of AA 
appearing in the corresponding sites of the 
sequences 1 and 2) and 1 (coming from the 
comparison of a missing base in the site 8 of 
the sequence 1 and the nucleotide A in the same 
site of the sequence 2; the missing base of the 
sequence 1 should be equal to A according too 
PDMAB). Proceeding in the same manner, we 
compute the distribution matrix reported in 
Table 2.

Analyzing Table 2, we notice that the tran-
sitional rate is 0 and the transversional rate is 
1.5 (only for G to T). Therefore, the evolution-
ary distance between the sequences 1 and 2 
equals to 0.2213 within the Kimura 2-parameter 
model. In the same way, we obtain that d13 
equals 0.4052 and d23 is 0.3639. 

3) Using the new method, PEMV, we have first 
to determine the probabilities that each miss-
ing base is either A, C, G or T. To do so, we 
proceed by computing the similarity score δ , 
considering only the complete sites. Thus, 
the values δ12 = 5/6, δ13 = 2/3 and δ23 = 5/7 
are obtained. Then, we compute the number 

of bases present at sites containing missing 
data. Finally, we determine the probabilities 
P25 (A), P25(C), P25(G) and P25(T) using 
Equation 1. For instance, P25(A) is the prob-
ability that the missing nucleotide at site 5 
of the sequence 2 is A. The computation is 
done as follows:

 P25(A) = 1/3*(1–5/6) = 1/18,
 P25(C) = 1/3*(1–5/6) = 1/18,

 P25(G) = 5/6, P25(T) = 1/3*(1–5/6) = 1/18.

Similarly, we calculate the probabilities for the
missing site 8 in the sequence 1:

P18(A) = (1/2)*(5/6) + 
  (1/2)*(1/3)*(1–2/3) = 17/36, 
P18(C) = (1/2)*(1/3)*(1–5/6) + 
  (1/2)*(2/3) = 13/36, 
P18(G) = P18(T) = (1/2)*(1/3)*(1–5/6) +
  (1/2)*(1/3)*(1–2/3) = 1/12.

Once these probabilities are known, we compute 
the distance d12 using Equation 2. Here, we have 
0 + 1/18 + 1/12 transitions and 1 + 1/18 + 1/18 + 
13/36 + 1/12 transversions between the sequences 
1 and 2. Thus, in the framework of the Kimura 
2-parameter model, the distance between them is 
0.2199. Similarly, we determine that d13 equals 
0.436 (with 1 + 1/9 + 1/12 transitions and 1 + 1/9 + 
1/9 + 17/36 + 1/12 transversions) and d23 equals 
0.362 (Equation 5). 

Simulation design
A Monte Carlo study has been conducted to test 
the ability of the new method to recover correct 
phylogenies. We examined how PEMV performed 
depending on the length of the DNA sequences and 
the percentage of missing nucleotides. The simula-
tions described in this article were conducted in 
the framework of the Kimura 2-parameter model. 
The results were obtained from simulations carried 
out with 1000 random binary phylogenetic trees 
with 8, 16, 24 and 32 leaves. In each case, a true 
tree topology, denoted T, was obtained using the 
random tree generation procedure proposed by 
Kuhner and Felsenstein [12].

The branch lengths of the true tree were 
computed using an exponential distribution. 
Following the approach of Guindon and Gascuel 

Table 2. Distribution matrix for the sequences 1 and 2 
computed by PDMAB.
 A C G T

A 4.0 0 0 0
C  1.0 0 0
G   1.5 1.5
T    0

240



Phylogenetic analysis

Evolutionary Bioinformatics Online 2006: 2

[8], we added some noise to the branches of the 
true phylogeny to create a deviation from the 
molecular clock hypothesis. All the branch lengths 
of T were multiplied by 1 + ax, where the variable 
x was obtained from a standard exponential distri-
bution (P(x > k) = exp (– k)). The constant a is a 
tuning factor for the deviation intensity. Following 
the suggestion of Guindon and Gascuel [8], the 
value of a was fi xed to 0.8. The random trees gen-
erated by this procedure are assumed to have the 
depth of O(log (n)), where n is the number of spe-
cies (i.e. number of leaves in a binary phylogenetic 
tree). The source code of our tree generation pro-
gram, written in C, is available at the following 
website: http://www.labunix.uqam.ca/~makarenv/
tree_generation.cpp.

