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1  | INTRODUC TION

Enteric methane emission (CH4) from cattle leads to lower animal 
productivity because it constitutes approximately 2%–12% of gross 
energy intake (GEI; Johnson & Johnson,  1995), and is one of the 
main factors adding to greenhouse gases from the agricultural sector 
(Shibata & Terada, 2010). In addition, methane yield traits, which are 
the proportion of energy lost from the diet, are globally suggested to 
use for mitigating CH4 from cattle and are also important indicators 
for feed efficiency (IPCC,  2006). Recently, moderate heritabilities 
for CH4 and methane yield traits from approximately 0.1–0.5 in beef 

(Donoghue, Bird-Gardiner, Arthur, Herd, & Hegarty,  2016; Hayes 
et al., 2016; Sobrinho et al., 2015) and dairy cattle (Breider, Wall, & 
Garnsworthy, 2019; de Haas et al., 2011; Lassen & Løvendahl, 2016; 
Pickering, Chagunda, et al., 2015; Yin, Pinent, Brügemann, Simianer, 
& König, 2015) were reported, and thus genetic selection of these 
methane-related traits can contribute to mitigate CH4 from cattle.

The genetic studies of the methane-related traits mainly focused 
on dairy cattle because of the larger amount of CH4 per animal 
emitted from dairy cattle than beef cattle (Shibata, Terada, Iwasaki, 
Kurihara, & Nishida, 1992). However, the population of beef cattle is 
larger than that of dairy cattle in Japan, and thus, the total amount 
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Abstract
The objectives of this study were to estimate genetic parameters and to perform a ge-
nome-wide association study (GWAS) for predicted methane-related traits in Japanese 
Black steers. The methane production and yield traits were predicted using on-farm 
measurable traits, such as dry matter intake and average daily gain. A total of 4,578 
Japanese Black steers, which were progenies of 362 sires genotyped with imputed 
551,995 single nucleotide polymorphisms (SNPs), had phenotypes of predicted meth-
ane-related traits during the total fattening period (52 weeks). For the estimation of 
genetic parameters, the estimated heritabilities were moderate (ranged from 0.57 to 
0.60). In addition, the estimated genetic correlations of methane production traits with 
most of carcass traits and feed-efficiency traits were unfavorable, but those of meth-
ane yield traits were favorable or low. For the GWAS, no genome-wide significant SNP 
was detected, but a total of four quantitative trait locus (QTL) regions that explained 
more than 5.0% of genetic variance were localized on the genome, and some candidate 
genes associated with growth and feed-efficiency traits were located on the regions. 
Our results suggest that the predicted methane-related traits are heritable and some 
QTL regions for the traits are localized on the genome in Japanese Black steers.
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of CH4 from beef cattle is slightly larger than that from dairy cattle 
in Japan (Greenhouse Gas [GHG] Inventory Office of Japan, 2018). 
This indicates that the management of genetic selection in beef cat-
tle through mitigated CH4 would be directly important not only by 
increasing beef cattle productivity but also the reduction of the total 
amount of CH4 from cattle in Japan.

The most accurate method to measure CH4 is the use of open cir-
cuit respiration chambers (Johnson & Johnson, 1995), but this method 
requires high costs and logistical efforts, and thus, only short-term and 
small number of datasets can be obtained. When short-term datasets 
are used, such confounding factors as health conditions at the time and 
the amount of ingested feed before the measurement could affect the 
accuracy of a phenotypic value (Pickering, Oddy, et al., 2015). To accu-
rately evaluate the genetic effects on CH4 in beef cattle, it is necessary 
to obtain a large number of beef cattle measured CH4 over a long pe-
riod at a low cost. One of the strategies for obtaining long-term CH4 
with a low-cost experiment is to construct a prediction equation using 
on-farm measurable traits, such as feed intake and body weight. In 
Japan, the quadratic regression of CH4 on dry matter intake (DMI) has 
been adopted for ruminant livestock for the National GHG Inventory 
Report (Shibata & Terada, 2010; Shibata, Terada, Kurihara, Nishida, & 
Iwasaki, 1993). Japanese Black cattle, which is a major beef breed in 
Japan and is known for its high marbling, are usually fed a high-con-
centrate diet (Gotoh, Takahashi, Nishimura, Kuchida, & Mannen, 2014). 
Thus, it is necessary to use the prediction equation of CH4 for beef 
cattle fed high-concentrate diets.

