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Abstract: Background and aims: Microbiota heterogeneity among humans is mainly due to genetic
background, age, dietary habits, lifestyle and local environments. In this study we investigated
whether the gut microbiota profile of Italian healthy volunteers could differ based on their geographical
origin. Materials and Methods: 16S rRNA gene sequencing was employed to analyze the gut
microbiota of 31 healthy volunteers from three different Italian regions: Apulia (South), Lazio (Center)
and Lombardy (North). Results: Differences in microbiota composition were detected when the study
participants were grouped by their region of origin and when they were classified based on age classes
(p-values < 0.05). Also species richness was significantly different both according to Italian Regions
(median richness: 177.8 vs. 140.7 vs. 168.0 in Apulia, Lazio and Lombardy; p < 0.001) and according
to age classes (median richness: 140.1 vs. 177.8 vs. 160.0 in subjects < 32, 32–41 and > 41 years;
p < 0.001), whereas the Shannon index and beta diversity did not change. Conclusions: This study
identified differences in the gut microbiota composition and richness among individuals with the
same ethnicity coming from three different Italian regions. Our results underline the importance of
studies on population-specific variations in human microbiota composition leading to geographically
tailored approaches to microbiota engineering.

Keywords: microbiota; eubiosis; dysbiosis; geographical location

1. Introduction

The human microbiota with its 1014 symbiotic and pathogen microorganisms living within host’s
body, mostly (99%) in the gut [1], of almost 1.8 kg in weight, was considered the “forgotten” or “hidden”
organ [2] due to its involvement in several physiological and pathological processes [3]. Although
one third of our gut microbiota is in common with most of the people, the remaining two thirds is
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specific to each individual as its composition is rapidly and profoundly modulated by the diet, by host
genotype, lifestyle, antibiotic and/or drugs use and by local environment [4,5]. Scientists are initiating
numerous microbiota projects worldwide aimed to identify the presence of a ‘core gut microbiota’,
within all individuals, that could be referred as “healthy profile” or “eubiotic state” [6,7] as opposed
to gut microbiota “dysbiosis” which is associated with several non-communicable diseases [8,9].
Gut microbiota eubiosis is commonly considered when potentially beneficial species belonging mainly
to the two bacterial phyla Firmicutes and Bacteroidetes are found in higher and well balanced percentage
while potentially pathogenic species, such as some of those belonging to the phylum Proteobacteria are
present in a minor percentage [10]. Hence, several studies were performed with the intent to decipher
the content, diversity and function of the microbial gut community which has an impact on human
health and well-being. Using data from several nations and continents, it was previously demonstrated
the existence of three main enterotypes of the gut microbiota that vary in species and functional
composition [11] and that they might allow classification of human groups that could respond differently
to diet or drug therapy. Innovations in high-throughput next generation sequencing technologies
have updated our knowledge of the gut microbiota revealing significant heterogeneity of the gut
microbiota between individuals depending on the genetic background, gender, age, local environments,
dietary habits, lifestyle and many other factors [12–15]. However, up to date, it is still not clear
which factor plays a major role in modeling the microbiota content. Previous studies uncovered
remarkable differences in microbiota composition depending on the geographical origin, comparing
populations across broad international geographical areas, often living in different socio-economic and
cultural contexts [16–19]. Whether a variability exists even within small-scale geographical regions
has remained substantially unexplored. A report by Shin et al. identified significant changes in gut
microbiota of elderly women living either in island or inland areas of South Korea, however these
two groups differ from each other for lifestyle, dietary patterns and physical activities [14]. Similarly,
the differences in microbiota composition observed between Russian urban and rural populations
were likely due to diverse diets, lifestyle and environment [20]. Only recently a study by He et al.,
analyzing 7009 individuals homogeneous for ethnicity living in 14 random districts of the Chinese
province of Guangdong, revealed that the gut microbiota composition and its relationship with
metabolic disease was strongly dependent on the geography, with associations found in a district
not applicable to other districts [21]. Given the increasing role that the microbiota is taking as a
modulator of a number of pathological conditions and their response to treatments [22–26], studying
the population-specific variations in its composition suggests for geographically tailored community
approaches to microbiota engineering which may have a potential benefits in enhancing existing
diagnostic and therapeutic strategies. In the light of these considerations, our study aimed to investigate
whether the gut microbiota profile of healthy volunteers from three different Italian regions, namely
Apulia (South of Italy), Lazio (Center of Italy) and Lombardy (North of Italy), relatively homogeneous
as concerns physiological characteristics and lifestyle, could differ based on their geographical origin.
Although we are aware of the limited number of our samples we intent to design a pilot study trialing
a new procedure intended for use in a larger programme of research.

2. Materials and Methods

2.1. Study Population

Thirty-one healthy control subjects were recruited at the outpatient Division of Immunology and
Rheumatology, S. Andrea Hospital, Sapienza University of Rome [27], and at IRCCS “Casa Sollievo
della Sofferenza” Hospital, with their respective Ethical committee approval numbers (N43/201 and
N175/CE) and followed the same pre-analytical and analytical procedures, including samples collection
and storage. All the subjects agreed to participate according to the ethical guidelines of the 2013
Declaration of Helsinki and signed an informed consent. Any subject under antibiotics or drugs
treatment, consuming probiotics, or having a known history of inflammatory bowel disease or other
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autoimmune diseases were excluded. Only Caucasian as representative of the Italian population were
recruited. Information regarding subject’s clinical variables (i.e., age, gender and BMI) as well as
dietary, lifestyle and smoking habits were assessed the same day of the stool sample collection.

2.2. Sample Collection and DNA Extraction

Each participant provided the fresh stool sample in a collection tube filled with a DNA stabilization
buffer (Canvax Biotech). The recruitment period spanned from 15th January 2018 to 10th May 2018.
Since different DNA extraction/collection protocols can result in different diversity profiles due to
variable cell resistance to common lysis methods, in order to reduce any possible bias, pre-analytical
and analytical procedures, including samples storage and extraction was performed in only one center.
DNA microbial extraction was performed using the QIAamp DNA Stool Mini Kit (Qiagen, Milan,
Italy) starting from 250 µL of each sample according to the manufacturer’s protocol. After assessing
DNA concentration and purity, samples were stored at −80◦ until processing.

2.3. Next-Generation Sequencing of Bacterial 16S rRNA Gene

The V3–V4 hypervariable region of the bacterial 16S rRNA gene was amplified from total DNA
according to the Illumina 16S Metagenomic Sequencing Library Preparation instructions, as previously
described [27]. In summary, the V3–V4 amplicon was obtained by PCR with universal primers,
followed by purification. A second PCR was then performed to barcode the libraries using the Illumina
dual-index system. Following a second step of purification, libraries were diluted to 4nM and pooled.
Paired-end sequencing (2 × 300 cycles) was carried out on an Illumina MiSeq device (Illumina Inc.,
San Diego, CA, USA) according to the manufacturer’s specifications.

2.4. Bioinformatic Analysis

Sequence data generated as FASTQ files, deposited in the Arrayexpress repository under accession
code E-MTAB-8136, were analyzed using the 16S Metagenomics GAIA 2.0 software (http://www.
metagenomics.cloud, Sequentia Biotech, Barcelona, Spain, 2017; Benchmark of Gaia 2.0 using published
datasets available online at: http://gaia.sequentiabiotech.com/benchmark) which performs the quality
control of the reads/pairs (i.e., trimming, clipping and adapter removal steps) through FastQC and
BBDuk. The reads/pairs are mapped with BWA-MEM against the custom databases (based on NCBI).
The average number of reads per samples was 203,516.6 (SD +/− 81922). Rarefaction curves indicate that
an adequate sequence depth was achieved (Supplementary Figure S1). For each sample, the software
provided the calculation of the relative abundance of bacterial taxa, as well as the Shannon alpha
diversity index, the Chao1 richness estimator and the Bray-Curtis beta-diversity index at the species
level. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt)
analysis to predict functional profiles of the three microbial communities (grouped by region) based
on 16S rRNA sequencing data was performed [28]. Predicted functions were categorized at Kyoto
Encyclopedia of Genes and Genome orthology (KEGG) level 2. One-way ANOVA test was performed
to assess significant differences in functional categories among the three regions.