The random trees were then submitted to the 
SeqGen program [20] to simulate sequence evolu-
tion along their branches. We used SeqGen to 
obtain the aligned sequences of the length l (l = 125 
and 500 bases) in the framework of the Kimura 
2-parameter model [11]. To simulate missing data 
in the aligned sequences, we carried out two 
experiments following the strategies described by 
Wiens [30]. They differ by the way of distributing 
missing bases in the aligned sequences. The fi rst 
strategy consists of removing at random a fi xed 
percentage of nucleotides from the observed 
sequence, whereas the second strategy, which is 
certainly more realistic from a genomic point of 
view, consists of the random elimination of blocks 
of nucleotides of different sizes. In this paper, we 
processed data with 0 to 50% of missing bases. 
The obtained sequences were submitted to the three 
competing methods for computing evolutionary 
distances. For each distance matrix provided by 
IMS, PDMAB and PEMV, we inferred a phyloge-
netic tree T ′ using the BioNJ algorithm [7].

The phylogeny T ′ was then compared to the 
true phylogeny T using the Robinson and Foulds 
topological distance [21]. The Robinson and 
Foulds distance between two phylogenetic trees is 
the minimum number of operations, consisting of 
merging and splitting internal nodes, which are 
necessary to transform one tree into another. This 
distance was computed as percentage of its maxi-
mum value, which is 2n-6 for a phylogenetic tree 
with n leaves. The lower this value, the closer the 
obtained tree T ′ to the true phylogeny T. Thus, in 
this simulation study we were able to evaluate the 
relative topology performance of the distance 
generation methods IMS, PDMAB and PEMV 

depending on the number of species, sequence 
length and percentage of missing nucleotides.

Simulation results
In this section, we present the results of the simu-
lations comparing the three methods for computing 
evolutionary distances. Sequence datasets for 8, 
16, 24 and 32 taxa were generated. For each data-
set, we tested the performance of the three methods 
depending on the sequence length (for sequences 
with 125 and 500 nucleotides) and the percentage 
of missing bases (ranging from 0 to 50%). Here, 
we present the results obtained with randomly 
distributed blocks of missing nucleotides because 
such a distribution of missing sites better refl ects 
a biological reality. It is worth noting that the 
results obtained with the randomly removed nucle-
otides, that were not block-like distributed, were 
very similar.

Figures 1 and 2 present the results produced 
by the three competing methods for the sequences 
with 125 and 500 nucleotides, respectively. First, 
for the phylogenies with 8, 16, 24 and 32 leaves 
PEMV clearly outperformed the PAUP methods 
(IMS and PDMAB) when the percentage of 
missing data was large. Second, the results 
obtained with IMS were very similar to those 
given by PDMAB, especially for the datasets 
with 16, 24, and 32 taxa. Third, only for 8 and 
16 taxa and 500-nucleotide sequences (Figures 
2a and 2b) did the three methods have similar 
performances (with a slight advantage for PEMV 
for 30 to 50% of missing data). In the latter case, 
it would be preferable to apply IMS, which is 
the simplest and the fastest of the three competing 
methods. 

Obviously, the Robinson and Foulds topological 
distance increases when the number of taxa 
increases; this well-known trend shows up for all 
three methods. The Robinson and Foulds distance 
decreases when the length of sequences increases. 
The latter trend holds even for larger percentages 
of missing bases (a similar trend has been also 
reported by Wiens [30]). It is worth noting that the 
values of the Robinson and Foulds distance do not 
always equal zero with 0% of missing bases (espe-
cially for short sequences). This bias is due to the 
well-known problem of the estimation of short 
branches in phylogenies.

To assess whether the observed differences 
among the Robinson and Foulds distances 
corresponding to IMS, PDMAB and PEMV are 
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statistically signifi cant, we carried out the ANOVA 
test. The Null Hypothesis H0 for the ANOVA 
(F-test) was as follows: µIMS = µPDMAD = µPEMV; 
where µ were the means of the  corresponding 
Robinson and Foulds distances. The related 
P-values are indicated in Table 3. Thus, considering 
the level of signifi cance α = 0.05, the differences 
depicted in Figures 1 and 2 were signifi cant for 
the sequences with 125 bases (except the case of 
8 taxa and 10% of missing data). For the 
sequences with 500 bases, the differences in the 
obtained results were signifi cant for the cases of 
16, 24 and 32 taxa when the percentage of miss-
ing nucleotides was above 10%. Since the per-
formances of IMS and PDMAB were very 
similar, the ANOVA test basically consisted of 
measuring the difference between PEMV and the 
best of IMS and PDMAB.