Recently, Uemoto, Ogawa, Satoh, Abe, and Terada (2020) devel-
oped prediction equations for CH4 and methane yield traits, which 
could account for beef cattle fed with high-concentrate diets by in-
cluding dietary and animal characteristic variables in the prediction 
equation. In addition, Takeda et al. (2018, 2020) reported results of 
genetic and genomic analyses for feed-efficiency traits measured 
for approximately a year fattening period in Japanese Black steers; 
thus, it is possible to evaluate the genetic effects of predicted meth-
ane-related traits over long fattening periods using a dataset and 
prediction equations. Therefore, the objectives of this study were to 
clarify and better understand the genetic architecture of predicted 
methane-related traits by performing (a) genetic parameter estima-
tion and (b) a genome-wide association study (GWAS) in Japanese 
Black steers.

2  | MATERIAL S AND METHODS

2.1 | Animals, recording of phenotypic data and 
genotypic data

All animals were cared for and slaughtered according to Japanese 
animal welfare regulations. A complete description of the experi-
mental population was previously reported by Inoue, Kobayashi, 
Shoji, and Kato (2011) and Takeda et al. (2018, 2020). Briefly, a total 
of 4,578 Japanese Black steers raised by the Livestock Improvement 
Association of Japan, Inc. (LIAJ) from 1998 to 2008 were used in 

this study, and a total of 30,012 animals were used for pedigree in-
formation. All steers were fattened for 52  weeks beginning at an 
average of 9.1 months of age, and body weight and feed intake were 
measured every 8 weeks from the 1st week to the 48th week and 
at the final 52nd week. All steers were fed with a concentrated diet 
(73.3% total digestible nutrients, 10.3% digestible crude protein) 
and roughage diet (54.0% total digestible nutrients, 5.0% digest-
ible crude protein). The amount of concentrate and roughage intake 
were recorded per individual and per herd units (average of 13 steers 
per unit), respectively. The average of roughage intake in each herd 
units was calculated, and the sum of daily roughage and concentrate 
intake was considered as the DMI in this study. Total digestible nu-
trients in DMI (TDN), the ratio of roughage to DMI (Rrate), an aver-
age of body weight between test days (BW), and average daily gain 
during a test period (DG) were calculated. BW (kg), DG (kg/day), 
DMI (kg/day), TDN (%), and Rrate (%) were calculated for total fat-
tening period. Descriptive statistics for these five traits are shown in 
Table S1, respectively. In this dataset, averages of Rrate were 22.8%.

The feed conversion ratio (FCR), residual feed intake (RFI), re-
sidual BW gain (RG), and residual intake and BW gain (RIG) based 
on DMI were regarded as feed-efficiency traits and were calculated 
by the method of Koch, Swiger, Chambers, and Gregory (1963) and 
Takeda et al.  (2018). All the steers were slaughtered at an average 
of 21 months of age, and carcass weight (CW), rib-eye area (REA), 
subcutaneous fat thickness (SFT), rib thickness (RT), and fat mar-
bling (BMS) were measured as carcass traits (Takeda et  al.,  2018). 
Phenotypes within the mean  ±  3 standard deviations (SDs) were 
used in this study. The descriptive statistics of carcass traits were 
the same as those described by Takeda et al.  (2018), and those of 
feed-efficiency traits are shown in Table S2.

A complete description of the genotypic data was previously 
reported by Takeda et al.  (2020). Briefly, the DNA samples of 362 
progeny-tested bulls, which were the sires of 4,578 steers, were gen-
otyped using the Illumina BovineSNP50v2 (50 K) BeadChip (Illumina, 
San Diego, CA, USA). The single-nucleotide polymorphisms (SNPs) 
on the 50 K array were then imputed into the Illumina BovineHD 
(HD) BeadChip (Illumina) using Beagle 4.0 software (Browning & 
Browning, 2016) based on 1,368 Japanese Black cattle as the refer-
ence set (Uemoto, Sasaki, Sugimoto, & Watanabe, 2015). Before im-
putation, all SNP positions on the 50 K and HD arrays were updated 
according to the SNPchiMpv.3 database (Nicolazzi et al., 2015) and 
the ARS-UCD1.2 reference sequence assembly downloaded from 
Ensembl (release 97; http://ftp.ensem​bl.org/pub/relea​se-97/varia​
tion/vcf/bos_tauru​s/). After quality control by excluding SNPs with 
a minor allele frequency of <0.01, a call rate <0.95, and Hardy-
Weinberg equilibrium test with a p value <.001, a total of 551,995 
SNPs on autosomal chromosomes was used in this study.

2.2 | Predicted methane-related traits

The CH4, CH4 per DMI (CH4/DMI), and methane conversion fac-
tor (MCF), which was the percentage of feed energy converted to 

http://ftp.ensembl.org/pub/release-97/variation/vcf/bos_taurus/
http://ftp.ensembl.org/pub/release-97/variation/vcf/bos_taurus/
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methane and was calculated by CH4 divided by GEI, were calculated 
in this study. BW, DG, DMI, TDN, and Rrate were used as independ-
ent variables to predict CH4, CH4/DMI, and MCF using the following 
prediction equations, as shown by Uemoto et al. (2020):

In addition, another reported prediction equation for CH4 (CH4S), 
which has been adopted in the Japanese national evaluation (Shibata 
et al., 1993), was also used to compare with CH4, and is as follows:

These five traits, DMI, CH4S, CH4, CH4/DMI, and MCF, were 
regarded as the predicted methane-related traits in this study. 
Phenotypes within the mean ± 3 SDs were used in this study.