2.5. Statistical Analysis

Participants’ characteristics were reported as mean ± standard deviation or absolute frequency
and percentages for continuous and categorical variables, respectively. For each continuous variable,
the assumption of normality distribution was checked by means of Q-Q plots and Shapiro-Wilks test.
For skewed continuous variables, medians along with interquartile range (i.e., IQR, first-third quartiles)
were reported instead of means and non-parametric tests were performed. Overall comparisons
between groups were assessed using ANOVA models (or Kruskal-Wallis test as appropriate) or Fisher
exact test for continuous and categorical variables, respectively. The participants of the study were
divided into three age classes with equal size (i.e., tertiles) (<32 years, between 32 and 41 years, and
>41 years, respectively) and the relative abundances of microbial taxa were compared among region of
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origin, age classes and other lifestyle factors. The presence of a linear trend between the subject’s age
(as continuous variable) and relative abundance was estimated by Spearman correlation coefficient.
p-values from all statistical tests were adjusted for multiple comparisons, within each taxonomic
level, controlling the False Discovery Rate (FDR) at level 0.05, using Benjamini-Hochberg step-up
procedure. Since participants’ age distributions were not similar among regions (i.e., subjects in Lazio
were significantly younger than the others), evidence of statistically differences among regions can be
wrongly inferred. To this purpose, all those abundances of microbial taxa which were significantly
associated with the region of origin were considered as “spurious results” if they also were significantly
associated with subject’s age classes. If found, all spurious results were discarded. In order to
evaluate the species richness and diversity of the microbial communities in the fecal samples of the
study participants, the Chao1 and the Shannon indices were calculated for each sample, respectively.
Moreover, to measure the inter-individual dissimilarity of the gut microbiota, beta-diversity measures
were calculated, through the Bray-Curtis metric, which describes how many species are shared
between samples. All Bray-Curtis dissimilarities were summarized by means of Kruskal’s non-metric
MultiDimensional Scaling (MDS) method and were graphically represented into a bi-dimensional plot,
where each point (defined by X and Y coordinates) represents an individual. Subjects who belonged to
different groups (e.g., regions) were marked by different colors. To measure how similar an individual
is to its own group (cohesion) compared to other groups (separation), the individual silhouette was
estimated and the mean of all individual silhouettes within each group was computed. The individual
silhouette ranges from −1 to +1, where a high value indicates that the individual is well matched to its
own group and poorly matched to neighboring groups. If most individuals have a high silhouette
value, then the clustering configuration is appropriate. On the contrary, if many individuals have a
low or negative value, then the clustering configuration may have too many or too few groups.

A p-value < 0.05 was considered for statistical significance. Statistical analyses and plots were
performed using the computing environment R (R Development Core Team, Vienna, Austria 2008,
version 3.5.1.)

3. Results

3.1. Microbiota Profile in Italian Subjects from Different Regions

Demographic and behavioral characteristics of the study participants grouped by regions were
reported in Table 1.

Table 1. Subjects’ demographic and behavioral characteristics by Italian regions.

Apulia
(N = 12) Lazio (N = 10) Lombardy

(N = 9) p-Value

Age (years) Median [IQR] 37.0 [35.0–44.2] 26.0 [24.0–29.0] 42.0 [39.0–47.0]
0.005 *Range 28–65 24–46 29–74

Gender—N (%) Males 6 (50.0) 6 (60.0) 3 (33.3) 0.542 #

BMI (Kg/m2)
Mean ± SD 22.8 ± 2.3 22.3 ± 3.0 21.7 ± 3.5

0.723 $
Range 19.1–28.1 17.2–26.9 16.5–28.4

BMI (WHO
classification)—N (%)

Underweight (<18.5) 0 (0.0) 2 (20.0) 2 (22.2)
0.528 #Normal weight (18.5–24.9) 10 (83.3) 7 (70.0) 6 (66.7)

Overweight (25.0–29.9) 2 (16.7) 1 (10.0) 1 (11.1)

Diet (%)

Mediterranean 11 (91.7) 5 (50.0) 7 (77.8)

0.149 #

Hypercaloric 1 (8.3) 0 (0.0) 1 (11.1)
Hypocaloric 0 (0.0) 1 (10.0) 1 (11.1)
Vegetarian 0 (0.0) 1 (10.0) 0 (0.0)

Iperproteic (meat) 0 (0.0) 1 (10.0) 0 (0.0)
Carbohydrates and proteins,

little vegetables 0 (0.0) 2 (20.0) 0 (0.0)
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Table 1. Cont.

Apulia
(N = 12) Lazio (N = 10) Lombardy

(N = 9) p-Value

Smoking (n.cigarettes/day) Median [IQR] 0.0 [0.0–0.8] 0.0 [0.0–1.5] 0.0 [0.0–11.0]
0.764 *Range 0–12 0–5 0–17

Smokers (yes vs. no)—N (%) Yes 3 (25.0) 3 (30.0) 3 (33.3) 1.000 #

Alcohol—N (%)
None 3 (25.0) 4 (40.0) 1 (11.1)

0.336 #Little (1 occasional glass) 9 (75.0) 5 (50.0) 6 (66.7)
Moderate (1–2 glasses/day) 0 (0.0) 1 (10.0) 2 (22.2)

Physical activity—N (%)
None 4 (33.3) 0 (0.0) 5 (55.6)

0.051 #Little 5 (41.7) 3 (30.0) 2 (22.2)
Moderate 3 (25.0) 7 (70.0) 2 (22.2)

SD: Standard deviation; IQR: Interquartile range (i.e., first-third quartiles); * p-value from Kruskal-Wallis test; $ p-value from
ANOVA model; # p-value from Fisher exact test.

The microbiota profile at all taxonomic levels was characterized for each of the 31 healthy
individuals, and the mean relative abundance of bacterial taxa in Apulia, Lazio and Lombardy
were represented in Figure 1 ((A)—phylum level, (B)—class level, (C)—order level) and in Figure 2
((A)—family level, (B)—genus level; species level not shown)).
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No significant differences were found among the three groups as for gender distribution, body
mass index (BMI), type of diet, smoking habits, alcohol consumption and physical activity whereas a
statistically significant difference was found with respect to participants’ age (p = 0.005), where subjects
in Lazio were significantly younger than the subjects who belonged to the other regions (median:
37 vs. 26 vs. 42 years in Apulia, Lazio and Lombardy, respectively). When the participants were
divided according to the three age classes, significant associations between relative abundances
of microbial taxa and age classes were found for the families of Acholeplasmataceae, Bacillaceae,
Peptostreptococcaceae, Pseudomonadaceae, for the genera of Acetivibrio, Bacillus, Defluviitalea, Eggerthella,
Fenollaria, Hydrogenoanaerobacterium, Lachnotalea, Lutispora, Natranaerovirga, Paludibacter, Porphyromonas,
Pseudomonas, Raoultibacter and for the species of Alistipes finegoldii, Anaerotruncus rubiinfantis, Bacteroides
acidifaciens, Bacteroides clarus, Bacteroides sp. ANH 2438, Bifidobacterium sp. 113, Blautia luti, Butyricimonas
sp. 180-3, Butyrivibrio crossotus, Clostridium sp. Culture Jar-19, Dialister sp. GBA27, Eubacterium
coprostanoligenes, Faecalibacterium prausnitzii, Fenollaria timonensis, Flintibacter butyricus, Prevotella sp.
109, Robinsoniella sp. MCWD5, Ruminococcus sp. DJF_VR70k1 and Ruminococcus sp. ID1 (Table 2).

Furthermore, Spearman’s correlation coefficients were estimated to investigate the presence
of a linear association between subjects’ age (considered as continuous variable) and the relative
abundances of microorganisms. Indeed, the correlation analysis corroborates group comparisons
analysis (with respect to age classes): while correlation achieves the highest statistical power in the
detection of a linear trend, the group comparison analysis allow the detection of any potential non-linear
associations. Statistically significant positive correlations with the age were found for Acholeplasmataceae,
Bacillaceae, Peptostreptococcaceae, Acetivibrio, Bacillus, Defluviitalea, Eggerthella, Lachnotalea, Natranaerovirga,
Paludibacter, Raoultibacter, Bacteroides clarus, Bacteroides sp. ANH. 2438, Eubacterium coprostanoligenes,
Flintibacter butyricus, Robinsoniella sp. MCWD5 and Ruminococcus sp. ID, while a negative correlation
was found for Alistipes finegoldii, Bifidobacterium sp. 113, Blautia luti, Butyricimonas sp. 180-3, Butyrivibrio
crossotus, Dialister sp. GBA27 and Ruminococcus sp. DJF_VR70k1 (Table 2). These results strongly
support that age influences gut microbiota composition. Conversely, no statistically significant
difference in the microbial pattern was detected according to gender, alcohol consumption, BMI, type
of diet (if Mediterranean or other), smoking habits and physical activity (data not shown). Once
assessed that no other registered/collected demographic or behavioral characteristics of the subjects
but age affected the fecal microbiota, we next analyzed its composition in relation to the geographical
origin of the participants. The phyla of Cyanobacteria and Nitrospirae, the classes of Epsilonproteobacteria,
Nitrospira, Oligosphaeria and Sphingobacteriia and the orders of Alteromonadales, Anaeroplasmatales,
Bacillales, Corynebacteriales, Desulfobacterales, Desulfurellales, Micrococcales, Myxococcales, Nautiliales,
Nitrospirales, Sphingobacteriales, Streptomycetales, Synergistales, Syntrophobacterales, Thermoanaerobacterales,
Tissierellales, Veillonellales and Vibrionales resulted differently represented among the Apulia, Lazio and
Lombardy groups (see Table 3).
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Table 2. Gut microbiota in subjects grouped by age classes (i.e., tertiles) and Spearman correlation coefficients. Data were reported as median along with interquartile
range (first-third quartiles). Only significant results (i.e., p-values < 0.05 from any statistical test) were reported. All p-values were adjusted controlling for the False
Discovery Rate at 0.05 level within each taxonomic level.

