
Oxidative stress, thyroid dysfunction & Down syndrome 

Carlos Campos & Ángela Casado

Department of Cellular & Molecular Medicine, Centre for Biological Research - Spanish National Research 
Council (CIB-CSIC), Madrid, Spain

Received April 17, 2014

Down syndrome (DS) is one of the most common chromosomal disorders, occurring in one out of 700-1000 
live births, and the most common cause of mental retardation. Thyroid dysfunction is the most typical 
endocrine abnormality in patients with DS. It is well known that thyroid dysfunction is highly prevalent 
in children and adults with DS and that both hypothyroidism and hyperthyroidism are more common in 
patients with DS than in the general population. Increasing evidence has shown that DS individuals are 
under unusual increased oxidative stress, which may be involved in the higher prevalence and severity 
of a number of pathologies associated with the syndrome, as well as the accelerated ageing observed in 
these individuals. The gene for Cu/Zn superoxide dismutase (SOD1) is coded on chromosome 21 and it 
is overexpressed (~50%) resulting in an increase of reactive oxygen species (ROS) due to overproduction 
of hydrogen peroxide (H2O2). ROS leads to oxidative damage of DNA, proteins and lipids, therefore, 
oxidative stress may play an important role in the pathogenesis of DS. 
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Review Article

	 Down syndrome (DS) or trisomy 21 is one of 
the most important human congenital diseases. The 
syndrome is associated with mental retardation, 
congenital heart disease, immune system disorders, 
digestive problems, endocrine system deficits 
and different biochemical disorders. It could be 
speculated that the chromosome abnormality led to 
impaired formation of the thyroid and other organs1. 
The association of DS with thyroid disorders has 
been known for decades. Thyroid dysfunction is 
highly prevalent in DS2-5. Patients with DS have 
an increased prevalence of autoimmune disorders 
affecting both endocrine and non-endocrine organs3. 
Thyroid disorders have been reported to have a 
prevalence rate of 3-54 per cent in individuals with 

DS and these increase in frequency with increasing 
age of the individual3. Another risk factor is the 
female sex6. It has been suggested that individuals 
with DS are under unusual oxidative stress, which 
has been proposed to be caused by an excess of Cu/
Zn superoxide dismutase (SOD1) activity, an enzyme 
coded on HSA21 (21q22.1)7-11. SOD1 enhances the 
production of hydrogen peroxide (H2O2), an important 
precursor of hydroxyl radical, being one of the at least 
16 genes or predicted genes on HSA21 with a role in 
mitochondrial energy generation and reactive oxygen 
species (ROS) metabolism10. H2O2 is then neutralized 
to water and oxygen through the actions of either 
glutathione peroxidase (GPx) and/or catalase (CAT). 
Hence, the increased ratio of SOD1 to catalase plus 
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glutathione peroxidase can lead to increased oxidative 
stress in DS12. The aim of this article was to critically 
review the scientific literature concerning the link 
between oxidative stress and thyroid dysfunction in 
Down syndrome.

Down syndrome

	 DS or trisomy 21 is known to occur in one out of 
700-1000 live births13. Clinical symptoms were first 
described by John Langdon Down in 186614, but the 
association with one extra copy of chromosome 21 
was first reported by Lejeune et al15. Trisomy 21 is 
now accepted to be the major cause of DS, accounting 
about 90-95 per cent of cases. The other 5-10 per cent 
are caused by other genetic abnormalities including 
chromosomal translocations (2 to 6%) and mosaicism 
(2 to 4%)13,16.

	 DS patients present different morphological 
characteristics such as short height, obesity and 
bilateral epicanthic eyefolds. Furthermore, muscular 
hypotonia may be noted during life17. The syndrome 
is associated with mental retardation, congenital 
heart disease, immune system disorders, digestive 
problems, endocrine system deficits and different 
biochemical disorders18,19. The clinical manifestations 
of hypothyroidism are so non-specific that it may 
be attributed to the DS itself. Thyroid hormones 
are necessary with respect to brain development, 
and therefore, thyroid disorders should be detected 
immediately20. Besides, DS patients have an 
increased risk of leukaemia and Alzheimer’s  
disease21-24. 

	 The extra copy of chromosome 21 (HSA21) or part 
of it, affecting more than 300 genes, is associated with a 
variety of manifestations, including pathologies which 
are possibly related to ageing such as Alzheimer’s 
disease, visual impairment, senile cataracts, 
leukaemia, diabetes mellitus, hypogonadism, vascular 
disease, amyloidosis and premature graying or loss of 
hair, and skin changes25-27. Besides, there is evidence 
of accelerated ageing in individuals with DS, this 
disorder being considered as a progeroid syndrome28, 
and it has been postulated that it may be the result of an 
increased oxidative stress. The prevalence of clinical 
disorders in individuals with DS is higher than in the 
general population, and has a negative impact on their 
quality of life and life expectancy29-31. 