2.3 | Estimation of genetic parameter

The genetic parameters were estimated by the following statistical 
model:

where y is the vector of observations; X and Z are the design matrices 
for fixed and random effects, respectively; b is the vector of fixed ef-
fects, including the year-step-station-herd effect (348 levels based on 
11 years, 10 steps, two stations, and three herds) and linear covariate 
age at the beginning of the test; u and e are the vectors of random 
effects. The ASReml 4.1 software (Gilmour, Gogel, Cullis, Welham, & 
Thompson, 2015) was used to estimate (co)variance components with 
standard errors.

For predicted methane-related traits, the pedigree-based her-
itabilities 
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numerator relationship matrix (NRM), and I is an identity matrix. The 
estimated heritabilities of carcass traits were the same as those de-
scribed by Takeda et al. (2018), and those of DG and feed-efficiency 
traits are shown in Table S2.

For the relationship among predicted methane-related traits, 
carcass traits, and feed-efficiency traits, the genetic and residual 
correlations were estimated by a two-trait animal model based on 
the model above. u and e are the breeding value with u∼N

(
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)
 

and the residual with e∼N
(
0,R⊗ I

)
, respectively. G is the additive 

genetic (co)variance matrix and R is the residual (co)variance matrix.

2.4 | Single-step genome-wide association studies

The GWAS for predicted methane-related traits was performed. 
The single-step GWAS (ssGWAS) approach (Wang, Misztal, Aguilar, 
Legarra, & Muir, 2012) was performed using the BLUPF90 family of 
programs (Aguilar et al., 2018). Firstly, the genomic estimated breed-
ing value (GEBV) was predicted using the following statistical model:

where y, X, Z, b, and e are the same as described above. a is the vec-
tor of a random effect due to GEBV with a∼N

(
0,H�2

a

)
, where �2

a
 is 

the additive genetic variance accounted for by SNP information, and 
H is a matrix that combines pedigree and genomic information (Aguilar 
et al., 2010). The inverse of H is calculated as follows:

where A22 is the NRM for genotyped animals and G is the genomic 
relationship matrix proposed by VanRaden (2008) as follows:

where m is the number of SNPs; pj is the allele frequency of the second 
allele of the j-th SNP; D is a diagonal matrix of weights for variances of 
SNP (initially D = I); W is a matrix related to genotypes; and the ele-
ment of W is wij=xij−2pj, where xij is the number of the second allele 
of the i-th animal at the j-th SNP. The variance components and the 
genome-based heritabilities 
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estimated variance components were then used to predict the GEBV.
Next, the estimate of the SNP effect (�̂) was calculated using the 

following equation:

where âg is a vector of the GEBV of genotyped animals. The refine-
ment of SNP weights through two iterations was performed to esti-
mate the SNP effect, as described by Wang et al. (2012). The 100 kbp 
was applied as the window size for the ssGWAS, which was the extent 
of LD (r2 = 0.2) in this population (Takeda et al., 2020). The proportion 
of genetic variance explained by the k-th window, which consisted of a 
region of consecutive l SNPs located within 100 kbp, was calculated as 
described by Wang et al. (2014):

CH4

(
L∕day

)
=−676.7+0.04194×BW+29.88×DMI

+7.883×TDN+4.367×Rrate,

CH4∕DMI
(
L∕kg

)
=−52.24−1.193×10−3×BW−5.905×DG

+1.077×TDN+0.5008×Rrate,

MCF (%)=−11.43−5.308×10−4×BW−1.223×DG

+0.2336×TDN+0.1157×Rrate.

CH4S
(
L∕day

)
=−17.766+42.793×DMI−0.849×DMI

2
.

y=Xb+Zu+e,

y=Xb+Za+e,

H
−1

=A
−1

+

⎡
⎢⎢⎣

0 0

0 G
−1

−A
−1

22

⎤
⎥⎥⎦
,

G=
WDW

�

∑m

j=1
2pj

�
1−pj

� ,

�̂ =DW
� (
WDW

�)−1
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where Wj is the vector of the genotype of the j-th SNP for all individual 
and 𝛽j is the SNP effect of the j-th SNP within the k-th window. For vari-
ances calculations, overlapping windows were considered. The genes 
within the k-th window were scanned using the NCBI2R R package 
(https://cran.r-proje​ct.org/src/contr​ib/Archi​ve/NCBI2​R/).

