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Biotherapeutics, and antimicrobial proteins in particular, are of increasing interest for human medicine.
An important challenge in the development of such therapeutics is their potential immunogenicity,
which can induce production of anti-drug-antibodies, resulting in altered pharmacokinetics, reduced effi-
cacy, and potentially severe anaphylactic or hypersensitivity reactions. For this reason, the development
and application of effective deimmunization methods for protein drugs is of utmost importance.
Deimmunization may be achieved by unspecific shielding approaches, which include PEGylation, fusion
to polypeptides (e.g., XTEN or PAS), reductive methylation, glycosylation, and polysialylation.
Alternatively, the identification of epitopes for T cells or B cells and their subsequent deletion through
site-directed mutagenesis represent promising deimmunization strategies and can be accomplished
through either experimental or computational approaches. This review highlights the most recent
advances and current challenges in the deimmunization of protein therapeutics, with a special focus
on computational epitope prediction and deletion tools.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The immune systems of humans and other mammals evolved to
defend them from pathogenic microbes, invading viruses or other
substances that are not beneficial or may cause harm. Additionally,
the immune system has the ability to discriminate self from non-
self [1]. Also, tolerance of commensal organisms, indispensable
for our body, is an essential competence of the immune system [2].

In order to use proteins, including enzymes, as therapeutic
agents to tackle complex and persistent diseases, it is necessary
to avoid a strong immune response to these agents as a result of
the treatment.

Systemic application of therapeutic proteins could not only lead
to unpredictable pharmacokinetics (PK) and pharmacodynamics
(PD) due to an immune response, the induction of anti-drug anti-
bodies (ADAs) [3] and loss of efficacy, but also to anaphylactic
responses, hypersensitivity, and other complications [4,5].

The immune system can be divided into the innate and adaptive
immune system. Components of both systems interact and play
important roles in an immune response [6]. The innate immune
response describes an unspecific defense mechanism, which is
germ-line encoded and includes physical barriers, soluble proteins
as well as cellular components such as phagocytes and natural
killer cells [7]. In contrast, the adaptive immune response is char-
acterized by its high specificity for target antigens [8].
1.1. Innate immune system

The vanguard of every specific immune reaction is a non-
specific one. Antigen-presenting cells (APCs) play a crucial role
and can be found in tissues where they endocytose extracellular
material to scan the environment for harmful substances [9]. Pat-
tern recognition receptors (PRR) such as toll-like receptors (TLR)
expressed by dendritic cells (DCs) or macrophages enable the
innate immune system to differentiate harmful from harmless sub-
stances. PRRs recognize conserved structures of microbial or viral
origin called pathogen-associated molecular patterns (PAMPs)
[10]. PAMPs detected by TLRs include, for example, bacterial
lipopolysaccharides (LPSs), bacterial flagellin, peptidoglycan, and
viral DNA, which are recognized by TLR4, TLR5, TLR2, and TLR9,
respectively [11]. Since potential pathogens are able to reside
either extra- or intracellularly, PRRs can be found on the cell sur-
face as well as in the cytoplasm of host cells. While important
for the immune response, the innate immune system is not a target
of deimmunization strategies based on T or B cell epitope predic-
tion and deletion, which represent the major focus of this review.
1.2. Adaptive immune system

The adaptive immunity is controlled and activated through the
three-signal paradigm which includes the antigen, co-stimulation,
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and inflammatory cytokines [12] though recent studies suggest an
expansion of this model, including factors such as innate cytokines
(IL-1 family), commensal-derived metabolites and tissue-specific
parameters [13]. The initial activation of the adaptive immune
system is mediated by APCs, which present antigen bound to the
major histocompatibility complex (MHC) to cells of the adaptive
immune system, which includes T and B cells (Fig. 1A). The main
concern when designing non-immunogenic biotherapeutics is the
activation of those cell types.
1.2.1. T cell response
T cells originate from bone marrow-derived progenitor cells and

undergo further positive and negative selection in the thymus
eventually resulting in naïve CD4+ and CD8+ T cells [14]. CD8+ T
cells are activated by interaction of the antigen presented by the
MHC class I on the cell surface of all nucleated cells with the T cell
receptor (TCR). In contrast, CD4+ T cells are activated by the inter-
action of the TCR with MHC class II present on APCs such as DCs,
macrophages, or B cells. A crucial part in T cell reactivity is the
way proteins are processed into peptides that are eventually pre-
sented as antigens (Fig. 1B) and the binding specificity of MHC
towards these antigens.
1.2.1.1. Antigen processing and MHC presentation. The MHC class I
complex presents processed cytosolic antigens, typically the result
of viral infection and replication, on the surface of nucleated cells
(Fig. 1B) [7]. Endogenous proteins in the cytosol are degraded by
the proteasome. When stimulated by interferons that are released
during the onset of an immune response, the proteasome is con-
verted to an immunoproteasome by incorporation of three alterna-
tive b subunits. The immunoproteasome favors the production of
peptides with hydrophobic or basic C termini, which constitute
important anchor residues for binding to MHC class I [15]. The gen-
erated protein fragments are transported into the endoplasmic
reticulum (ER) by the TAP (transporter associated with antigen
processing) channel [16]. In the ER, the peptide associates with
MHC class I and is transported via the Golgi and transport vesicles
to the cell surface to allow interaction with T lymphocytes [17].
The average length of peptides produced by the proteasome is 7–
9 amino acids, but peptides can range from 4 to 25 residues [16].
The binding of the antigen to the MHC complex is another impor-
tant step in antigen presentation. The average length of antigens
that are loaded onto the MHC class I complex range from 8 to 10
amino acids [16]. In general, MHC class I prefers hydrophobic C-
terminal residues which, as stated above, are more likely to be gen-
erated by the immunoproteasome [18]. The identities of residues
lining the peptide-binding groove and thereby conferring speci-
ficity are dependent on the allelic variant of the MHC class I [19].