	 There is well-established evidence from in vivo, in 
vitro studies and animal models that oxidative stress 
is involved in DS. Thus, it has been proposed that the 

increased oxidative stress observed in these subjects 
is mainly caused to an excessive activity of SOD1, an 
enzyme coded on HSA21 (21q22.1)32. Besides, several 
abnormalities in mitochondrial function have been found 
in DS and also in mouse models of this pathology33,34. in 
addition to SOD1, there are several genes or predicted 
genes on HSA21 with a role in mitochondrial energy 
generation and ROS metabolism35,36. 

Oxidative stress

	 A free radical is any species capable of independent 
existence, containing one or more unpaired electrons37, 
the most important ones being those derived from 
either oxygen and/or nitrogen. Both the radicals and 
the non-radical species generated via interaction with 
free radicals, are referred to as reactive oxygen/nitrogen 
species (RONS)38. RONS, formed in the human body 
in the cytosol, mitochondria, lysosomes, peroxisomes 
and plasma membranes under both physiological and 
pathological conditions39, are highly reactive and 
extremely short-lived agents mainly generated as by-
products of aerobic metabolism, playing a dual role 
as both deleterious and beneficial species. When the 
generation of RONS exceeds the ability of antioxidant 
defence systems to remove them, an imbalance 
between RONS formation and antioxidant defence 
can cause oxidative/nitrosative damage to cellular 
constituents (DNA, proteins, lipids and sugars), which 
is defined as oxidative/nitrosative stress10,40. Thus, the 
degree of balance between ROS or reactive nitrogen 
species (RNS) determines the degree of oxidative 
or nitrosative stress, respectively. When the system 
becomes unbalanced (free radicals > antioxidant 
defences) a change in the intracellular redox balance 
towards a more oxidizing environment, may result in 
direct DNA damage (DNA mutations), changes in the 
structure and function of proteins, and peroxidative 
damage to cell membrane lipids with the possibility to 
cause illness and disease. Though an excess leads to 
oxidative/nitrosative stress, RONS are also involved 
in several important biological processes, including 
cell signalling, redox regulation of gene transcription, 
cellular immunity and apoptosis, being essential for 
normal physiological function41.

	 Oxidative stress is a process induced by 
endogenous as well as exogenous factors. Endogenous 
factors include normal physiological processes, such 
as oxidative phosphorylation or cytochrome P450 
metabolism. Several environmental factors, including 
smoking, diet or exposure to ambient air pollution, 
represent exogenous sources of RONS42. Increasing 



evidence suggests that oxidative stress is linked to the 
primary or secondary pathophysiologic mechanisms of 
multiple human diseases, including DS43,44. 

	 The biological effects of these highly reactive 
compounds are controlled in vivo by a wide spectrum 
of antioxidative defence mechanisms such as vitamins 
E and C, carotenoids, metabolites such as uric acid 
or glutathione and antioxidant enzymes. Cells have 
developed an enzymatic antioxidant pathway against 
free radicals and ROS which are generated during 
oxidative metabolism: firstly, SOD1 catalyzes the 
formation of hydrogen peroxide from superoxide 
radicals45. An excess of the enzyme SOD1 activity has 
been considered to be responsible for the increased 
oxidative stress found in this condition. The gene 
encoding SOD1 is located on HSA21, so DS individuals 
are trisomic for SOD1. SOD1 is overexpressed in 
about 50 per cent of these individuals9,46. This enzyme 
plays a key role in the metabolism of ROS, being part 
of the first line of antioxidant defence by catalyzing 
the dismutation of superoxide radical (O–

2), mainly 
generated by oxidative metabolism, into oxygen plus 
H2O2

47. SOD1 is the major cytoplasmic superoxide 
scavenger, also located in the intermembrane space of 
the mitochondria48. 

	 Hydrogen peroxide can generate toxic hydroxyl 
radicals, but it is removed by a reaction catalyzed by CAT 
and GPx49. Glutathione reductase (GR) is a flavoprotein 
catalyzing the NADPH-dependent reduction of 
glutathione disulphide (GSSG) to glutathione (GSH), 
which is essential for the maintenance of glutathione 
levels. Any increase in SOD catalytic activity produces 
an excess of hydrogen peroxide that must be efficiently 
neutralized by CAT or GPx. The activity of the first and 
second step antioxidant enzymes must, therefore, be 
balanced to prevent oxidative damage in cells, which 
may contribute to various pathological processes50. 