Note that we also conducted the analysis of the 
distances obtained by the three competing methods 
before applying BioNJ. We compared these dis-
tances to the original distances (computed with the 
complete sequences) using the Pearson correlation 

coeffi cient. The obtained results did not show any 
well-established difference between the three 
methods. However, it is worth noting that PEMV 
generally outperformed IMS and PDMAB for the 
sequences with 125 bases but became less accurate 
for the sequences with 500 bases. The latter draw-
back can be due to an over-estimation of some of 
the distances by PEMV in the situation when there 
is a necessary amount of known homologous 
nucleotides to compute the distances.

Inferring a phylogeny for a set of
66 mammalian species
In this section we apply PEMV to reconstruct a 
mammalian phylogeny from a segment of 15 
nuclear genes of 64 placental and two marsupial 
species. The original phylogeny T for these 
species is presented in Figure 1 in [17]. The 
GenBank sequences with the accession numbers 
AY011125-AY012154 are considered in this study; 
the 15 selected genes are available for a various 
number of species (52 to 64). 
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Phylogenetic trees from multiple genes can be 
obtained using two fundamentally different 
approaches. In the fi rst one, genetic sequences are 
concatenated into a single alignment (supermatrix) 
that is then submitted to a tree reconstruction 
method to generate a species tree [25]. As the 
concatenated genes do not always cover the same 
set of species, the blocks of missing nucleotides 
are present in the data [29]. In the second approach, 
the phylogenies are inferred separately from each 

gene and their supertree is computed to represent 
the phylogeny defined on the complete set of 
species [25].

Here we explore the ability of PEMV to infer 
trees from partial gene data. We compared PEMV 
to a supermatrix approach using DNAML [5] and 
to the well-known supertree method “Matrix 
Representation using Parsimony” (MRP). 
The DNAML program from the PHYLIP package 
implements the maximum likelihood method for 
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Figure 2: Mean topological recovery values obtained for 1000 random phylogenetic trees with 500 
nucleotides. The percentage of missing bases varies from 0 to 50% (abscissa axis). The curves 
represent the variation of the Robinson and Foulds topological distance for the methods IMS ( ), 
PDMAB ( ) and PEMV ( ). The infl uence of the number of leaves is illustrated on the four panels: 
(a) 8 leaves, (b) 16 leaves, (c) 24 leaves, and (d) 32 leaves.

Table 3. Results of the ANOVA tests carried out for the differences in the mean Robinson and Foulds topological 
recovery obtained using the methods PEMV, IMS and PDMAB.

 125 bases 500 bases

  8 16 24 32 8 16 24 32

 10 0.099 3.33E-06 1.21E-10 3.91E-15 0.222 0.014 0.050 0.671
 20 1.66E-05 4.14E-18 5.07E-37 3.48E-39 0.547 0.001 0.027 0.001
 30 1.37E-12 4.52E-40 5.95E-66 2.94E-79 0.272 9.66E-06 1.65E-07 2.92E-08
 40 7.91E-14 7.51E-69 5.50E-112 2.29E-140 0.343 1.90E-16 1.99E-20 3.81E-30
 50 6.97E-12 2.19E-86 7.35E-162 9.18E-187 0.581 1.55E-20 5.74E-42 4.74E-54

Nb of taxa

Missing %
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DNA sequences [5]. MRP remains by far the most 
popular supertree method, owing to a combination 
of historical precedence coupled with universal 
applicability and good performance, producing 
well-resolved and usually accurate supertrees [2]. 
MRP was proposed by Loomis and Smith [13] 
and later refi ned independently by Baum [1] and 
Ragan [19]. Its implementation available in the 
Clann [3] program was used in this study. Note 
that as Clann only implements the MRP coding, 
we also used PAUP [26] to process the resulting 
matrix.

The data for 15 considered genes were aligned 
using CLUSTAL-X [28]. For the MRP analysis, 
the 15 gene trees were computed using the 
DNAML program. In all cases DNAML was used 
with the heuristic search, with the NNI branch 
swapping and the HKY model of nucleotide sub-
stitution, as suggested by Murphy et al. [17]. The 
best tree was always selected. The Kimura 2-
parameter model of PEMV and NJ [22] were 
used. 

We started the simulations reconstructing trees 
from three randomly chosen genes (out of 15), add-
ing to them the other randomly chosen genes one-
by-one until the concatenated dataset contained 15 
genes (including 9702 sites in total). This procedure 
was repeated 100 times for PEMV and MRP, and 
30 times for DNAML. The average Robinson and 
Foulds topological distance was computed between 
each tree obtained and the true phylogeny T (i.e. the 
tree given by Murphy et al. [17]).