In contrast, MHC class II presents extracellular proteins on the
surface of APCs (Fig. 1B). APCs take up proteins by endocytosis into
endosomes. These endosomes fuse with lysosomes, which results



Fig. 1. Overview of the adaptive immune system and antigen processing pathways. A) Antigen presenting cells (APCs) are constantly sampling their extracellular
environment. Antigens are endocytosed, proteolytically cleaved, and presented on the cell surface bound to MHC class II. CD4 T helper cells with the matching T cell receptor
(TCR) are activated through the interaction with the antigen-MHC class II complex. This leads to cytokine production and differentiation and activation of cytotoxic T cells.
Activated CD4 T cells and cytokine secretion lead to differentiation and class switch of B cells into plasma cells secreting highly specific antibodies and long-lived memory B
cells. B) In the MHC class I pathway, endogenous proteins are proteolytically processed by the proteasome and transported into the endoplasmic reticulum (ER) via the TAP
channel. Antigens are loaded onto MHC class I molecules and transported via the Golgi to the cell surface. In the MHC class II pathway, endosomes containing an endocytosed
protein fuse with lysosomes leading to degradation of the protein by proteases activated with decreasing pH. The endolysosme fuses with a vesicle containing the MHC class
II molecule, and the antigen is loaded. The complex is transported to the cell surface and exposed for interaction with CD4 T cells. The cross-presentation pathway is only
found in APCs and allows to present exogenous antigens bound to MHC class I molecules. The peptides are generated either by degradation through the proteasome or by
fusion of the vesicle with a lysosome and cleaved by proteases. (Created with BioRender.com).
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in cleavage of the protein into peptides. Lysosomes contain more
than 60 different enzymes, which are synthesized by the ER
[20,21]. Therefore, a precise analysis and the attempt to predict
antigen cleavage sites and preferences is an almost impossible
task. The strength of the immune response against some peptides
depends on the allelic variations of the MHC class II molecules that
confer peptide specificity. Peptides eliciting a strong immune
response are called immunodominant peptides [22]. In contrast,
epitopes that are targeted to a lower degree are called subdomi-
nant epitopes. The size of peptides bound to MHC class II varies
between 11 and 30 amino acids [23]. The positions and identities
of peptide amino acid side chains interacting with the peptide-
binding groove are dependent on the allelic variant of the MHC
class II. An important difference between MHC class I and MHC
class II are the closed and open binding grooves, respectively. This
also influences length of the peptide and binding specificity [24].

Besides the classical MHC class I and MHC class II pathways,
extracellular antigens (typically class II antigens), which have
made it into an APC, can also undergo a special pathway termed
cross-presentation, which results in their surface presentation by
the MHC class I complex (Fig. 1B) [25].

In summary, T cells possess the ability to react to substances
acquired intra- or extracellularly. Moreover, T cells are able to kill
these infected cells, bacteria or even parasites. However, of higher
relevance for the scope of this review is the negative effect of T
cells on biotherapeutics due to their key upstream role in the gen-
eration of ADAs [26].

1.2.2. B cell response
B cells are mainly involved in the production and secretion of

either short-lived antibodies with lower affinity (e.g., IgM) or
longer-lived antibodies with much higher affinity (e.g., IgG). This
part of the immunity belongs to the humoral immunity comprising
antibodies in blood plasma and lymph, in addition to the comple-
ment system. The immune response to proteins is mediated
through specific antibodies, which can be T cell-dependent or -
independent [27]. The T cell-independent response is induced by
B cells recognizing repeated patterns, such as polymeric repeats
or carbohydrate molecules, in a foreign protein or other molecule
and react with the production of low affinity IgM antibodies [28].
A T cell-dependent response refers to specific antibody production,
foremost IgG, by B cells, which are stimulated by cytokines secreted
by T cells. A major difference between B and T cells is the antigen
type recognized by the cells. While T cells recognize processed anti-
gens presented by theMHC complexes, B cells recognize proteins in
their native state with their B cell receptor (BCR) [29]. When the
BCR encounters its antigen, the antigen is taken up by the B cell
through receptor-mediated endocytosis and digested [30]. The
antigen is then displayed on the surface bound to MHC class II as
described above for other APCs. This enables the B cell to get T cell
help and induce class switching (i.e., production of other antibody
classes such as IgG, IgA, or IgE instead of IgM) and differentiation
into a plasma cell. While IgG is important for antibody-based
immunity against invading pathogens, IgA prevents colonization
of mucosal areas by pathogens, and IgE is involved in triggering
allergic reactions [31]. These cells produce high amounts of anti-
bodies against the presented antigen. Little is known about the
antigen-processing pathways and peptide-MHC class II presenta-
tion in B cells. Therefore, it is not possible to make predictions
regarding preferred cleavage sites and processing details on which
deimmunization of biotherapeutics could be based.