Spearman Correlation

Biological
Classification Microbiota Age < 32 Years (N = 10) Age 32–41 Years

(N = 11)
Age > 41 Years

(N = 10)
Test for Overall

Difference (p-Value #) Coefficient p-Value

Family

Acholeplasmataceae 0.0000 [0.0000, 0.0000] 0.0027 [0.0006, 0.0155] 0.0073 [0.0035, 0.0514] 0.025 0.604 0.021
Bacillaceae 0.0000 [0.0000, 0.0000] 0.0184 [0.0094, 0.0219] 0.0188 [0.0071, 0.0295] 0.025 0.566 0.029

Peptostreptococcaceae 0.0000 [0.0000, 0.0000] 0.0274 [0.0193, 0.0426] 0.0364 [0.0222, 0.0432] 0.041 0.536 0.041
Pseudomonadaceae 0.0000 [0.0000, 0.0000] 0.0168 [0.0090, 0.0185] 0.0129 [0.0095, 0.0263] 0.025 0.457 0.090

Genus

Acetivibrio 0.0000 [0.0000, 0.0000] 0.0142 [0.0086, 0.0238] 0.0128 [0.0075, 0.0222] 0.028 0.551 0.041
Bacillus 0.0000 [0.0000, 0.0000] 0.0092 [0.0045, 0.0144] 0.0059 [0.0032, 0.0170] 0.028 0.543 0.041

Defluviitalea 0.0000 [0.0000, 0.0000] 0.0114 [0.0032, 0.0197] 0.0225 [0.0064, 0.0257] 0.028 0.649 0.012
Eggerthella 0.0000 [0.0000, 0.0000] 0.0083 [0.0019, 0.0379] 0.0112 [0.0066, 0.0182] 0.056 0.524 0.048
Fenollaria 0.0000 [0.0000, 0.0000] 0.0176 [0.0131, 0.0201] 0.0085 [0.0060, 0.0145] 0.039 0.471 0.089

Hydrogenoanaerobacterium 0.0000 [0.0000, 0.0000] 0.0193 [0.0070, 0.0257] 0.0099 [0.0062, 0.0163] 0.034 0.426 0.131
Lachnotalea 0.0000 [0.0000, 0.0000] 0.0088 [0.0063, 0.0143] 0.0087 [0.0047, 0.0269] 0.028 0.580 0.041
Lutispora 0.0000 [0.0000, 0.0000] 0.0054 [0.0030, 0.0186] 0.0068 [0.0020, 0.0246] 0.034 0.499 0.067

Natranaerovirga 0.0000 [0.0000, 0.0000] 0.0183 [0.0110, 0.0311] 0.0200 [0.0123, 0.0215] 0.028 0.528 0.048
Paludibacter 0.0000 [0.0000, 0.0000] 0.0048 [0.0024, 0.0078] 0.0045 [0.0025, 0.0060] 0.028 0.558 0.041

Porphyromonas 0.0000 [0.0000, 0.0000] 0.0251 [0.0156, 0.0273] 0.0114 [0.0071, 0.0239] 0.040 0.418 0.136
Pseudomonas 0.0000 [0.0000, 0.0000] 0.0143 [0.0079, 0.0171] 0.0119 [0.0094, 0.0215] 0.033 0.482 0.085
Raoultibacter 0.0000 [0.0000, 0.0000] 0.0043 [0.0011, 0.0139] 0.0113 [0.0045, 0.0212] 0.050 0.548 0.041

Species

Alistipes finegoldii 0.1246 [0.0709, 0.6407] 0.0038 [0.0010, 0.0653] 0.0022 [0.0001, 0.0313] 0.049 −0.559 0.043
Anaerotruncus rubiinfantis 0.0000 [0.0000, 0.0000] 0.0081 [0.0034, 0.0272] 0.0076 [0.0034, 0.0120] 0.049 0.466 0.091

Bacteroides acidifaciens 0.0000 [0.0000, 0.0000] 0.0193 [0.0138, 0.0321] 0.0242 [0.0162, 0.0305] 0.049 0.521 0.056
Bacteroides clarus 0.0000 [0.0000, 0.0000] 0.0035 [0.0028, 0.0559] 0.0066 [0.0015, 0.0176] 0.049 0.551 0.043

Bacteroides sp. ANH. 2438 0.0000 [0.0000, 0.0000] 0.0005 [0.0000, 0.0012] 0.0010 [0.0000, 0.0161] 0.189 0.537 0.043
Bifidobacterium sp. 113 0.0012 [0.0001, 0.0197] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.048 −0.580 0.043

Blautia luti 0.0032 [0.0003, 0.1185] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.035 −0.637 0.012
Butyricimonas sp. 180 3 0.0013 [0.0000, 0.0079] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.072 −0.538 0.043

Butyrivibrio crossotus 0.0017 [0.0007, 0.0027] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.048 −0.554 0.043
Clostridium sp. Culture Jar 19 0.0000 [0.0000, 0.0000] 0.0177 [0.0053, 0.0322] 0.0066 [0.0036, 0.0087] 0.048 0.447 0.097

Dialister sp. GBA27 0.0008 [0.0000, 0.0090] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.049 −0.536 0.043
Eubacterium coprostanoligenes 0.0000 [0.0000, 0.0000] 0.0326 [0.0159, 0.0655] 0.0817 [0.0316, 0.3701] 0.058 0.573 0.043

Faecalibacterium prausnitzii 12.7134 [10.7228, 14.3182] 3.3569 [2.0414, 5.4147] 5.3014 [3.4161, 6.9285] 0.035 −0.517 0.057
Fenollaria timonensis 0.0000 [0.0000, 0.0000] 0.0154 [0.0118, 0.0183] 0.0074 [0.0053, 0.0129] 0.049 0.477 0.082
Flintibacter butyricus 0.0000 [0.0000, 0.0000] 0.0099 [0.0011, 0.0127] 0.0184 [0.0145, 0.0311] 0.035 0.664 0.008

Prevotella sp. 109 0.0000 [0.0000, 0.0000] 0.0025 [0.0002, 0.0068] 0.0055 [0.0012, 0.2678] 0.048 0.503 0.064
Robinsoniella sp. MCWD5 0.0000 [0.0000, 0.0000] 0.0143 [0.0044, 0.0239] 0.0156 [0.0081, 0.0296] 0.049 0.564 0.043

Ruminococcus sp. DJF_VR70k1 0.0011 [0.0002, 0.0087] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.048 −0.537 0.043
Ruminococcus sp. ID1 0.0000 [0.0000, 0.0000] 0.0221 [0.0109, 0.0261] 0.0292 [0.0172, 0.0674] 0.048 0.659 0.008

# KW: p-value from Kruskal-Wallis test.
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Table 3. Gut microbiota in subjects grouped by Italian regions. Data were reported as median along with interquartile range (first-third quartiles). Only significant
results (i.e., p-values < 0.05 from any statistical test) were reported. All p-values were adjusted controlling for the False Discovery Rate at 0.05 level within each
taxonomic level.