	 The trace element selenium (Se) is capable of 
exerting multiple actions on endocrine systems by 
modifying the expression of at least 30 selenoproteins, 
many of which have clearly defined functions. Well-
characterized selenoenzymes are the families of 
glutathione peroxidases (GPx), thioredoxin reductases 
(TRs) and iodothyronine deiodinases (Ds). These 
selenoenzymes are capable of modifying cell function 
by acting as antioxidants and modifying redox status 
and thyroid hormone metabolism51. Se is also involved 
in cell growth, apoptosis and modifying the action of 
cell signaling systems and transcription factors. During 
thyroid hormone synthesis GPx1, GPx3 and TR1 are 

upregulated, providing the thyrocytes with considerable 
protection from peroxidative damage51.

	 The thyroid contains more Se per gram of tissue 
than any other organ52 and Se, like iodine, is essential 
for normal thyroid function and thyroid hormone 
homeostasis. Synthesis of thyroid hormone requires 
iodination of tyrosyl residues on thyroglobulin which 
is stored in the lumen of the thyroid follicle. This 
iodination is catalyzed by thyroid peroxidase (TPO) 
and requires the generation of high H2O2 concentrations 
which are potentially harmful to the thyrocyte51. 

	 The thyrocyte is continually exposed to potentially 
toxic concentrations of H2O2 and lipid hydroperoxides. 
The cytotoxic effects of H2O2 on thyroid cells 
include caspase-3-dependent apoptosis that occurs 
at H2O2 concentrations that are insufficient to induce 
necrosis. In Se deficiency the apoptotic response to 
H2O2 is increased53. When Se intake is adequate, the 
intracellular GPx and TR systems protect the thyrocyte 
from these peroxides. 

	 Oxidative damage can be monitored by the 
determination of different oxidative stress biomarkers. 
Several studies have shown higher levels of 
protein carbonyls, malondialdehyde, allantoin or 
8-hydroxydeoxyguanosine in DS than in normal 
population54-57. 

Thyroid dysfunction

	 Thyroid hormones (THs) are associated with 
oxidative stress and antioxidant status due to their 
capacity to accelerate the basal metabolism and 
change respiratory rate in mitochondria58. However, 
THs are related to oxidative stress not only by their 
stimulation of metabolism but also by their effects on 
antioxidant mechanisms58. These regulate proteins, 
vitamins and antioxidant enzymes synthesis and 
degradation59 as well as oxygen consumption and 
mitochondria energy metabolism, playing an important 
role in free radical production59. it has been suggested 
that variations of thyroid hormones levels can be 
one of the main physiological modulators of in vivo 
cellular oxidative stress60. Thyroid dysfunction is 
the most frequent endocrine abnormality in subjects 
with DS, with a prevalence varying between 0 and 
66 per cent, depending on variations in population 
size, age, laboratory assays or definitions of thyroid 
dysfunction used, the more common rates being >20 
per cent61. Hypothyroidism is the most frequent thyroid 
abnormality in DS2,62. It can be either congenital, with 
an incidence in infants with DS of 1:141 live births2 
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compared with an incidence ranging between 
1:2,500 and <1:5,000 among newborns without DS63,  
or acquired at any age after birth. Claret et al29 have 
observed that the hypothyroidism characteristic of 
early infancy in DS usually presents as a subclinical 
disorder. The distribution of the disorder in this initial 
stage is similar between sexes, which contrasts with 
that found in the population without DS, where the 
hypothyroidism is clearly predominant in the female 
sex3. However, more evidence is required regarding 
the optimal course of treatment for subclinical 
hypothyroidism64. Hyperthyroidism is also more 
prevalent among people with DS than in the general 
population, though the gap is smaller62,65. 

	 The available data concerning oxidative stress in 
both hypothyroidism and hyperthyroidism are scarce 
and controversial. In hypothyroidism, a low free 
radical generation is expected because of the metabolic 
suppression brought about by the decrease in thyroid 
hormone levels66. However, there are some studies 
reporting an increased oxidative stress in patients with 
hyperthyroidism as well as with hypothyroidism57,67- 70, 
even in subclinical hypothyroid states. In addition, 
thyroid hormone (T3) has been shown to downregulate 
the expression of SOD1 and, conversely, progressive 
hypothyroidism leads to an increase in SOD1 activity 
in the brain of rats71.