1.3. Immunogenicity of biologics

Immune response-mediated reactions represent an increasing
concern for the pharmaceutical industry, predominantly for bio-
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therapeutics that possess enzymatic or regulatory activity (e.g.
Insulin, protein C, adenosine deaminase, human albumin) and are
used for long-term treatments. Adverse reactions towards protein
drugs, such as immunogenicity and the production of ADAs against
biotherapeutics can have various negative effects. ADAs can either
be binding (BAb) or neutralizing Antibodies (NAb) [32] both of
which can result in decreased efficacy and induction of allergic
reactions [33]. Differences are that NAbs bind to epitopes which
are functionally relevant, whereas BAbs bind to epitopes which
are generally not participating in the receptor/target interaction
of the therapeutic [34]. Patient factors such as age, disease and
immune status, as well as therapeutic factors including molecular
structure, amino acid sequence, nature of the target protein, degree
of humanization and impurities play a role in how fast and effi-
ciently ADAs are produced against a certain biotherapeutic [32].

In general, the detection of ADAs defines the immunogenicity of
a certain drug. Reduction of efficacy and bioavailability or even
neutralization of the drug are effects that foremost interfere with
the treatment. More severe and dangerous for the patient are
life-threatening immune reactions, hypersensitivity or cross-
reactions with endogenous proteins, which could lead to deficiency
syndromes [35]. Numerous factors influence the immunogenicity
of a drug that can be classified into three main groups:
treatment-, patient-, and drug property-associated factors [36].
The route and frequency of administration are treatment-
associated factors, whereas compromised immune system function
and general health condition are part of the patient-associated fac-
tors. Also, the polymorphism of the MHC genes that are affecting
the intensity of the T cell-dependent immune response is a
patient-associated factor [37]. Glycosylation patterns, concealment
or removal of MHC epitopes, and impurities and contaminants in
the production steps are drug property-associated factors influenc-
ing immunogenicity [36].
2. Protein deimmunization methods

Several strategies for deimmunization of biotherapeutics,
mainly aiming at mitigating immunogenicity, are available. These
include shielding approaches such as PEGylation, XTENylation or
PASylation as well as deletion of T or B cell epitopes.
2.1. Shielding methods

2.1.1. PEGylation
The attachment of polyethylene glycol (PEG) polymers to drugs

and larger biotherapeutics can be used to mask surface epitopes of
the agent from the host immune system. PEGylation is achieved by
incubation of chemically activated derivatives of PEG with the tar-
get molecule. Strands of the polymer are bound to the structure of
the target resulting in circulatory half-life extension [38] increased
water solubility due to a stable hydration layer through hydrogen
bonding to water molecules [39] and reduced immunogenicity of
the shielded therapeutic [40]. The extension of circulatory half-
life is mostly attributed to the increase of the hydrodynamic vol-
ume leading to a decrease in glomerular filtration [38]. Despite
several pharmacological advantages, some drawbacks of PEGyla-
tion have also been reported. A possible decrease in biological
activity due to steric hindrance imposed by the PEG molecules
[38] is one of them. More severe are altered biological properties
of the conjugated species [40]. In addition, the prolonged use of
PEGylated drugs can lead to accumulation of non-biodegradable
PEG in the liver and other organs [41] and treatment with PEGy-
lated drugs can give rise to anti-PEG antibodies, which have been
correlated with loss of therapeutic efficacy and a general increase
in adverse effects [42]. The limited understanding of anti-PEG
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immunity demands both efforts in research and approaches
beyond PEGylation such as nanogel encapsulation [43] or polypep-
tide fusion [44].

2.1.2. XTENylation
In contrast to PEGylation, XTENylation is achieved by genetic

fusion of XTEN polypeptides to the target protein [44]. These
polypeptides are negatively charged, consist of proline, alanine,
serine, threonine, glycine, and glutamine in a non-repetitive man-
ner, and increase the hydrodynamic radius of the target protein.
They were developed to mimic the beneficial properties of PEG
on the one hand and avoid disadvantages such as production of
anti-XTEN antibodies and the lack of biodegradability on the other
hand [45]. XTEN was reported to be biodegradable in several mam-
malian species and therefore, the risk of accumulation could be
eliminated in contrast to PEG-derived conjugates [44]. Among
the advantages of this genetic fusion approach are expression,
purification and characterization of the modified proteins as single
molecules [46]. More recently, chemical XTENylation has been
achieved with high selectivity [46]. One potential challenge of
XTENylation is the possible introduction of new epitopes at the lin-
ker region between the protein and the polypeptide.

2.1.3. PASylation
Another polypeptide increasing the hydrodynamic volume and

used for protein shielding is PAS, which consists of the amino acids
proline, alanine and serine [47]. Despite this conceptual similarity,
PAS and XTEN differ in amino acid composition and charge, which
results in different pharmacological behaviors [47]. A drawback of
PASylated therapeutics is the observed tendency for aggregation at
higher concentrations [46]. The effect of PAS aggregates on PD and
PK have to be assessed in more detailed studies. An advantage
compared to PEGylation is that no immunogenicity has been been
reported to date [48]. Depending on the length of the linker
between PAS and a therapeutic enzyme, the catalytic activity of
the enzymes was reduced only slightly compared to the non-
PASylated version [49].

Similar polypeptide fusion techniques inlcude ELPylation [50]
HAPylation [51] or treatment with gelatin-like protein (GLK) [52].

2.1.4. Reductive methylation
With reductive methylation, a conversion of primary to tertiary

dimethyl amine is achieved. The aim is primarily to stabilize the
therapeutic protein in the cytosol and decelerate the degradation
by evading host-mediated ubiquitination [53]. The stability of
many proteins in the cytosol follows the N-end rule, stating that
the susceptibility of proteins and peptides to ubiquitination is
dependent on the N-terminal residue identity [54]. Furthermore,
it was shown that proteins with lower levels of lysine evade
host-mediated ubiquitination more efficiently [55]. Therefore,
reductive methylation of lysines can increase the cytosolic stability
of protein drugs. Simultaneously, it can also reduce their neutral-
ization by antibodies, as has been shown for an anti-cancer fusion
protein consisting of the anthrax lethal factor and the catalytic
domain of Pseudomonas exotoxin A [53]. However, the applicability
of reductive methylation to reduce immunogenicity of therapeutic
enzymes has yet to be demonstrated.