The significant test for SNP effects using the ssGWAS (Aguilar 
et al., 2019) was also performed, and the p value of j-th SNP (pvalj) 
was calculated as follows:

where Φ is the cumulative standard normal function and sd is the stan-
dard deviation. The single run of the ssGWAS, which had no iterations 
for SNP weight refinement, was performed in this analysis as previ-
ously suggested (Aguilar et al., 2019), and the Bonferroni correction 
was applied to determine the 5% genome-wide significance thresholds 
(p = 9.1 × 10−8).

3  | RESULTS

3.1 | Genetic parameters

Descriptive statistics of predicted methane-related traits are 
shown in Table 1, and the predictive value of CH4S (average values 
was 297.1 L/day) was higher than that of CH4 (average values was 
251.3  L/day). The pedigree-based genetic variances, residual vari-
ances, and heritabilities for predicted methane-related traits were 
estimated and are presented in Table 1. The estimated heritabilities 
for all traits were moderate (ranged from 0.57 to 0.60). The estimated 
genetic and residual correlations among predicted methane-related 
traits are shown in Table 2. The estimated genetic and residual cor-
relations among the five traits were very high (greater than absolute 
values of approximately 0.90 and 0.80, respectively). The estimated 
correlations among the three traits (DMI, CH4, and CH4S) and be-
tween the two traits (CH4/DMI and MCF) were both positive, and 
the correlations between the three and two traits were negative.

The estimated genetic correlations of predicted methane-related 
traits with carcass traits, DG, and feed-efficiency traits are shown in 
Table 3. For carcass traits, the estimated genetic correlations of the 
predicted methane-related traits with CW, REA, and RT were mod-
erate to high (absolute values of 0.41–0.90) and those with SFT and 
BMS were low (absolute values of 0.13–0.22). The estimated genetic 
correlations of CW, REA, and RT with DMI, CH4S, and CH4 were 
unfavorably positive, and those with CH4/DMI and MCF were favor-
ably negative. The estimated genetic correlations of predicted meth-
ane-related traits with DG were similar to those with CW. Regarding 
feed-efficiency traits, the estimated genetic correlations of DMI, 
CH4S, and CH4 with RFI were favorably moderate (0.52–0.57), those 
with RIG was favorably low (−0.24 to −0.21), and those with FCR 
and RG were unfavorably low (absolute values of 0.21–0.26). The 
estimated genetic correlations of CH4/DMI and MCF with FCR and 
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RG were favorably moderate (absolute values of 0.45–0.54), those 
with RFI was unfavorably low (−0.27), and those with RIG was very 
low (about −0.10).

3.2 | Genome-wide association studies

The estimated genome-based heritabilities are shown in Table  1. 
These were slightly lower than the estimated pedigree-based her-
itabilities for the same traits. The proportion of genetic variance 
explained by the SNP windows was calculated for predicted meth-
ane-related traits, and the Manhattan plots for the traits are shown 
in Figure 1. In addition, the summary of the detected quantitative 
trait locus (QTL) regions are shown in Table 4. The genetic variance 

(%) was obtained by the maximum value of the proportions of ge-
netic variance explained by the windows within the QTL region, and 
the results, for which any one of all traits had genetic variance (%) 
greater than 5.0, are shown in Table 4. A total of four QTL regions 
that explained more than 5.0% of genetic variance (%) in any one 
of all traits were detected in this study. The results of DMI, CH4S, 
and CH4 exhibited similar trends, and the QTL regions with genetic 
variance (%)>5.0 were detected on BTA 5 and 14. The QTL region 
on BTA 14 (21.4–23.7  Mbp) had the highest genetic variance for 
all three traits (approximately 10.0%). The results of CH4/DMI and 
MCF exhibited similar trends, and the QTL regions with genetic var-
iance (%)>5.0 were detected on BTA 3 and 8. The QTL region on 
BTA 8 (88.5–91.1 Mbp) had the highest genetic variance (more than 
20.0%). Next, the genome-wide significance test was performed for 

TA B L E  2   Estimated genetic and residual correlations among predicted methane-related traitsa

Traitsb  DMI CH4S CH4 CH4/DMI MCF

DMI   0.999 (0.000) 0.997 (0.001) −0.929 (0.013) −0.934 (0.012)

CH4S 0.999 (0.000)   0.997 (0.001) −0.931 (0.012) −0.936 (0.011)

CH4 0.990 (0.001) 0.986 (0.002)   −0.945 (0.011) −0.951 (0.010)

CH4/DMI −0.806 (0.024) −0.808 (0.023) −0.805 (0.023)   0.999 (0.000)

MCF −0.823 (0.022) −0.825 (0.022) −0.825 (0.021) 0.999 (0.000)  

aDMI, dry matter intake; CH4, enteric methane emission; CH4S, CH4 predicted by Shibata et al. (1993); CH4/DMI, CH4 per DMI; MCF, methane 
conversion factor. 
bUpper diagonal is genetic correlation, lower diagonal is residual correlation. Standard errors are shown in parentheses. 