Biological Classification Microbiota Apulia (N = 12) Lazio (N = 10) Lombardy (N = 9) Test for Overall
Difference (p-Value *)

Phylum Cyanobacteria 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0031 [0.0011, 0.0064] <0.001
Nitrospirae 0.0037 [0.0019, 0.0061] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001

Class

Epsilonproteobacteria 0.0241 [0.0070, 0.0465] 0.0000 [0.0000, 0.0000] 0.0086 [0.0080, 0.0258] <0.001
Nitrospira 0.0036 [0.0019, 0.0061] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001

Oligosphaeria 0.0007 [0.0000, 0.0152] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.024
Sphingobacteriia 0.0127 [0.0100, 0.0253] 0.0000 [0.0000, 0.0000] 0.0078 [0.0074, 0.0156] <0.001

Order

Alteromonadales 0.0132 [0.0091, 0.0170] 0.0000 [0.0000, 0.0000] 0.0125 [0.0108, 0.0188] <0.001
Anaeroplasmatales 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0009 [0.0000, 0.0183] 0.003

Bacillales 0.0911 [0.0763, 0.1214] 0.0255 [0.0195, 0.0356] 0.0464 [0.0263, 0.0607] 0.006
Corynebacteriales 0.0062 [0.0046, 0.0112] 0.0000 [0.0000, 0.0000] 0.0086 [0.0063, 0.0125] <0.001
Desulfobacterales 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0064 [0.0009, 0.0260] <0.001

Desulfurellales 0.0023 [0.0004, 0.0130] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001
Micrococcales 0.0180 [0.0133, 0.0248] 0.0000 [0.0000, 0.0000] 0.0151 [0.0108, 0.0184] <0.001
Myxococcales 0.0008 [0.0000, 0.0083] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.001

Nautiliales 0.017 [0.0035, 0.0287] 0.0000 [0.0000, 0.0000] 0.0048 [0.0018, 0.0168] 0.001
Nitrospirales 0.0033 [0.0017, 0.0060] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001

Sphingobacteriales 0.0103 [0.0082, 0.0230] 0.0000 [0.0000, 0.0000] 0.0074 [0.0060, 0.0156] <0.001
Streptomycetales 0.0247 [0.0167, 0.0394] 0.0080 [0.0051, 0.0097] 0.0311 [0.0091, 0.0478] 0.044

Synergistales 0.0095 [0.0054, 0.0969] 0.0000 [0.0000, 0.0000] 0.0106 [0.0032, 0.0201] <0.001
Syntrophobacterales 0.0007 [0.0000, 0.0097] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.001

Thermoanaerobacterales 0.0060 [0.0028, 0.0126] 0.0000 [0.0000, 0.0000] 0.0041 [0.0028, 0.0314] <0.001
Tissierellales 0.0137 [0.0118, 0.0175] 0.0000 [0.0000, 0.0000] 0.0124 [0.0070, 0.0401] <0.001
Veillonellales 2.9426 [0.2835, 4.7890] 1.8227 [0.1197, 5.6735] 0.0389 [0.0156, 0.1560] 0.033
Vibrionales 0.0026 [0.0020, 0.0073] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001

Family

Acholeplasmataceae 0.0049 [0.0010, 0.0149] 0.0000 [0.0000, 0.0000] 0.0052 [0.0032, 0.1064] <0.001
Aeromonadaceae 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0134 [0.0048, 0.0156] <0.001

Anaeroplasmataceae 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0009 [0.0000, 0.0118] 0.002
Atopobiaceae 0.0045 [0.0016, 0.0115] 0.0029 [0.0006, 0.0207] 0.0000 [0.0000, 0.0000] 0.002

Bacillaceae 0.0171 [0.0072, 0.0244] 0.0000 [0.0000, 0.0000] 0.0186 [0.0069, 0.0220] <0.001
Catabacteriaceae 0.0327 [0.0234, 0.0440] 0.0081 [0.0035, 0.0175] 0.0126 [0.0037, 0.0343] 0.035

Christensenellaceae 0.6797 [0.2907, 1.3801] 0.1033 [0.0223, 0.2216] 0.2123 [0.0957, 0.3820] 0.035
Clostridiales Family XII. Incertae Sedis 0.0063 [0.0013, 0.0232] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001
Clostridiales Family XIII. Incertae Sedis 0.0000 [0.0000, 0.0000] 0.0206 [0.0125, 0.0302] 0.0092 [0.0060, 0.0419] <0.001

Cytophagaceae 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0028 [0.0023, 0.0371] <0.001
Desulfohalobiaceae 0.0036 [0.0028, 0.0167] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001
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Table 3. Cont.

Biological Classification Microbiota Apulia (N = 12) Lazio (N = 10) Lombardy (N = 9) Test for Overall
Difference (p-Value *)

Desulfurellaceae 0.0023 [0.0004, 0.0127] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001
Enterococcaceae 0.0047 [0.0010, 0.0218] 0.0000 [0.0000, 0.0000] 0.0060 [0.0016, 0.0113] 0.001

Erwiniaceae 0.0097 [0.0082, 0.0216] 0.0000 [0.0000, 0.0000] 0.0142 [0.0128, 0.0239] <0.001
Flavobacteriaceae 0.0107 [0.0070, 0.0145] 0.0000 [0.0000, 0.0000] 0.0093 [0.0050, 0.0150] <0.001

Nautiliaceae 0.0177 [0.0035, 0.0277] 0.0000 [0.0000, 0.0000] 0.0044 [0.0018, 0.0161] 0.001
Nitrospiraceae 0.0029 [0.0017, 0.0058] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001

Oxalobacteraceae 0.0020 [0.0000, 0.0125] 0.0000 [0.0000, 0.0000] 0.0226 [0.0016, 0.0436] 0.002
Paenibacillaceae 0.0161 [0.0085, 0.0247] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001
Peptococcaceae 0.0379 [0.0230, 0.0551] 0.0035 [0.0026, 0.0224] 0.0074 [0.0055, 0.0103] 0.007

Peptostreptococcaceae 0.0331 [0.0256, 0.0396] 0.0000 [0.0000, 0.0000] 0.0418 [0.0194, 0.0707] <0.001
Polyangiaceae 0.0002 [0.0000, 0.0052] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.009

Propionibacteriaceae 0.1445 [0.0063, 0.2139] 0.0026 [0.0014, 0.0043] 0.2381 [0.0218, 0.6672] 0.023
Pseudomonadaceae 0.0168 [0.0100, 0.0303] 0.0000 [0.0000, 0.0000] 0.0140 [0.0100, 0.0177] <0.001

Puniceicoccaceae 0.0000 [0.0000, 0.0045] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.023
Ruminococcaceae 15.3334 [9.8807, 21.7498] 25.0671 [23.1509, 29.6044] 19.1784 [11.2163, 24.2467] 0.037

Selenomonadaceae 0.0512 [0.0298, 0.1030] 0.0070 [0.0052, 0.0103] 0.0043 [0.0026, 0.0086] 0.023
Sphingobacteriaceae 0.0088 [0.0071, 0.0220] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001
Streptomycetaceae 0.0206 [0.0123, 0.0365] 0.0078 [0.0042, 0.0096] 0.0280 [0.0091, 0.0473] 0.046

Succinivibrionaceae 0.0010 [0.0000, 0.0019] 0.0007 [0.0006, 0.0010] 0.0000 [0.0000, 0.0000] 0.009
Synergistaceae 0.0067 [0.0036, 0.0856] 0.0000 [0.0000, 0.0000] 0.0097 [0.0026, 0.0183] <0.001

Syntrophorhabdaceae 0.0003 [0.0000, 0.0085] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.009
Thermoanaerobacterales Family III Incertae Sedis 0.0008 [0.0000, 0.0014] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.001

Tissierellaceae 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0060 [0.0029, 0.0097] <0.001
Veillonellaceae 2.9400 [0.2817, 4.7843] 1.8205 [0.1195, 5.6608] 0.0389 [0.0156, 0.1558] 0.025
Vibrionaceae 0.0026 [0.0020, 0.0073] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001

Genus

Acetanaerobacterium 0.0192 [0.0064, 0.0330] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001
Acetivibrio 0.0144 [0.0117, 0.0210] 0.0000 [0.0000, 0.0000] 0.0112 [0.0075, 0.0275] <0.001

Acetobacteroides 0.0002 [0.0000, 0.0032] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.009
Aeromonas 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0107 [0.0032, 0.0149] <0.001
Alkaliphilus 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0086 [0.0057, 0.0126] <0.001

Alloprevotella 0.0000 [0.0000, 0.0000] 0.0007 [0.0003, 0.0014] 0.0000 [0.0000, 0.0000] <0.001
Anaerofilum 0.0068 [0.0044, 0.0207] 0.0086 [0.0044, 0.0173] 0.0000 [0.0000, 0.0000] <0.001

Anaeroplasma 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0091] 0.012
Anaerostipes 0.0234 [0.0089, 0.0611] 0.0174 [0.0121, 0.0206] 0.1156 [0.0316, 0.5372] 0.024

Bacillus 0.0097 [0.0049, 0.0155] 0.0000 [0.0000, 0.0000] 0.0065 [0.0031, 0.0124] <0.001
Candidatus Phytoplasma 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0021 [0.0016, 0.0113] <0.001
Candidatus Soleaferrea 0.0122 [0.0083, 0.0572] 0.0091 [0.0075, 0.0119] 0.0000 [0.0000, 0.0000] 0.001

Catabacter 0.0289 [0.0200, 0.0339] 0.0075 [0.0030, 0.0153] 0.0103 [0.0036, 0.0280] 0.036
Christensenella 0.4438 [0.1379, 0.7502] 0.0479 [0.0142, 0.1074] 0.1088 [0.0463, 0.1956] 0.017
Coprobacillus 0.0000 [0.0000, 0.0047] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.024

Dakarella 0.1114 [0.0015, 0.7843] 0.0002 [0.0000, 0.0004] 0.0000 [0.0000, 0.0000] 0.002
Defluviitalea 0.0151 [0.0062, 0.0247] 0.0000 [0.0000, 0.0000] 0.0191 [0.0062, 0.0218] <0.001

Denitrobacterium 0.0000 [0.0000, 0.0000] 0.0036 [0.0000, 0.0198] 0.0020 [0.0005, 0.0075] 0.005
Desulfohalobium 0.0009 [0.0003, 0.0049] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001
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Table 3. Cont.