2.1.5. Glycosylation
The covalent attachment of carbohydrates to proteins is a natu-

ral way for protein stabilization in biological systems [56]. The car-
bohydrates can be covalently attached to either asparagine (N-
glycosylation) or threonine/serine residues (O-glycosylation). Both
N- and O-linked glycosylation have been used to extend the half-
lives of approved drugs, and N-glycosylation was shown to reduce
immunogenicity [51]. The N-glycosylated erythropoietin (EPO)
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analog Darbepoietin alfa has a 3-fold increased half-live compared
to the native EPO [57]. A reduction of immunogenicity due to the
interaction of N-glycans with multiple glycan-binding proteins,
such as the asialoglycoprotein receptor or the mannose 6-
phosphate receptor, has been demonstrated [58]. However, aber-
rant glycosylation of new potential therapeutic proteins could lead
to pathological conditions [59] such as choriocarcinoma [60].
Furthermore, production of recombinant proteins in nonhuman
cells can lead to the recognition of nonhuman glycans by pre-
existing antibodies in the serum such as antibodies against a-
1,3-linked galactose or a-1,3-linked fructose [61,62].
2.1.6. Polysialylation
Sialic acid polymers (PSA) are naturally occurring and highly

biodegradable. The recognition of sialic acids by sialic acid-
binding immunoglobulin-type lectins (SIGLECs) can lead to an
altered (and possibly reduced) immune response [63]. Several
drugs and enzymes, such as asparaginase [64] or tetrameric
butyrylcholinesterase [65] have been successfully polysialylated
and show reduced immunogenicity as well as improved PK and
PD. Also the polysialylation of EPO and DNAse I resulted in
improved stability and/or an increased circulation half life,
whereas effects on immunogenicity of these therapeutics remain
to be shown [66]. In this context, it should also be noted that
extension of the half-life of a therapeutic protein can impact its
immunogenicity.

Despite their benefits, protein therapeutics modified by shield-
ing methods can provoke immune reactions against the shielding
moieties, which have to be assessed in extensive PK and PD stud-
ies. Also, shielding methods as listed above, albeit viable for thera-
peutic proteins, peptides, and hormones such as insulin [51,67]
could cause a reduction in activity of therapeutic enzymes, e.g.
due to steric hindrance. Furthermore, the primary objective of
the methods mentioned above is the extension of circulation
half-life and not the reduction of immunogenicity of a
biotherapeutic.
2.2. Humanization of therapeutic proteins

While not a major focus of this review, humanization is another
strategy to deimmunize therapeutic proteins and in particular,
therapeutic antibodies [68]. When antibodies produced by a non-
human immune system (e.g., by rodents) are used as therapeutics
in humans, they can elicit an immune response. To circumvent this
problem, such exogenous antibodies can be ‘‘humanized”, e.g.,
through various grafting approaches aiming at the transfer of the
antigen binding function of an exogenous antibody to a human
antibody scaffold [69]. This can be achieved by inserting portions
of the complementarity determining region (CDR) of the exoge-
nous donor antibody to a human acceptor antibody by recombi-
nant DNA techniques. This is not to be confused with the
construction of chimeric antibodies, in which the entire variable
region of a human antibody is exchanged with that of an exoge-
nous antibody [68]. While classical CDR-based grafting approaches
for therapeutic antibody humanization have been employed suc-
cessfully in the past, they also face certain challenges such as pos-
sible reductions in stability or antigen affinity. These problems
could possibly be mitigated by computational approaches such as
‘‘Computationally-Driven Antibody Humanization” (CoDAH),
which aim at maintaining structural stability and achieving
humanization simultaneously by selecting and incorporating sets
of amino acids from human germline sequences [69]. Using DNA
shuffling or other protein engineering techniques, humanization
has not only been accomplished for antibodies but also for other
proteins such as therapeutic enzymes [70,71].



Table 1
T cell epitope prediction tools.

Name of the tool
(latest version)

Method Year of
development

Latest
version

Unnamed MHC-specific motifs 1989 [85]
SYFPEITHI Ligand elution data, average

relative binding matrices
1999 [86]

TEPITOPE Virtual matrices 1999 [99]
ProPred Virtual matrices 2001 [128]
NetChop 3.1 ANN 2002 [191] 2005

[107]
Unnamed HMM 2002 [192]
NetMHC 4.0 BLOSUM matrices, ANN 2003 [193] 2016

[78]
Unnamed Gibbs sampling approach 2004 [194]
SMM Stabilized matrix method

(SMM)
2005 [195]

DynaPred SVM-trained, quantitative
matrix-based method

2006 [196]

SVMHC Support vector machine 2006 [197]
SVRMHC Support vector machine

regression (SVR) models
2006 [198]

NetMHCII 2.3 ANN 2007 [199] 2017
[97]

NetMHCpan 4.1 ANN 2007 [100] 2020
[200]

NetMCHIIpan 4.0 ANN 2008 [102] 2020
[201]

SMM-PMBEC Amino acid similarity matrix 2009 [202]
PickPocket 1.1 Position-specific weight

matrices, binding pocket
matrix extrapolation

2009 [203]

EpiSweep Combines epitope prediction
and deletion

2010 [129] 2017
[137]