TA B L E  3   Estimated genetic correlations of predicted methane-related traits with carcass traits, average daily gain, and feed-efficiency 
traits

Traitsa 

DMI CH4S CH4 CH4/DMI MCF

Estimates SE Estimates SE Estimates SE Estimates SE Estimates SE

Carcass traits

Carcass weight, kg 0.76 0.03 0.77 0.03 0.81 0.03 −0.89 0.02 −0.90 0.02

Rib-eye area, cm2 0.41 0.07 0.41 0.07 0.44 0.06 −0.47 0.06 −0.47 0.06

Rib thickness, cm 0.54 0.06 0.54 0.06 0.56 0.06 −0.58 0.06 −0.59 0.05

Subcutaneous fat 
thickness, cm

0.22 0.08 0.21 0.08 0.22 0.07 −0.17 0.08 −0.18 0.08

Beef marbling 
standard

0.14 0.07 0.15 0.07 0.15 0.07 −0.13 0.07 −0.13 0.07

Average daily gain, 
kg/day

0.79 0.03 0.80 0.03 0.82 0.03 −0.96 0.01 −0.96 0.01

Feed-efficiency traits

Feed conversion 
rate

−0.21 0.09 −0.21 0.09 −0.26 0.09 0.54 0.06 0.53 0.07

Residual feed 
intake, kg/day

0.57 0.06 0.57 0.06 0.52 0.06 −0.27 0.08 −0.27 0.08

Residual body 
weight gain, kg/
day

0.24 0.09 0.24 0.09 0.24 0.09 −0.48 0.07 −0.45 0.08

Residual intake and 
body weight gain

−0.24 0.09 −0.24 0.09 −0.21 0.09 −0.11 0.09 −0.09 0.09

aDMI, dry matter intake; CH4, enteric methane emission; CH4S, CH4 predicted by Shibata et al. (1993); CH4/DMI, CH4 per DMI; MCF, methane 
conversion factor. 
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predicted methane-related traits, and p values for the ssGWAS were 
shown in Figure 2. However, no significant SNPs were detected for 
any predicted methane-related traits.

4  | DISCUSSION

4.1 | Genetic parameters

The CH4 from cattle is a heritable and a repeatable trait, and the her-
itability and repeatability estimates for CH4 were not very different 
among studies when a short-term dataset is used (Pickering, Oddy, 
et al., 2015). The genetic variation of methane yield (i.e. CH4/DMI) was 

less than that of CH4 and was variable among studies, when a short-
term dataset was used (Pickering, Oddy, et  al.,  2015). For example, 
Donoghue et  al.  (2016) and Hayes et  al.  (2016) reported estimated 
heritabilities for CH4 and CH4/DMI as 0.27 and 0.22 in beef cattle, 
respectively, in the short term (only 2 consecutive days). In dairy cattle, 
the estimated heritabilities for CH4 and CH4 per milk production were 
low (0.21) for a short-term dataset (1 week; Lassen & Løvendahl, 2016) 
and moderate (0.35 and 0.58, respectively) for a long-term dataset 
(0–42 weeks; de Haas et al., 2011). In addition, Breider et al. (2019) re-
ported that the estimated heritabilities for CH4 using a random regres-
sion model were low to moderate (0.12–0.45) during milking over the 
long-term (5 consecutive months). Thus, the heritability of methane-
related traits, especially methane yield traits, such as CH4/DMI and 

F I G U R E  1   Manhattan plots for 
predicted methane-related traits. The 
x-axis indicates the chromosome number 
and the y-axis indicates the percentage 
of additive genetic variance explained by 
the window. (a) DMI, dry matter intake (b) 
CH4, enteric methane emission (c) CH4S, 
CH4 predicted by Shibata et al. (1993) (d) 
CH4/DMI, CH4 per DMI (e) MCF, methane 
conversion factor
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MCF, could be underestimated in beef cattle, if a short-term dataset is 
used. However, there have been no studies for heritability of methane-
related traits estimated using long-term dataset in beef cattle. Here, 
we performed heritability estimation for predicted methane-related 
traits using long-term datasets (52  weeks). Our results showed that 
the larger heritabilities of predicted methane-related traits could be 
estimated in beef cattle using a long-term dataset, when the methane-
related traits were evaluated by the prediction equations. Some of the 
non-genetic effects were considered because of health conditions at 
the time, the amount of ingested feed before the measurement, time 
points along the growth curve, and further studies were needed to un-
veil the reasons.