Biological Classification Microbiota Apulia (N = 12) Lazio (N = 10) Lombardy (N = 9) Test for Overall
Difference (p-Value *)

Desulfotomaculum 0.0077 [0.0036, 0.0154] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001
Dialister 1.7288 [0.0421, 4.6387] 1.7564 [0.0939, 5.6073] 0.0041 [0.0027, 0.0080] 0.016

Dysgonomonas 0.0106 [0.0040, 0.0272] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001
Eggerthella 0.0069 [0.0026, 0.0144] 0.0000 [0.0000, 0.0000] 0.0195 [0.0145, 0.0349] <0.001
Escherichia 0.0029 [0.0009, 0.0262] 0.0000 [0.0000, 0.0000] 0.0011 [0.0000, 0.0089] 0.001

Eubacterium 1.8114 [1.2982, 3.1914] 1.0085 [0.7616, 3.2710] 4.5088 [2.7865, 6.5613] 0.046
Faecalibacterium 6.7009 [5.1594, 8.8515] 18.9963 [17.4550, 19.9556] 9.0591 [6.4928, 10.7255] 0.003

Falcatimonas 0.0000 [0.0000, 0.0000] 0.0037 [0.0022, 0.0086] 0.0097 [0.0009, 0.0456] <0.001
Fastidiosipila 0.0041 [0.0017, 0.0068] 0.0000 [0.0000, 0.0000] 0.0011 [0.0002, 0.0022] 0.001

Fenollaria 0.0136 [0.0057, 0.0178] 0.0000 [0.0000, 0.0000] 0.0203 [0.0124, 0.0289] <0.001
Gabonibacter 0.0000 [0.0000, 0.0000] 0.0003 [0.0000, 0.0009] 0.0000 [0.0000, 0.0000] 0.007
Gorbachella 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0172 [0.0093, 0.0202] <0.001

Gordonibacter 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0186 [0.0021, 0.0473] <0.001
Haemophilus 0.0014 [0.0004, 0.0213] 0.0000 [0.0000, 0.0000] 0.0093 [0.0028, 0.0252] 0.001
Harryflintia 0.0005 [0.0000, 0.0022] 0.0006 [0.0004, 0.0094] 0.0000 [0.0000, 0.0000] 0.005

Hespellia 0.0075 [0.0027, 0.0117] 0.0161 [0.0109, 0.0229] 0.0000 [0.0000, 0.0000] <0.001
Hippea 0.0023 [0.0000, 0.0118] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.001

Howardella 0.0005 [0.0003, 0.0113] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001
Hungatella 0.0000 [0.0000, 0.0000] 0.0131 [0.0025, 0.0207] 0.0000 [0.0000, 0.0000] <0.001

Hydrogenoanaerobacterium 0.0177 [0.0089, 0.0243] 0.0000 [0.0000, 0.0000] 0.0158 [0.0052, 0.0193] <0.001
Ihubacter 0.0000 [0.0000, 0.0000] 0.0096 [0.0066, 0.0205] 0.0057 [0.0025, 0.0247] <0.001

Intestinibacter 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0037 [0.0005, 0.0382] <0.001
Lachnobacterium 0.0000 [0.0000, 0.0000] 0.0118 [0.0080, 0.0242] 0.0187 [0.0104, 0.0365] <0.001

Lachnotalea 0.0084 [0.0070, 0.0119] 0.0000 [0.0000, 0.0000] 0.0156 [0.0050, 0.0294] <0.001
Libanicoccus 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0004] 0.0000 [0.0000, 0.0000] 0.023

Lutispora 0.0051 [0.0036, 0.0229] 0.0000 [0.0000, 0.0000] 0.0054 [0.0028, 0.0214] 0.001
Mediterranea 0.0012 [0.0003, 0.0024] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001
Megamonas 0.0010 [0.0000, 0.0042] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.001
Megasphaera 0.0343 [0.0003, 0.5532] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001
Mitsuokella 0.0010 [0.0000, 0.0094] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.001

Mucilaginibacter 0.0000 [0.0000, 0.0019] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.024
Natranaerovirga 0.0177 [0.0100, 0.0249] 0.0000 [0.0000, 0.0000] 0.0208 [0.0183, 0.0279] <0.001

Nautilia 0.0129 [0.0029, 0.0231] 0.0000 [0.0000, 0.0000] 0.0034 [0.0014, 0.0054] 0.001
Nitrospira 0.0013 [0.0000, 0.0029] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.001
Olsenella 0.0033 [0.0000, 0.0109] 0.0009 [0.0000, 0.0203] 0.0000 [0.0000, 0.0000] 0.024

Oribacterium 0.0069 [0.0037, 0.0124] 0.0000 [0.0000, 0.0000] 0.0062 [0.0032, 0.0073] <0.001
Oxalobacter 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0204 [0.0005, 0.0343] <0.001

Paenibacillus 0.0143 [0.0068, 0.0230] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001
Paludibacter 0.0054 [0.0025, 0.0116] 0.0000 [0.0000, 0.0000] 0.0046 [0.0023, 0.0048] <0.001

Pantoea 0.0016 [0.0007, 0.0103] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001
Parasporobacterium 0.0000 [0.0000, 0.0000] 0.0023 [0.0000, 0.0075] 0.0000 [0.0000, 0.0000] 0.002

Peptococcus 0.0093 [0.0034, 0.0207] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001
Porphyromonas 0.0246 [0.0185, 0.0293] 0.0000 [0.0000, 0.0000] 0.0138 [0.0112, 0.0254] <0.001

Prevotellamassilia 0.0003 [0.0000, 0.0016] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.009
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Table 3. Cont.

Biological Classification Microbiota Apulia (N = 12) Lazio (N = 10) Lombardy (N = 9) Test for Overall
Difference (p-Value *)

Propionibacterium 0.1439 [0.0041, 0.2118] 0.0000 [0.0000, 0.0000] 0.1904 [0.0156, 0.6649] <0.001
Provencibacterium 0.0000 [0.0000, 0.0006] 0.0000 [0.0000, 0.0000] 0.0006 [0.0000, 0.0011] 0.030

Pseudomonas 0.0156 [0.0094, 0.0245] 0.0000 [0.0000, 0.0000] 0.0118 [0.0092, 0.0138] <0.001
Raoultibacter 0.0052 [0.0016, 0.0131] 0.0000 [0.0000, 0.0000] 0.0161 [0.0097, 0.0218] <0.001
Robinsoniella 0.0179 [0.0128, 0.0248] 0.0122 [0.0065, 0.0148] 0.0481 [0.0374, 0.1007] 0.016

Saccharofermentans 0.0380 [0.0251, 0.0634] 0.0000 [0.0000, 0.0000] 0.0121 [0.0065, 0.0403] <0.001
Selenomonas 0.0061 [0.0027, 0.0218] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001
Succinivibrio 0.0008 [0.0000, 0.0017] 0.0007 [0.0006, 0.0010] 0.0000 [0.0000, 0.0000] 0.009
Synergistes 0.0000 [0.0000, 0.0147] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.024

Syntrophorhabdus 0.0000 [0.0000, 0.0048] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.024
Wigglesworthia 0.0069 [0.0043, 0.0088] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001

Species

Clostridium colinum 0.0000 [0.0000, 0.0054] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.026
Clostridium glycyrrhizinilyticum 0.0000 [0.0000, 0.0028] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.026
Clostridium polysaccharolyticum 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0073 [0.0038, 0.0114] <0.001

Clostridium symbiosum 0.0021 [0.0016, 0.0049] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001
Clostridium xylanolyticum 0.0000 [0.0000, 0.0000] 0.0099 [0.0006, 0.0226] 0.0000 [0.0000, 0.0000] <0.001