NetMHCcons 1.1 ANN, matrix based 2012 [204]
Unnamed Immunogenicity data 2013 [114]
NetTepi 1.0 ANN, matrix based,

immunogenicity data
2014 [205]

NetMHCstabpan
1.0

ANN 2016 [206]

ANN, artificial neural network; HMM, hidden Markov model;
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2.3. T cell epitope prediction and deletion

Immune responses against biotherapeutics often result in ADAs.
T cell-dependent antibody responses can evoke class switch, affin-
ity maturation and induction of long-lived memory B cells and
plasma cells [72]. Therefore, identification, prediction and deletion
of T cell epitopes of a biotherapeutic protein can not only reduce its
immunogenicity but moreover increase half-live, bioavailability
and efficacy, resulting in overall better pharmacodynamics and -
kinetics. The recognition of specific T cell epitopes by an individual
depends on both genetic factors (due to the high allelic polymor-
phism in the human leukocyte antigen (HLA) locus, which encodes
the MHCs), and the environmental exposure history of the individ-
ual [73,74]. Distinct binding specificities lead to the presentation of
diverse epitopes by different individuals of the human population,
which makes it hard for pathogens but also therapeutic proteins to
evade recognition by our immune system [73].
2.3.1. T cell epitope prediction
T cell epitope prediction in general aims to identify the shortest

peptides within an antigen that are able to stimulate T cells [75].
Analysis of epitope binding showed that some positions in the pep-
tide only tolerate very similar amino acids in order to retain bind-
ing affinity [76,77]. These positions are called anchor positions and
have similar spacing in various epitopes recognized by the same
MHC. Therefore, MHC ligand motifs are defined as the sum of
anchor position spacing and specificity [77]. The anchor residues
are usually at positions P2 and P9 for MHC class I molecules [78]
and at positions P1, P4, P6, and P9 for MHC class II molecules
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[79]. The MHC ligand motif is defined by the binding groove form-
ing the epitope-binding site in MHC molecules, which is highly
variable in the population [80–82]. Elution data of MHC class I
ligands revealed conserved anchor positions and homogenous pep-
tide length [76]. This allowed fast advances to define various MHC
class I ligand motifs based on eluted epitopes. In contrast, the open
peptide-binding groove of MHC class II leads to ligands with
variable length. The anchor positions of eluted ligands are there-
fore out of frame and much harder to interpret [74]. MHC ligands
need to have a certain affinity for their corresponding MHC in order
to be recognized as a T cell epitope. The affinity measurement val-
ues defined as thresholds for MHC class I and MHC class II amount
to an IC50 < 500 nM [83] and an IC50 < 1000 nM [84] respectively.

The vast amount of possible peptide-MHC combinations quickly
led to the need of computational prediction tools (Table 1). The var-
ious prediction algorithms developed over the last thirty years have
been reviewed in detail by Peters et al., 2020 [74]. The development
of computational tools to predict T cell epitopes started in 1989
with a program that was able to identify putative ligands in a pro-
tein of interest using allele-specific ligand motifs [85]. Another way
to approach T cell epitope prediction was the use of matrices con-
taining quantitative scores. For every amino acid, a score was
assigned for each position in the binding groove. The values for each
position in a peptide were summed up giving a score for the specific
combination of peptide andMHC [74].Well known is the SYFPEITHI
score based on ligand elution data [86]. More complex methods to
predict MHC class I epitopes including artificial neural networks
(ANN) and hidden Markov models (HMM) followed shortly after
[87–89]. Due to only limited data available to train those algo-
rithms, prediction was only successful for a small range of alleles
[74]. The need of larger datasets to efficiently train the algorithms
led to the initiation of several databases [86,90]. The Immune Epi-
tope Database (IEBD) contains information on T cell and B cell epi-
topes compiled from experiments and literature and is updated
regularly [91,92]. The IEDB-Analysis Resource (IEDB-AR) contains
several T and B cell prediction and epitope analysis tools, which
were trained on the IEDB [93]. The most recent database SysteMHC
collects raw and analyzed mass spectrometry data of MHC ligand
elution [94]. Those databases allowed training and evaluation of
machine learning-based prediction tools. Advances in MHC class I
epitope prediction were faster than MHC class II as the open bind-
ing groove of MHC class II adds complexity to the prediction [74].
The ANN-based NetMHC algorithm outperformed other MHC class
I prediction tools, especially when training data sets were small.
The difference was explained by the additional information on
amino acid similarity included in the NetMHC tool allowing for
extrapolation of residues not found in the training data [74,95].
NetMHCII is the equivalent tool for MHC class II epitope prediction
based on the NN-align algorithm [96,97].

To date, over 270000 HLA alleles are described in the IMGT-HLA
database [98]. This enormous variation makes it impossible to gen-
erate enough experimental data for every allele to train prediction
algorithms. Therefore, pan-specific prediction tools able to extrap-
olate to experimentally uncharacterized MHC molecules were
developed. The first tool, which successfully predicted binding
for HLA-DR alleles computationally was TEPITOPE [99]. It uses vir-
tual matrices constructed by comparing the sequence of the bind-
ing pocket to the pockets of MHC molecules with previously
defined binding specificity [99]. The best performing pan-specific
algorithm for MHC class I epitopes is NetMHCpan including infor-
mation about the amino acids in the binding groove in addition to
the peptide binding data [100]. Similar tools have been developed
for MHC class II, including binding data and information on binding
environment in order to predict epitopes for all class II alleles with
known sequence [101–103]. The vast amount of HLA alleles is also
challenging when it comes to the decision on which alleles to