The results illustrated in Figure 3 show that 
PEMV has a better average accuracy when 6 to 

15 genes were present. Obviously, the addition of 
a supplementary gene always improves the aver-
age accuracy of phylogenetic reconstruction 
because of a larger character sampling [25]. But 
in the same way, the growth of missing data affects 
the tree reconstruction. As shown, PEMV reduces 
the negative effect of missing data: The bigger the 
number of combined genes, the larger the 
difference between the phylogenies produced by 
the three methods. These results are in agreement 
with those found in [25]: The supermatrix methods 
used in this study usually provided a better topo-
logical recovery than the most popular supertree 
method MRP.

Conclusion
The PEMV technique introduced in this article is 
a new effi cient method that can be applied to infer 
large phylogenies from nucleotide sequences 
comprising missing data. The simulations con-
ducted in this study demonstrated the usefulness 
of PEMV in estimating missing bases prior to 
phylogenetic reconstruction. Tested in the frame-
work of the Kimura 2-parameter model [11], the 
PEMV method provided very promising results 
for the DNA sequences with 125 and 500 nucle-
otides as well as for long sequences comprising 
multiple genes [17]. The relative accuracy of the 
new method increases as the percentage of miss-
ing nucleotides increases. The deletion of missing 
sites, as it is done in the IMS method, or their 
estimation using PDMAB (two methods available 
in PAUP) can ignore or misinterpret important 
features of the data at hand. The application of 
PEMV to the multiple gene dataset showed that 
the new method can outperform the well-know 
supertree and supermatrix approaches. PEMV 
was included in the T-Rex package [15], which 
is freely available to researchers at the following
URL: <http://www.labunix.uqam.ca/~makarenv/
trex.html>.

In this paper, we presented PEMV in the frame-
work of the Jukes-Cantor [10] and Kimura 
2-parameter [11] models. It would be interesting 
to extend and test this probabilistic approach 
within more complex and more realistic models 
of sequences evolution, such as F84 [4], LogDet 
[24], or the Tajima and Nei model [27]. It is 
important to compare the results obtained using 
BioNJ to those produced using other distance-
based methods of phylogenetic reconstruction, as 
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Figure 3: Mean topological recovery values obtained with respect 
to the number of present genes. The abscissa axis represents the 
number of concatenated genes that varies from 3 to 15. The curves 
indicate the variation of the Robinson and Foulds topological distance 
for the methods MRP (+), DNAML (×) and PEMV ( ). 
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for example, NJ [22], FITCH [6] and MW [14]. 
For the specifi c case of multiple gene phylogenies, 
it would be interesting to extend the model to take 
into account various substitution rates among 
sites.
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Appendix
Theorem 1. For any sequence i, and any site k of 
the matrix C, such that cik is a missing nucleotide, 
the following equation holds: Pik(A) + Pik(C) + 
Pik(G) + Pik(T) = 1.
Proof : Replacing the sum Pik(A) + Pik(C) + 
Pik(G) + Pik(T) by the equivalent expression from 
Equation 1, we will need to prove that:
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Note that taking the sum over all the sequences 
such that Cjk ≠ A is equivalent to taking the sum 
over all the sequences such that Cjk = C, or Cjk = G, 
or Cjk = T. The similar considerations are true for 
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the sum taken over all Cjk ≠ C, G, and T. Therefore, 
the left-hand part of Equation 6 can be rewritten 
as follows:

 

1
N ij ij

ij ij

k j jkC j jkC

j jkCj jkC

δ δ

δ δ

| |

||

={ } ={ }

={ }

∑ ∑

∑

+ +
⎛

⎝
⎜
⎜

+ −

A C

T=={ }

={ } ={ }

={ }

∑

∑ ∑

∑

−
⎛

⎝
⎜
⎜

+ +

+

G

A C

G

1
3

3 3

3

ij ij

ij

j jkC j jkC

j jkC

δ δ

δ

| |

|

++ +
⎞

⎠
⎟
⎟

+

+
⎛

⎝
⎜
⎜

+ +

+

={ }

={ } ={ }

∑

∑ ∑

3

1
3

3 1 3 1

3 1

ij
j jkC

j jkC j jkC

δ
|

| |

T

A C

jj jkC j jkC

k j jkC j jk
N

| |

| |

={ } ={ }

={ }

∑ ∑

∑

+
⎞

⎠
⎟
⎟

⎞

⎠
⎟
⎟

=

=
⎛

⎝
⎜
⎜

+

G T

A

1

3 1

1 1
CC

j jkC j jkC

k

k

N
N

={ }

={ } ={ }

∑

∑ ∑

+

+ +
⎞

⎠
⎟
⎟

= =

C

G T

11 1
| |

 (7)

What had to be proved.
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