Eubacterium hallii 0.0161 [0.0060, 0.0439] 0.0000 [0.0000, 0.0000] 0.0651 [0.0207, 0.0704] <0.001
Adlercreutzia equolifaciens 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0011 [0.0005, 0.0086] <0.001

Alistipes finegoldii 0.0011 [0.0006, 0.0128] 0.1265 [0.1095, 0.6407] 0.0419 [0.0031, 0.0692] 0.003
Alistipes sp. S457 0.0030 [0.0000, 0.1588] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.1262] 0.027
Alloprevotella rava 0.0000 [0.0000, 0.0000] 0.0002 [0.0000, 0.0007] 0.0000 [0.0000, 0.0000] 0.007

Anaerostipes butyraticus 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0220 [0.0031, 0.0334] <0.001
Anaerostipes hadrus 0.0023 [0.0003, 0.0039] 0.0000 [0.0000, 0.0000] 0.0089 [0.0041, 0.0289] 0.001

Anaerotruncus colihominis 0.0054 [0.0023, 0.0089] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001
Anaerotruncus rubiinfantis 0.0117 [0.0069, 0.0252] 0.0000 [0.0000, 0.0000] 0.0064 [0.0025, 0.0170] <0.001
Angelakisella massiliensis 0.0212 [0.0065, 0.0532] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001

Bacillus nealsonii 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0019 [0.0000, 0.0038] 0.003
Bacteroides acidifaciens 0.0158 [0.0116, 0.0317] 0.0000 [0.0000, 0.0000] 0.0265 [0.0254, 0.0307] <0.001

Bacteroides barnesiae 0.0040 [0.0020, 0.0105] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001
Bacteroides caecicola 0.0000 [0.0000, 0.0007] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.026
Bacteroides clarus 0.0066 [0.0032, 0.0233] 0.0000 [0.0000, 0.0000] 0.0050 [0.0032, 0.4975] <0.001

Bacteroides faecichinchillae 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0094 [0.0031, 0.0176] <0.001
Bacteroides fluxus 0.0035 [0.0013, 0.0093] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001

Bacteroides intestinalis 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0018 [0.0005, 0.0046] <0.001
Bacteroides mediterraneensis 0.0032 [0.0010, 0.1966] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001

Bacteroides paurosaccharolyticus 0.0016 [0.0013, 0.0092] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001
Bacteroides rodentium 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0005 [0.0003, 0.0010] <0.001

Bacteroides salanitronis 0.0009 [0.0004, 0.0032] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001
Bacteroides salyersiae 0.0000 [0.0000, 0.0000] 0.0018 [0.0006, 0.0033] 0.0031 [0.0016, 0.2846] <0.001

Bacteroides sp. 35AE37 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0022 [0.0011, 0.0031] <0.001
Bacteroides sp. ANH 2438 0.0002 [0.0000, 0.0013] 0.0000 [0.0000, 0.0000] 0.0011 [0.0005, 0.0023] 0.010
Bacteroides sp. HGA0138 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0045 [0.0000, 0.0086] 0.003

Bacteroides sp. Marseille P3108 0.0190 [0.0046, 0.0212] 0.0000 [0.0000, 0.0000] 0.0108 [0.0031, 0.0225] <0.001
Bacteroides stercorirosoris 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0041 [0.0000, 0.0354] 0.001
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Table 3. Cont.

Biological Classification Microbiota Apulia (N = 12) Lazio (N = 10) Lombardy (N = 9) Test for Overall
Difference (p-Value *)

Bacteroides vulgatus 0.7618 [0.0572, 1.2351] 1.4728 [0.9327, 2.1484] 1.9609 [1.7974, 3.7528] 0.032
Bifidobacterium adolescentis 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0011 [0.0000, 0.0099] 0.003

Bifidobacterium sp. 113 0.0000 [0.0000, 0.0000] 0.0012 [0.0004, 0.0197] 0.0000 [0.0000, 0.0000] <0.001
Bifidobacterium sp. TM 7 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0005] 0.0000 [0.0000, 0.0000] 0.024

Blautia luti 0.0000 [0.0000, 0.0000] 0.0236 [0.0004, 0.1324] 0.0000 [0.0000, 0.0000] <0.001
Blautia obeum 0.1137 [0.0579, 0.2103] 0.0627 [0.0455, 0.1708] 0.5450 [0.2173, 0.6162] 0.019

Blautia sp. Canine oral taxon 337 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0134 [0.0083, 0.0258] <0.001
Butyricicoccus desmolans 0.0000 [0.0000, 0.0000] 0.0108 [0.0024, 0.0188] 0.0103 [0.0005, 0.0296] <0.001

Butyricimonas faecihominis 0.0000 [0.0000, 0.0000] 0.0021 [0.0000, 0.0132] 0.0000 [0.0000, 0.0000] 0.007
Butyricimonas sp. 180 3 0.0000 [0.0000, 0.0000] 0.0035 [0.0002, 0.0134] 0.0000 [0.0000, 0.0000] 0.001
Butyricimonas sp. AT11 0.0168 [0.0013, 0.0422] 0.0000 [0.0000, 0.0000] 0.0025 [0.0010, 0.0106] 0.002
Butyricimonas sp. S479 0.0000 [0.0000, 0.0000] 0.0053 [0.0004, 0.0200] 0.0000 [0.0000, 0.0000] 0.001
Butyrivibrio crossotus 0.0000 [0.0000, 0.0000] 0.0023 [0.0014, 0.0029] 0.0000 [0.0000, 0.0000] <0.001

Candidatus Dorea massiliensis 0.0008 [0.0000, 0.0030] 0.0015 [0.0006, 0.0019] 0.0000 [0.0000, 0.0000] 0.022
Candidatus Soleaferrea massiliensis 0.0019 [0.0010, 0.0069] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001

Catabacter hongkongensis 0.0097 [0.0068, 0.0142] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001
Christensenella timonensis 0.0177 [0.0047, 0.0223] 0.0000 [0.0000, 0.0000] 0.0037 [0.0023, 0.0124] <0.001

Clostridium carnis 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0009] 0.044
Clostridium phoceensis 0.0000 [0.0000, 0.0000] 0.0011 [0.0001, 0.0059] 0.0023 [0.0003, 0.0074] 0.003
Clostridium sp. 14,505 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0006] 0.0000 [0.0000, 0.0000] 0.024
Clostridium sp. 37hoe 0.0034 [0.0000, 0.0135] 0.0000 [0.0000, 0.0000] 0.0114 [0.0062, 0.0294] 0.003

Clostridium sp. ACB 29 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0011 [0.0005, 0.0035] <0.001
Clostridium sp. Clone 17 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0240 [0.0184, 0.0255] <0.001

Clostridium sp. Culture Jar 19 0.0076 [0.0059, 0.0221] 0.0000 [0.0000, 0.0000] 0.0092 [0.0056, 0.0146] <0.001
Clostridium sp. Culture 41 0.0056 [0.0044, 0.0072] 0.0000 [0.0000, 0.0000] 0.0062 [0.0022, 0.0092] <0.001
Clostridium sp. Culture 46 0.0007 [0.0000, 0.0011] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.001

Clostridium sp. Enrichment culture clone 06 1235251 89 0.0118 [0.0087, 0.0296] 0.0000 [0.0000, 0.0000] 0.0080 [0.0047, 0.0149] <0.001
Clostridium sp. enrichment culture clone 7 14 0.0007 [0.0000, 0.0088] 0.0000 [0.0000, 0.0000] 0.0043 [0.0023, 0.0097] 0.005

Clostridium sp. Enrichment culture clone VanCtr97 0.0049 [0.0028, 0.0131] 0.0000 [0.0000, 0.0000] 0.0374 [0.0032, 0.0521] 0.001
Clostridium sp. Enrichment culture clone Y234 0.0000 [0.0000, 0.0000] 0.0040 [0.0002, 0.0072] 0.0002 [0.0000, 0.0290] 0.009

Clostridium sp. ID6 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0054 [0.0000, 0.0073] 0.003
Clostridium sp. Marseille P3122 0.0080 [0.0038, 0.0166] 0.0000 [0.0000, 0.0000] 0.0067 [0.0031, 0.0126] <0.001
Clostridium sp. Marseille P3244 0.0012 [0.0000, 0.0094] 0.0000 [0.0000, 0.0000] 0.0038 [0.0028, 0.0095] 0.001

Clostridium sp. MLG856.1 0.0000 [0.0000, 0.0089] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.026
Clostridium sp. PI S10 B5A 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0003] 0.044

Clostridium sp. TM 40 0.0003 [0.0000, 0.0010] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.010
Clostridium sp. VKM B 2202 0.0082 [0.0061, 0.0092] 0.0000 [0.0000, 0.0000] 0.0114 [0.0083, 0.0186] <0.001