Fig. 2. Overview of T cell epitope deletion workflows. T cell epitope deletion transitioned from being purely experimental to more and more computational. A) This pathway
illustrates the steps for experimental T cell epitope deletion. The most common way was to synthesize an overlapping peptide library over the full length of the protein of
interest. Epitopes among those peptides are identified through ex vivo immunoassays with peripheral blood mononuclear cells (PBMCs) from a broad range of healthy donors.
The immunogenic peptides are subjected to alanine scanning mutagenesis and then tested again for immunogenicity with the PBMCs. Confirmed deimmunizing mutations
can then be combined and introduced in the full length protein. Introducing mutations comes with a high risk of misfolding and inactivation of the protein. Therefore,
functional and structural characterisation is needed. Deimmunization success of a functional protein can be tested and validated in humanized mice and with PBMCs. B) The
use of epitope prediction reduces the number of peptides to be tested for immunogenicity by only testing overlapping peptides in predicted epitope regions. The subsequent
steps are identical to the experimental strategy. C) The computational approach combines epitope prediction with epitope deletion in one program by introducing mutations
in silico while taking into account the global effect of those changes. Independent of the strategy chosen, deimmunized variants have to be produced and tested
experimentally. (Created with BioRender.com).

Léa V. Zinsli, Noël Stierlin, M.J. Loessner et al. Computational and Structural Biotechnology Journal 19 (2021) 315–329
include in a specific study. In most cases, studies attempt to cover a
broad range of the human population. It was found that MHC
molecules can be grouped into supertypes based on similar binding
specificities leading to ten MHC class I and ten MHC class II super-
types [104,105]. Including representatives of different supertypes
allowed to cover the most common allelic variants of most popula-
tions [106].

Efforts were made to analyze the benefit of including informa-
tion regarding antigen processing (e.g., by the proteasome) in epi-
tope prediction tools. It seems that MHC molecules have co-
evolved to efficiently bind peptides generated by the proteasome
and transported by TAP [107]. Therefore, improvements for MHC
class I were not significant when antigen processing information
was included in the prediction algorithms [107]. The same was
found for MHC class II antigens, as the terminal regions of the epi-
topes are not well defined [108]. Furthermore, mass spectrometry
data on ligand elution has led to the identification of unusual pep-
tides. Those peptides seem to be spliced together [109,110] or are
longer than typical MHC class I ligands [111,112]. Those unusual
ligands are most likely missed by prediction tools, but conven-
tional T cell epitopes seem to represent the majority of the ligands
and can therefore be prioritized for prediction [74].

Limitations of in silico T cell epitope prediction include factors
difficult to implement in algorithms such as aspects of APC func-
tion, including antigen processing and presentation of peptides to
T cells, and T cell activation. One recent report described a method
named ITCell, which integrates information about three consecu-
tive stages of the antigen presentation and T cell activation path-
way, i.e., (i) antigen cleavage, (ii) MHC class II binding, and (iii)
recognition of peptide-MHC-II complexes by a given TCR. This inte-
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grated approach proved to be more accurate than current single-
stage epitope prediction tools [113]. Still, in vitro and ex vivo
assays, testing for APC function and T cell response are very impor-
tant to account for incomputable biological factors. First attempts
were made to divide peptides into immunogenic and nonimmuno-
genic peptides [114,115]. A combination of in silico prediction
methods with experimental approaches including assays with
peripheral blood mononuclear cells (PBMCs) from healthy donors
is probably the most promising path for epitope detection.

2.3.2. T cell epitope deletion
Suppressing antidrug antibodies by disruption of the immune

response pathway by T cell epitope deletion has profiled itself as
a solid strategy. A selective substitution of amino acids in a bio-
therapeutic without changing its properties as a drug or an enzyme
can disrupt the delicate binding interfaces between the antigen
and the T cell and therefore delete these epitopes. Such substitu-
tions can either be introduced and tested experimentally or
designed computationally [116] (Fig. 2).

2.3.2.1. Experimental. Strategies to substitute amino acids in order
to disrupt antigen binding are largely based on scanning alanine
or trial and error mutagenesis. The experimental approach includes
several steps (Fig. 2): First, a complete panel of overlapping peptide
fragments has to be synthesized in order to map epitopes by
immunoassays. PBMCs from several different donors are needed
in order to cover a certain genetic diversity and obtain a represen-
tative picture of the different HLA alleles present in the population.
Second, alanine scanning or similar mutagenic deletions of identi-
fied epitopes are performed followed by further PBMC immunoas-



Léa V. Zinsli, Noël Stierlin, M.J. Loessner et al. Computational and Structural Biotechnology Journal 19 (2021) 315–329
says. The confirmed epitope-deleting mutations are then combined
and introduced into the protein. Tests for functional and structural
consequences of these mutations are performed as final step [117].
Mutagenic substitution of lysine, arginine, glutamine and glutamic
acid residues, which have been shown to contribute to antibody
epitopes, helped to successfully deimmunize the diphtheria toxin
[118]. Therapeutic enzymes and cofactors with engineered
reduced immunogenicity such as E. coli type II asparaginase proved
that the deimmunization of enzymes by mutation is possible with-
out losing its biological activity. Introducing two mutations (K228S
and Y176F) was enough to get rid of undesirable glutaminase
activity, increasing cytotoxicity towards leukemic cells and in
addition reduce reactivity with immune serum [119]. Experimen-
tal approaches for T cell epitope deletion have produced several
partially deimmunized biotherapeutics such as Factor VIII domain
C1 [120] interferon beta [121] or b-lactamase [122] to mention
some early examples. One study combined in silico prediction
and experimental approaches to successfully remove an immun-
odominant T cell epitope in the Factor VIII C2 domain [123]. A
more recent achievement in deimmunizing a biotherapeutic was
the reduction of immunogenicity of Hirudin III [124]. This
approach was based on in silico sequence analysis to decrease
HLA-DR-binding affinity. This was followed by confirmation of
these epitopes by in vitro biochemical evaluations and confirma-
tion of bioactivity. Hirudin III showed a reduction in immunogenic-
ity for several alleles of the HLA-DR group [124].