It is important to evaluate the genetic relationships between 
predicted methane-related traits and economic traits for genetic im-
provement of reducing CH4 in beef cattle without reducing beef cattle 
productivity. Donoghue et al. (2016) reported that the genetic correla-
tions of CH4 with the growth traits were unfavorably high, but those 
of CH4/DMI were very low. In dairy cattle, the genetic correlations of 
CH4 with milk production were unfavorably high (Breider et al., 2019; 
de Haas et al., 2011; Lassen & Løvendahl, 2016; Yin et al., 2015). In our 
study, the estimated genetic correlations of DMI, CH4S, and CH4 with 
most of the carcass traits and feed-efficiency traits were unfavorably 
moderate to high or low (less than the absolute value of 0.3) without 
those for RFI. Those of CH4/DMI and MCF were favorably moder-
ate to high or low (less than the absolute value of 0.3). These genetic 

correlations displayed similar trends as those described by Donoghue 
et al. (2016). The methane yield traits, such as CH4/DMI and MCF, are 
an amount of CH4 related to input and are important traits in addition 
to CH4, because decreasing CH4/DMI and MCF will increase the pro-
ductivity of beef cattle (Knapp, Laur, Vadas, Weiss, & Tricarico, 2014). 
However, the estimated genetic and residual correlations between CH4 
and methane yield traits were negatively high in this population. This 
is because the prediction equations for these traits strongly depend 
on DMI. Methane yield traits usually decrease as DMI increases above 
maintenance, because increasing DMI usually increases fractional pas-
sage rate and thus decreases digestibility (Hristov et al., 2013; Knapp 
et al., 2014). The phenotypic correlations between CH4 and methane 
yield traits obtained by open circuit respiration chambers were posi-
tively moderate in beef cattle (Herd et al., 2014; Uemoto et al., 2020), 
and the prediction equations might not support the relationship be-
tween these traits. Further study is needed to evaluate the relationship 
between CH4 and methane yield traits.

4.2 | Genome-wide association studies

In this study, no genome-wide significant SNP by the frequentist 
p value test for SNP effects was detected for predicted methane-
related traits. Some of the QTL regions had genetic variance greater 
than 5.0% with two iterative procedures for calculating the weight 

TA B L E  4   Summary of the detected quantitative trait locus (QTL) regions for predicted methane-related traits

BTA

QTL region 
(Mbp)a  QTL region (rs name)

nSNPb 

Genetic variance (%)c,d 

Gene symbol within 
QTL regione Start End Start End DMI CH4S CH4

CH4/
DMI MCF

3 114.5 114.9 rs133410402 rs42451581 138 0.9 1.0 2.0 8.2 14.7 SH3BP4

5 17.6 17.8 rs109934488 rs135736941 30 5.0 5.1 4.7 0.4 0.3 —

8 88.5 91.1 rs110065449 rs110723310 557 2.7 2.1 1.2 22.3 20.7 PLPPR1,FBXW12,TME
FF1,SEMA4D,SPIN1
,S1PR3,MSANTD3,N
XNL2,CAVIN4,SHC3,
SECISBP2,CDK20

14 21.4 23.7 rs132657529 rs133012258 380 10.4 9.9 10.6 7.2 6.6 PLAG1,PENK,RP1,M
OS,ATP6V1H,XKR4
,OPRK1,NPBWR1,S
DR16C6,LYPLA1,CH
CHD7,RB1CC1,LYN,
TMEM68,SOX17,SD
R16C5,TGS1,MRPL
15,TCEA1,RPS20,TR
NAG-CCC,TRNAG-
UCC,TRNA-
T-AGU,TRNAC-GCA

aGenomic positions are based on the ARS-UCD1.2 reference sequence. 
bThe number of SNPs within the QTL region. 
cDMI, dry matter intake; CH4, enteric methane emission; CH4S, CH4 predicted by Shibata et al. (1993); CH4/DMI, CH4 per DMI; MCF, methane 
conversion factor. 
dGenetic variance (%), the maximum value of the proportions of genetic variance explained by the windows within the QTL region. 
eBest candidate gene in the region is shown by bold. 
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of the SNP. In particular, the QTL region on BTA 8 had the highest 
genetic variance (22.3%) for CH4/DMI. Using estimates of SNP ef-
fects or explained genetic variance was useful in increasing the ac-
curacy of GEBV by allowing unequal SNP variance in the ssGBLUP 
approach (Wang et al., 2012; Zhang, Lourenco, Aguilar, Legarra, & 
Misztal,  2016). In addition, ssGWAS can capture the genetic vari-
ance explained by all SNPs within a segment of the genome as op-
posed to that of individual SNPs, even if each SNP within a segment 
has a low effect. However, it does not always correctly consider the 
uncertainty in the estimation of SNP effects (Aguilar et al., 2019). 
The QTL analysis for CW is one of the most extensively performed 