	 Only a few investigations have been conducted 
addressing the link between thyroid dysfunction and 
oxidative stress in DS, all of these in hypothyroid 
subjects. Kanavin et al72 were the first studying the 
link between oxidative stress and thyroid dysfunction 
in DS, suggesting that hypothyroidism is linked to 
decreased levels of selenium in DS subjects. oxidative 
and nitrosative stress have been assessed in hypothyroid 
DS subjects receiving levothyroxine for treatment 
of hypothyroidism by measuring a set of urinary 
biomarkers: 8-hydroxy-2’-deoxyguanosine (8-OHdG), 
isoprostane 15-F2t-IsoP, thiobarbituric acid-reacting 
substances (TBARS), advanced glycation end-products 
(AGEs), dityrosine (diTyr), hydrogen peroxide and 
total nitrite and nitrate (NOx), in children73 and in 
adolescents and adults74. In these studies, significantly 
higher levels of diTyr in children with DS receiving 
levothyroxine for hypothyroidism have been found 
compared to their healthy siblings. Besides, subjects 
with DS receiving levothyroxine showed increased 
levels of diTyr in the early adulthood (from 15 to 19  yr) 
and increased levels of diTyr, AGEs and TBARS in 
the adulthood (from 20 to 40 yr) than in those without 
hypothyroidism. Both hypothyroid and hyperthyroid 

patients are characterized by higher levels of low 
density lipoprotein (LDL) oxidation when compared 
with healthy normolipidemic control subjects67, which 
may explain the increased levels of urinary TBARS. 
in hyperthyroid patients increased lipid peroxidation 
was strictly related to free thyroxine levels, while in 
hypothyroidism it was strongly influenced by serum 
lipids67. Therefore, lipid composition must be studied 
in hypothyroid DS subjects before any conclusion can 
be reached. 

	d ecreased urinary levels of creatinine (Cr) were 
observed in DS children receiving levothyroxine 
compared to their non-DS healthy siblings73,75. Besides, 
lower levels of urinary Cr have been found in the early 
adulthood (from 15 to 19 yr) of DS subjects receiving 
levothyroxine compared with DS subject without 
diagnosed hypothyroidism75. Hence, renal impairment 
due to hypothyroidism may bias the results in these 
patients as has been suggested by the authors75. It is 
well known that levels of Cr are influenced by thyroid 
hormones. Hypothyroidism enhances serum Cr levels 
because it reduces the glomerular filtration rate and 
increases production of Cr76. impaired renal function 
has been reported in subjects with hypothyroidism77. 
it has also been reported that non-DS children with 
congenital hypothyroidism have an increased prevalence 
of congenital renal and urologic anomalies78, and renal 
impairment has also been described in DS based on 
decreased Cr clearance79,80. 

	r educed Cr clearance in non-DS patients with 
hypothyroidism had been reported, but normal values 
were obtained when they were treated with thyroid 
hormones77. However, the same has not been found 
in DS76,78, suggesting that factors contributing to the 
aetiology of hypothyroidism may be different in DS 
than in non-DS individuals. 

	 Some abnormalities reported in DS may influence 
the thyroid function: (i) decreased levels of selenium81, 
which is required for thyroid hormone synthesis and 
metabolism, acts as an antioxidant protecting the 
thyrocyte against peroxides and is part of selenium-
dependent antioxidant enzymes (e.g. GPx and 
thioredoxin reductase), (ii) an impairment in the activity 
of phenylalanine hydroxylase82, which converts the 
phenylalanine in tyrosine, and (iii) overexpression of 
DYRK1A kinase83, which could reduce availability of 
tyrosine. These factors may lead to several anomalies 
related to thyroid disorders, even in DS subjects with 
“normal” thyroid hormones levels. However, further 
investigation is required to ascertain the mechanisms 
underlying these findings. On the other hand, signs 

116 	 INDIAN J MED RES, august 2015



and symptoms of hypothyroidism can be difficult to 
discriminate from those found in the natural course 
of DS itself. These are overlapped to some extent in 
both DS and hypothyroidism (e.g. hypotonia, lethargy, 
mental retardation, growth failure, prolonged neonatal 
jaundice, delayed closure of fontanelles, macroglossia, 
obesity, etc.)84. although it has been reported that mild 
plasma thyroid stimulating hormone (TSH) elevation 
is prevalent in DS: 80-90 per cent in early infancy 
and 30-50 per cent thereafter85, untreated subclinical 
hypothyroidism is present in DS at birth and persists 
throughout life86. In summary, more studies linking 
thyroid disorders and oxidative stress in DS are clearly 
needed. 

Conclusions 

	 Thyroid dysfunction is the most frequent endocrine 
abnormality in patients with DS. There are studies 
reporting an increased oxidative stress in patients with 
hyperthyroidism as well as with hypothyroidism, even 
in subclinical hypothyroid state. In addition, thyroid 
hormone (T3) has been shown to downregulate the 
expression of SOD1. Some abnormalities reported in DS 
may influence the thyroid function: viz. decreased levels 
of selenium, impairment in the activity of phenylalanine 
hydroxylase, and overexpression of DYRK1A kinase. 
However, many aspects that are crucial for the health 
and well-being of people with this condition remain to 
be elucidated and require further research.
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