The discovery of CRISPR-Cas9 and the possibilities that it
opened for genome engineering and editing [125] was hoped to
bring research closer towards personalized gene therapies for com-
plex diseases. However, the administration of Cas9 proteins in
mice often resulted in immune responses [126] and therefore,
raised concerns regarding its safety as a therapeutic protein. A
recent study [127] demonstrated that the Cas9 protein could be
modified to eliminate immunodominant MHC class I epitopes
through targeted mutation of the anchor residues while preserving
its function and specificity. However, the deimmunization and pre-
diction algorithm was optimized only for the HLA-A*02:01 allele. A
reduction in immunogenicity covering a broader range of HLA alle-
les remains to be shown. This study combined in silico T cell epi-
tope prediction with ex vivo epitope mapping [127].

Although improvements have been made over the past years by
increasing throughput and efficiency, experimental T cell epitope
deletion is still time-intensive, work-intensive, and expensive.
Therefore, combining T cell epitope prediction tools with computa-
tional protein design methods could reduce the costs significantly
and increase the hit rate. For instance, instead of relying on merely
experimental alanine scanning, in silico methods can be used to
guide amino acid substitution decisions, and then only the best
in silico candidates need to be tested experimentally. Moreover, it
is almost impossible to fully account experimentally for the allelic
diversity of HLA class II present in a population of potential
patients by relying on donor blood samples from random individ-
uals. However, incorporating the supertype allele concept
described in the previous section into the epitope prediction and
deletion process can make this challenge more manageable. Over-
all, the trend towards the replacement of experimental work by
computer-based models is inevitable.

2.3.2.2. Computational. Introducing deimmunizing mutations into a
protein is coupled with the risk of a potential loss of function and
altered structure [116]. Computational tools for deimmunization
aim to find optimal trade-offs between epitope deletion and pro-
tein activity and stability. DP2 (dynamic programming for deim-
munizing proteins) was the first implementation combining the
two epitope prediction tools ProPred [128] and SMM-align [100]
with three different stability evaluation methods [129]. With this
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approach, variants of staphylokinase (SakSTAR), EPO, and three
therapeutic antibodies with high similarity to previously devel-
oped deimmunized variants were successfully designed [129].
The computational deimmunization approach was further devel-
oped to combine the prediction tool ProPred with the Rosetta flex-
ible backbone design package [130] and again tested with SakSTAR
and EPO [131]. In 2014, King et al. described a method also
combining the Rosetta protein design software [130] with a cus-
tomized T cell epitope predictor successfully deimmunizing GFP
and domain III of the Pseudomonas exotoxin A (PE38) [132]. Mice
were challenged with the deimmunized GFP variant and Freund’s
adjuvant and after six days, spleens were analyzed by flow cytom-
etry. In four out of the five mice, no T cell signal above background
level was detected [132]. For PE38, reduced immunogenicity was
shown ex vivo measuring IL-2 response from PBMCs stimulated
with the mutant variants [132]. A combination of several algorith-
mic papers [133–136] laid the basis for EpiSweep [134,137]. In this
computational deimmunization tool, target sequence, multiple
sequence alignments and, if available, protein structure are used
as input data. The user can specify the design strategy
(sequence-based or structure-based) as well as mutational load,
number of Pareto optimal and near-optimal frontiers, and a thresh-
old for epitope prediction [137]. EpiSweep was first applied to Sak-
STAR and EPO, and the new designs were predicted to outperform
previous experimentally designed variants [134]. More recent
deimmunization studies with EpiSweep were performed on lysos-
taphin, a highly active bacteriocin specifically cleaving the peptido-
glycan of Staphylococcus aureus [138,139]. Lysostaphin is a
promising therapeutic protein to treat drug-resistant S. aureus
infections, but due to its bacterial origin, it comes with immuno-
genicity [140]. Two different approaches were performed to deim-
munize lysostaphin: individual structure-based design [141] and
combinatorial library design [142]. Both approaches generated
deimmunized variants that showed reduced immunogenicity
in vivo. The lysostaphin variant Lib5 designed with the combinato-
rial library approach successfully suppressed ADA formation in
humanized mice leading to better therapeutic efficacy in a
methicillin-resistant S. aureus infection model [142]. Combinato-
rial library design has also been applied to an agent for anticancer
therapy, P99 b-lactamase (P99bL) [143]. The study resulted in a
highly active and stable 14-mutation variant, which showed
reduced ex vivo immunogenicity [143]. Computational tools such
as EpiSweep increase the hit rate of deimmunization attempts
and decrease the amount of time and resources necessary to
develop therapeutic proteins with reduced immunogenicity. The
great potential of protein therapeutics will likely lead to increased
interest and use of computational approaches in order to acceler-
ate the development of novel therapeutics.
2.4. B cell epitope prediction and deletion

The induction of long-lived memory B cells and plasma cells by
T cells can produce high titers and high affinity of often neutraliz-
ing ADAs [27]. Epitopes recognized by B cells can be divided into
linear and conformational epitopes. Linear epitopes consist of a
continuous peptide segment whereas conformational epitopes
consist of discontinuous stretches of amino acid residues brought
into proximity through protein folding [144–146]. Discontinuous
epitopes rely on proper folding and can therefore not be isolated
and assessed for binding experimentally on their own [147]. They
make up the majority of B cell epitopes, whereas linear epitopes
amount to only around 10% [145]. It was found that discontinuous
epitopes range from 6 to 29 residues in size, whereas linear epi-
topes can vary between 2 and several hundred residues, with the
majority of epitopes being 6 to 30 amino acids long [144,145,148].