studies for Japanese Black cattle, and some QTLs with large effects 
have been detected (Nishimura et al., 2012; Setoguchi et al., 2009; 
Takasuga et al., 2015). Thus, this is a good example of a trait to use 
to evaluate the difference in the power of QTL detection between 
both methods. In our population, more than 27% of genetic variance 
were obtained near the pleomorphic adenoma gene 1 (PLAG1) gene, 
which is one of the candidate genes for CW in Japanese Black cat-
tle (Nishimura et al., 2012), using ssGWAS with two iterative proce-
dures (Takeda et al., 2020; Figure S1). Genome-wide significant SNPs 
were also detected around the same region by the ssGWAS with fre-
quentist p value tests (Figure S1). Therefore, this result suggests that 

F I G U R E  2   Manhattan plots for 
predicted methane-related traits. The 
x-axis indicates the chromosome number 
and the y-axis indicates p values (−log10). 
(a) DMI, dry mater intake (b) CH4, enteric 
methane emission (c) CH4S, CH4 predicted 
by Shibata et al. (1993) (d) CH4/DMI, CH4 
per DMI (e) MCF, methane conversion 
factor
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it was difficult to detect significant genome-wide SNPs unless the 
genetic variance (%) was very high. Although no genome-wide sig-
nificant SNP was detected in the predicted methane-related traits, 
our results showed that the QTL regions with low to moderate ge-
netic variance could be localized to several regions on the genome.

In this study, a total of four QTL regions that explained more than 
5.0% of genetic variance in any one of the traits was detected, and 
some candidate genes were located on the QTL regions. In addition, 
the distribution of QTL regions was different between three traits 
(DMI, CH4, and CH4S) and two traits (CH4/DMI and MCF). The QTL 
region on BTA 14 had the highest genetic variance in DMI, CH4S, and 
CH4, and the PLAG1 gene was the best candidate gene in the QTL 
region. PLAG1 regulates several growth factors, and the variants 
of the PLAG1 gene are strongly associated with cattle stature and 
growth traits (Karim et al., 2011), and CW in Japanese Black cattle 
(Nishimura et al., 2012). Genome-wide significant SNPs for CW were 
detected on the PLAG1 gene in this population (Figure S1). The QTL 
region on BTA 8 had the highest genetic variance for CH4/DMI and 
MCF, and the Src homology 2 domain containing transforming protein 
3 (SHC3) gene was the best candidate gene in the QTL region. SHC3 
is a signal transduction protein involved in recognition of phosphor-
ylated tyrosine, and the SHC3 gene is suggested to be a potential 
QTL for RFI by GWAS (Bolormaa et al., 2011) and gene expression 
analysis (Weber et al., 2016). The QTL region on BTA3 had more than 
10% genetic variance in MCF, and the SH3 domain binding protein 4 
(SH3BP4) gene was located. There has been no report on the direct 
association between the SH3BP4 gene with not only CH4 but also 
growth and feed-efficiency traits. The variants on the SH3BP4 gene 
were associated with the sensitivity of beef cattle to environmental 
variation (Carvalheiro et al., 2019), and further study is needed to 
determine the mechanism of the functional relationship. No candi-
date gene was found in the QTL region on BTA 5. But the QTL as-
sociated with DG was detected around the same region in Nellore 
cattle (Olivieri et al., 2016). These results suggest that the variants 
on the detected QTLs are associated with growth and feed-effi-
ciency traits; thus, they could be indirectly associated with predicted 
methane-related traits. The information regarding the QTL regions 
with moderate genetic variance could be useful in the elucidation of 
the genetic architecture and genomic evaluation for predicted meth-
ane-related traits.

4.3 | Predicted methane-related traits

The use of open circuit respiration chambers is the “gold standard” 
method to measure CH4 correctly, but high costs and logistical ef-
forts make it difficult to measure over a long period with a large 
number of cattle. Actually, only a few studies have estimated ge-
netic parameters (Donoghue et  al.,  2016) and performed GWAS 
(Manzanilla-Pech et al., 2016) using open circuit respiration cham-
bers to measure CH4 in beef cattle, and no such studies have been 
reported in dairy cattle. Methane-related traits strongly depend on 
DMI, because the variation in DMI accounted for 52%–64% of the 

variation in CH4 (Knapp et al., 2014). Methane-related traits also de-
pend on maintenance traits such as live weight and production traits 
such as milk production, DG, and milk fat composition (de Haas, 
Pszczola, Soyeurt, Wall, & Lassen, 2017). Actually, Manzanilla-Pech 
et al.  (2016) concluded that CH4 obtained by open circuit respira-
tion chambers was mainly dependent on DMI and BW in beef cattle. 
Thus, the methane-related traits were predicted using the prediction 
equations that use these traits as independent variables in our study.