Coprobacter secundus 0.0082 [0.0010, 0.0222] 0.0023 [0.0002, 0.0207] 0.0000 [0.0000, 0.0000] 0.010
Coprococcus eutactus 0.0029 [0.0013, 0.0098] 0.0000 [0.0000, 0.0000] 0.0062 [0.0005, 0.0225] 0.003
Dakarella massiliensis 0.1038 [0.0008, 0.7340] 0.0000 [0.0000, 0.0004] 0.0000 [0.0000, 0.0000] 0.002

Dialister invisus 0.0032 [0.0000, 0.0207] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0005] 0.015
Dialister sp. GBA27 0.0000 [0.0000, 0.0000] 0.0008 [0.0000, 0.0090] 0.0000 [0.0000, 0.0000] 0.007

Dialister sp. Oral clone MCE7_134 0.0008 [0.0000, 0.0028] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.010
Dialister sp. oral taxon 119 0.0029 [0.0005, 0.0186] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001
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Dialister sp. Oral taxon A97 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0005] 0.0000 [0.0000, 0.0000] 0.024
Dialister succinatiphilus 0.0024 [0.0000, 0.2609] 0.0038 [0.0015, 0.0074] 0.0000 [0.0000, 0.0000] 0.004

Eisenbergiella massiliensis 0.0000 [0.0000, 0.0014] 0.0061 [0.0013, 0.0322] 0.0000 [0.0000, 0.0000] 0.007
Escherichia coli 0.0019 [0.0009, 0.0237] 0.0000 [0.0000, 0.0000] 0.0011 [0.0000, 0.0073] 0.002

Eubacterium coprostanoligenes 0.0264 [0.0088, 0.0484] 0.0000 [0.0000, 0.0000] 0.1952 [0.0921, 0.6125] <0.001
Faecalibacterium CM04 06 0.0082 [0.0034, 0.0594] 1.4640 [0.6198, 3.3800] 0.0250 [0.0063, 0.0389] 0.004

Faecalibacterium prausnitzii 3.7151 [2.5044, 5.1455] 12.7134 [10.3494, 14.3182] 5.5894 [3.2108, 7.2897] <0.001
Falcatimonas natans 0.0000 [0.0000, 0.0000] 0.0021 [0.0001, 0.0042] 0.0086 [0.0009, 0.0434] 0.002

Fenollaria timonensis 0.0126 [0.0048, 0.0157] 0.0000 [0.0000, 0.0000] 0.0181 [0.0107, 0.0238] <0.001
Flintibacter butyricus 0.0127 [0.0104, 0.0169] 0.0000 [0.0000, 0.0000] 0.0140 [0.0043, 0.0311] <0.001

Holdemania massiliensis 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0091] 0.044
Howardella ureilytica 0.0000 [0.0000, 0.0106] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.026
Hungatella hathewayi 0.0000 [0.0000, 0.0000] 0.0047 [0.0011, 0.0163] 0.0000 [0.0000, 0.0000] <0.001

Intestinibacter bartlettii 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0037 [0.0005, 0.0382] <0.001
Intestinimonas butyriciproducens 0.0000 [0.0000, 0.0000] 0.0021 [0.0010, 0.0056] 0.0000 [0.0000, 0.0000] <0.001

Intestinimonas gabonensis 0.0108 [0.0077, 0.0270] 0.0925 [0.0581, 0.1601] 0.0067 [0.0023, 0.0165] <0.001
Intestinimonas timonensis 0.0031 [0.0017, 0.0180] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001

Lachnobacterium bovis 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0152 [0.0011, 0.0187] <0.001
Mediterranea massiliensis 0.0009 [0.0003, 0.0014] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001

Megasphaera elsdenii 0.0004 [0.0000, 0.0077] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.010
Merdibacter massiliensis 0.0026 [0.0009, 0.0055] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001

Methanobrevibacter smithii 0.0061 [0.0000, 0.0322] 0.0019 [0.0000, 0.0329] 0.0000 [0.0000, 0.0000] 0.031
Oribacterium sp. NK2B42 0.0033 [0.0011, 0.0091] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001

Oxalobacter formigenes 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0172 [0.0005, 0.0280] <0.001
Pantoea dispersa 0.0013 [0.0004, 0.0102] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001

Papillibacter cinnamivorans 0.0000 [0.0000, 0.0000] 0.0083 [0.0024, 0.0115] 0.0057 [0.0002, 0.0086] <0.001
Parabacteroides merdae 0.0007 [0.0000, 0.0013] 0.0004 [0.0000, 0.0056] 0.0000 [0.0000, 0.0000] 0.025

Parabacteroides sp. SN4 0.0000 [0.0000, 0.0034] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.026
Phascolarctobacterium sp. 377 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0034] 0.012

Phascolarctobacterium succinatutens 0.0000 [0.0000, 0.0000] 0.0002 [0.0000, 1.0265] 0.0000 [0.0000, 0.0023] 0.050
Phocea massiliensis 0.0031 [0.0020, 0.0116] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001

Prevotella copri 0.0009 [0.0000, 0.0112] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.001
Prevotella sp. 109 0.0048 [0.0003, 1.4759] 0.0000 [0.0000, 0.0000] 0.0034 [0.0022, 0.0074] 0.005

Prevotella sp. Canine oral taxon 282 0.0008 [0.0004, 0.0011] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001
Prevotella sp. DJF_RP53 0.0000 [0.0000, 0.0003] 0.0029 [0.0022, 0.0957] 0.0000 [0.0000, 0.0000] <0.001

Prevotella stercorea 0.0002 [0.0000, 0.0064] 0.0006 [0.0001, 0.0034] 0.0000 [0.0000, 0.0000] 0.034
Propionibacterium sp. S342 0.1322 [0.0024, 0.1969] 0.0000 [0.0000, 0.0000] 0.1538 [0.0062, 0.6465] <0.001

Pseudoflavonifractor sp. Marseille P3106 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0023 [0.0012, 0.0050] <0.001
Robinsoniella peoriensis 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0046 [0.0032, 0.0138] <0.001

Robinsoniella sp. MCWD5 0.0110 [0.0042, 0.0156] 0.0000 [0.0000, 0.0000] 0.0298 [0.0276, 0.0405] <0.001
Roseburia inulinivorans 0.0639 [0.0282, 0.1109] 0.5866 [0.1126, 1.7230] 0.0204 [0.0002, 0.0274] 0.006

Roseburia sp. 831b 0.0672 [0.0000, 0.4704] 0.9504 [0.2563, 1.5792] 0.0000 [0.0000, 0.0003] 0.030
Roseburia sp. DJF_VR77 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0026 [0.0000, 0.0345] 0.003

Ruminiclostridium thermocellum 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0021 [0.0014, 0.0045] <0.001
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Ruminococcus flavefaciens 0.0090 [0.0010, 0.0314] 0.0063 [0.0025, 0.0110] 0.0000 [0.0000, 0.0000] 0.001
Ruminococcus sp. 16442 0.0068 [0.0053, 0.0099] 0.0000 [0.0000, 0.0000] 0.0113 [0.0002, 0.0147] 0.001

Ruminococcus sp. 653 0.0000 [0.0000, 0.0000] 0.0103 [0.0074, 0.0152] 0.0140 [0.0070, 0.0260] <0.001
Ruminococcus sp. AT10 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0092 [0.0037, 0.1247] <0.001

Ruminococcus sp. DJF_VR52 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0005 [0.0000, 0.0034] 0.003
Ruminococcus sp. DJF_VR70k1 0.0000 [0.0000, 0.0000] 0.0040 [0.0008, 0.0102] 0.0000 [0.0000, 0.0000] <0.001

Ruminococcus sp. ID1 0.0235 [0.0164, 0.0259] 0.0000 [0.0000, 0.0000] 0.0368 [0.0172, 0.0697] <0.001
Ruminococcus sp. ZS2 15 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0011 [0.0005, 0.0063] <0.001

Saccharofermentans acetigenes 0.0099 [0.0047, 0.0158] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] <0.001
Streptococcus agalactiae 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0005] 0.012
Streptococcus equinus 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0035 [0.0013, 0.0161] <0.001

Streptococcus mitis 0.0000 [0.0000, 0.0009] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.026
Succinivibrio dextrinosolvens 0.0008 [0.0000, 0.0012] 0.0003 [0.0000, 0.0004] 0.0000 [0.0000, 0.0000] 0.030

Sutterella sp. 252 0.0000 [0.0000, 0.0843] 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.026
Tyzzerella sp. Marseille P3062 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000] 0.0002 [0.0000, 0.0057] 0.003