We applied two prediction equations developed by Shibata 
et al.  (1993) and Uemoto et al.  (2020) for the prediction of CH4 in 
this study. The prediction equation by Shibata et al. (1993) is highly 
affected by DMI because of its quadratic regression of CH4 on DMI. 
The prediction equation by Uemoto et  al.  (2020) can account for 
the feed characteristics by including TDN and Rrate, because CH4 
strongly depends not only on the quantity of feed intake but also 
on the composition of the diet (de Haas et al., 2017; Moss, Jouany, 
& Newblod,  2000; Shibata & Terada,  2010). Actually, Uemoto 
et  al.  (2020) reported that the prediction equation by Shibata 
et al. (1993) showed a very high predictive ability in cattle fed with a 
low-concentrate diet, whereas the predictive ability was low in cat-
tle fed with a high-concentrate diet (Rrate <0.30). In addition, the 
predictive value of CH4 by Shibata et al. (1993) was overestimated in 
cattle fed with a high-concentrate diet, because lower Rrate results 
in greater production of propionic acid in the rumen and thus de-
creases CH4 (Moss et al., 2000). The prediction equation by Uemoto 
et al. (2020) exhibited high predictive ability and precise predictive 
values for cattle fed with both low- and high-concentrate diets.

In this study, CH4S showed higher predictive values than CH4, 
which is the same trend as described by Uemoto et  al.  (2020). 
Actually, the averages of Rrate were 22.8% in this population, and 
thus CH4S is likely to be overestimated. However, the estimated ge-
netic correlations among DMI, CH4S, and CH4 were very close to 
1.0, and the distribution of QTL regions showed very similar trends 
among these traits in our study. The results of genetic parameter and 
GWAS were similar to those of Manzanilla-Pech et al.  (2016), who 
concluded that the actual value of CH4 was mainly dependent on 
DMI and BW. These results suggested that the genetic background 
of these traits had a close relationship with each other. In addition, 
the difference in the prediction equations for CH4 had no large ef-
fect on the genetic and genomic analyses, if DMI was used as an 
independent variable in a prediction equation.

Many studies have estimated genetic parameters and per-
formed GWAS for CH4 predicted by DMI, milk yield and mainte-
nance traits (de Haas et al., 2011; Pickering, Chagunda, et al., 2015; 
Yin et  al.,  2015), milk fat composition (van Engelen, Bovenhuis, 
Dijkstra, Van Arendonk, & Visker,  2015), and milk mid-infrared 
spectra (Kandel et  al.,  2017) in dairy cattle, and one study has 
estimated genetic parameters in beef cattle using DMI (Sobrinho 
et al., 2015). These studies suggested that predicted methane-re-
lated traits can be available in genetic and genomic studies. 
However, it should be noted that predicted methane-related traits 
are expected values, which are indirectly associated with feed-ef-
ficiency, maintenance, and production traits. When considering 
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genetic improvement for mitigating CH4 itself in beef cattle, one 
of the most important indicators is the residual CH4, which is a 
measure of the actual minus predicted CH4 with a concept sim-
ilar to that of RFI (Donoghue et al., 2016). For the calculation of 
residual CH4, the actual values of CH4 are required. Thus, it is 
necessary to develop low-cost on-farm measuring methods, such 
as spot breath samples similar to the sniffer method (Hammond 
et al., 2016). Actually, some genetic studies for CH4 contained in 
spot breath samples have been reported in dairy cattle (Breider 
et al., 2019; Lassen & Løvendahl, 2016). Further study is necessary 
to develop a technique for collecting actual CH4 over a long period 
at a low cost in beef cattle.

5  | CONCLUSIONS

In this study, we estimated genetic parameters and performed a 
GWAS for predicted methane-related traits measured over the 
long-term fattening period in Japanese Black steers to clarify and 
better understand the genetic architecture of predicted methane-
related traits. For genetic parameter estimation, the moderate her-
itabilities of predicted methane-related traits were estimated. In 
addition, the estimated genetic correlations of DMI, CH4S, and CH4 
with most of the carcass traits and feed-efficiency traits were un-
favorable, but those of CH4/DMI and MCF were favorably moder-
ate to high or low. For the GWAS, no genome-wide significant SNP 
was detected, but the QTL regions with low to moderate genetic 
variance were localized to several regions with some candidate 
genes on the genome. Our results showed that predicted meth-
ane-related traits were heritable and the information regarding the 
genetic parameter estimates and QTL regions could be useful in 
the genetic improvement for predicted methane-related traits in 
beef cattle. A breeding strategy such as a combination of meth-
ane-related traits, carcass traits, and feed-efficiency traits will be 
important to increase cattle productivity and reduce greenhouse 
gases in beef cattle.
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