# KW: p-value from Kruskal-Wallis test.
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Many differences emerged also at lower taxonomic levels, some of which completely overlapping
with the ones found in the classification by age groups (Figure 3).
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Having excluded possible spurious results (i.e., all those associations which were also significant with
respect to age classes), Aeromonadaceae, Anaeroplasmataceae, Atopobiaceae, Catabacteriaceae, Christensenellaceae,
Clostridiales Family XII Incertae Sedis, Clostridiales Family XIII Incertae Sedis, Cytophagaceae, Desulfohalobiaceae,
Desulfurellaceae, Enterococcaceae, Erwiniaceae, Flavobacteriaceae, Nautiliaceae, Nitrospiraceae, Oxalobacteraceae,
Paenibacillaceae, Peptococcaceae, Polyangiaceae, Propionibacteriaceae, Puniceicoccaceae, Ruminococcaceae,
Selenomonadaceae, Sphingobacteriaceae, Streptomycetaceae, Succinivibrionaceae, Synergistaceae, Syntrophorhabdaceae,
Thermoanaerobacterales, Family III Incertae Sedis, Tissierellaceae, Veillonellaceae and Vibrionaceae remained differently
represented at the family level among the three regions. At the genus level, significant differences were found
for Acetanaerobacterium, Acetobacteroides, Aeromonas, Alkaliphilus, Alloprevotella, Anaerofilum, Anaeroplasma,
Anaerostipes, Candidatus Phytoplasma, Candidatus Soleaferrea, Catabacter, Christensenella, Coprobacillus, Dakarella,
Denitrobacterium, Desulfohalobium, Desulfotomaculum, Dialister, Dysgonomonas, Escherichia, Eubacterium,
Faecalibacterium, Falcatimonas, Fastidiosipila, Gabonibacter, Gorbachella, Gordonibacter, Haemophilus, Harryflintia,
Hespellia, Hippea, Howardella, Hungatella, Ihubacter, Intestinibacter, Lachnobacterium, Libanicoccus, Mediterranea,
Megamonas, Megasphaera, Mitsuokella, Mucilaginibacter, Nautilia, Nitrospira, Olsenella, Oribacterium, Oxalobacter,
Paenibacillus, Pantoea, Parasporobacterium, Peptococcus, Prevotellamassilia, Propionibacterium, Provencibacterium,
Robinsoniella, Saccharofermentans, Selenomonas, Succinivibrio, Synergistes, Syntrophorhabdus and Wigglesworthia.
Finally, a total of 117 bacterial species were significantly different among the three regions (see Table 3,
possible spurious results at the species level are underlined).

3.2. Bacterial Diversity

The species richness (i.e., Chao1 index) significantly differed when subjects were classified by
their region of origin (median richness: 177.8 vs. 140.7 vs. 168.0 in Apulia, Lazio and Lombardy;
p = 5.7 × 10−5), age classes (median richness: 140.1 vs. 177.8 vs. 160.0 in subjects < 32, 32–41 and
> 41 years; p = 1.6 × 10−4) and physical activity (median richness: 179.5 vs. 162.5 vs. 149.2 in subjects
who performed “none”, “little” and “moderate” physical activity; p = 6.8× 10−4), whereas an interesting
trend was observed when individuals were grouped according to their adherence to Mediterranean
diet rather than to other non-Mediterranean styles (p = 0.07) (Figure 4).

Conversely, independently from the classification criterion, no statistically significant difference
was found for the Shannon index, which takes into account the number and the relative abundance
of the species within each sample (data not shown). Furthermore, as for beta-diversity, Kruskal’s
non-metric MultiDimensional Scaling (MDS) plots of the Bray-Curtis dissimilarities did not reveal
any significant clustering neither by regions (Figure 5A) and age classes (Figure 5B) nor by other
classification criteria, as indicated by mean silhouette values around zero. The lack of Shannon index
and beta diversity association may due to the sampling of multiple village sites and multiple cities
within the study.
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the bi-dimensional space (as X, Y coordinates) represents an individual. Individuals that are more
similar to one another are ordinated closer together and those who belong to different groups were
marked by different colors. Mean silhouette value was 0.0069 for clustering by regions and −0.0225 for
clustering by age classes.
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In order to understand the functional meaning of the microbiota differences observed among the
three regions, a PICRUSt prediction of the metagenomes was performed. A total of five pathways,
namely infectious diseases, membrane transport, metabolism, replication and repair and signaling
molecules and interactions emerged as significantly changed (Figure 6).Int. J. Environ. Res. Public Health 2019, 16, 4065 18 of 21 
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4. Discussion

It is well recognized that ethnicity and geographical locations are key factors influencing the
composition and diversity of the gut microbiota [5]. However, beside understandable divergences
across wide international geographical areas characterized by different socio-economic settings [16–19],
important differences are emerging even in people with similar genetic and cultural background [21].
In this regard, the aim of the present study was to characterize the gut microbiota composition of healthy
people belonging to three different Italian regions, namely Apulia, Lazio and Lombardy from the South,
Center and North of the peninsula, respectively. All the study participants had the same ethnicity and
were quite homogeneously distributed across the three regions as regards gender, BMI, physical activity,
dietary, smoking and drinking habits. Only the age was not distributed similarly among the three
regions, and since the age is an established factor influencing the composition of microbiota [12,19,29],
it was taken into account as a potential confounding factor. However, it should be considered that,
although gut microbiota composition changes throughout life, major shifts are described to occur
in the transition from infancy to adulthood and then to old age, while it is documented to be quite
stable through different stages of adult life [30–32]. Furthermore, differences emerged in the species
richness of gut microbial communities according to the region, age class and physical activity criterion.
Nevertheless, when we grouped our study population by age classes, differences in composition within
the bacterial families, genera and species emerged. Although divided in three classes of age, our study
population is mainly composed of young adults and adults (between 24 and 47 years of age with the
exception of two individuals of 64 and 65 years old respectively), and includes only 1 subject older
than 70 (which is considered the threshold age for defining an individual as elderly). We speculate that
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the significant differences observed in Chao1 index according to age are likely due to the acquisition of
a mature (not aged) microbiota (Figure 4B).

Physical exercise is known to be associated to a healthier and more diverse microbiota, which
seems to be in contrast with the results from our study. It should be considered, however, that in our
study population people performing little and moderate physical activity overlapped with younger
age, which would explain the reduced richness observed. All these and many other differences,
also within higher taxonomic levels, were observed when the 31 subjects were grouped by regions.
Noteworthy is that many taxa, which were represented in almost all the members of one or two
regions, were instead completely absent in the other(s), supporting that gut microbiota and geographic
localization are closely interlinked; this is, for example, the case of Cyanobacteria which were unique to
Lombards, Nitrospirae only found in Apulians, and many other lower taxa. A predictive analysis of
the functional pathways affected by the microbiota diversity among the three regions revealed five
categories significantly changed. It should be kept in mind, however, that PICRUSt only performs
predictions and that more accurate functional profiles require metagenomic approaches which will be
the subject of future studies.

Our data, emphasize the importance of the selective pressure in shaping gut microbial ecology by
numerous common environmental exposures. This could be the reflection of the different exposure
of these individuals to industrial presence [33] (considering the north part more industrialized as
compared to the south of Italy) agricultural chemicals like fertilizers (as the southern part of Italy is an
agriculture-based Economy) or the natural source of water people drinks. As specified above, our
study population was homogeneous from the ethnical point of view, so we can isolate the geographical
effect from the ethnical factor. A very interesting point of view in trying to understand the bases of
such a spatial microbiota variability comes from the application of the ecological theory according to
which local diversification of microbiota could be introduced by processes of community ecology, such
as dispersal, diversification, environmental selection and ecological drift, as exhaustively discussed by
Costello et al. [34]. Further investigation would be required to shed light on the factors underlying
such a difference in microbiota composition among the Italian regions.

5. Conclusions

Overall, our results point out the existence of a variability in the microbiota composition of
populations closely related from geographical point of view. This interesting link between small-scale
geography and gut microbiota deserves further investigation and poses important implications for
the development of microbiota-based clinical approaches. Indeed, the role of microbiota in the onset,
progression and response to therapies in a large number of diseases, is increasingly recognized both
as a diagnostic marker [22,24,26] and as a manipulable target for improving the clinical course of
pathologies [23,35]. Therefore, considering the existence of a variability within a limited geographic
area could be particularly important in order to set up tailored therapeutic approaches. Moreover,
attention should be paid when setting a specific microbial pattern as a reference for health or disease,
since it may be strongly influenced by the population used to generate the data [21]. Further efforts
should be devoted to identify the factors underlying the association between microbiota and small-scale
geography [36].
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