Fig. 3. Overview of B cell epitope prediction and deletion approaches. B cell epitopes can be identified experimentally or through various computational approaches (in silico
epitope prediction). Experimental strategies include the use of synthetic peptide libraries, epitope mapping, and random mutagenesis combined with high throughput
screening. While synthetic peptide libraries only identify continuous epitopes, the other approaches can also predict conformational epitopes. Once putative B cell epitopes
have been identified, multiple mutated variants of the protein of interest presumably devoid of these epitopes are generated, analyzed for structural and functional integrity,
and assessed for their immunogenicity. (Created with BioRender.com).
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To identify the amino acids of a protein that interact with anti-
bodies, the structure of antigen–antibody complexes can be solved
with X-ray crystallography or nuclear magnetic resonance (NMR)
analysis [149]. An alternative way to identify interacting residues
is the use of hydrogen–deuterium exchange coupled to mass spec-
trometry [150]. Solvent-exposed residues will exchange their
hydrogen of the backbone amide against deuterium present in
the solvent. The exchange rate is reduced for interacting residues
and therefore, comparing deuterium levels in antigens with and
without antibody allows identification of residues involved in the
interaction [150–152]. As an alternative to these precise mapping
approaches, synthetic peptide libraries (similar to what has been
described for T cell epitopes) or random phage libraries [153,154]
can be used to detect B cell epitopes. However, while these strate-
gies can identify continuous epitopes, they will most likely miss
more complex conformational epitopes [150]. Another experimen-
tal approach allowing to screen a vast range of residues in the anti-
gen is (random) mutagenesis followed by high throughput
screening [150,155]. Besides these experimental approaches, there
has been an increasing number of computational tools for predic-
tion of B cell epitopes, which will be described in the following
subsections.

Once putative B cell epitopes on a target protein have been
identified, the deletion of these epitopes follows similar proce-
dures as what has been described above for T cell epitopes. Muta-
tions are introduced into the protein in an effort to destroy the
epitopes and, at the same time, retain protein structure and func-
tion. Typically, alanine scanning mutagenesis is used, as alanine
usually has only minor impact on protein conformation due to
the absence of possibly interacting side chains [156]. However, it
is still hard to know whether interaction is disrupted because of
changes in protein structure or because a key interacting residue
is targeted [150]. Once a collection of mutated variants of the tar-
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get protein has been generated, these variants can be analyzed for
function and immunogenicity using either in vitro immunogenicity
assays or humanized mice. A summary of the various B cell predic-
tion and deletion strategies is presented in Fig. 3.

2.4.1. Antibody-independent B cell epitope prediction
As experimental approaches are time-consuming and expen-

sive, computational tools are desirable. Early tools for B cell
epitope prediction were primarily based on physiochemical prop-
erties such as hydrophilicity and surface accessibility [145]. In
the early 1980ies, Hopp and Woods developed the first computa-
tional prediction tool to predict linear epitopes based on the
assumption that regions containing charged and polar residues
but lacking hydrophobic residues tend to be more antigenic
[157,158]. More methods were developed based on hydrophilicity,
turns, solvent accessibility, and flexibility [159–162]. Later, meth-
ods combining different physicochemical properties, such as PRE-
DITOPE [163] PEOPLE [164] BEPITOPE [165] and BcePred [166]
followed. In 2005, a study showed that prediction tools based on
propensity scales were only somewhat better than random selec-
tion [167]. These findings led to the development of prediction
tools based on more complex algorithms and machine learning.
BepiPred was the first prediction tool combining a HMM with Par-
ker’s hydrophilicity scale [168]. It was later updated to BepiPred-
2.0 in 2017, which is trained only on crystal structures and
achieves better prediction accuracy [169]. The first time a recur-
rent artificial neural network (RNN) was implemented to predict
linear B cell epitopes from the amino acid sequence of a protein
was the tool ABCPred by Saha and Raghava [170]. One of the main
challenges was the variable length of B cell epitopes, which had to
be fixed to train the RNN. Nonetheless, ABCPred achieved maxi-
mum accuracy of almost 66% when the network was trained on
peptides of 16 amino acids in length [170]. FBCPred, which is based



Table 2
B cell epitope prediction tools.

Name of the tool (latest
version)

Epitope type Year of first
publication

Latest
version

ABCpred Continuous 2006 [170]
BCPred Continuous 2008 [207]
FBCPred Continuous 2008 [171]
COBEpro Continuous 2009 [208]
LBtope Continuous 2013 [209]
EPMLR Continuous 2014 [210]
DRREP Continuous 2017 [211]
BepiPred-2.0 Continuous 2006 [168] 2017

[169]
iBCE-EL Continuous 2018 [212]
CEP Discontinuous 2005 [173]
DiscoTope-2.0 Discontinuous 2006 [176] 2012

[174]
MIMOX Discontinuous 2006 [213]
PEPITOPE Discontinuous 2007 [214]
ElliPro Discontinuous 2008 [175]
PEPITO Discontinuous 2008 [215]
SEPPA Discontinuous 2009 [216]
EPITOPIA Discontinuous 2009 [217]
EPISEARCH Discontinuous 2009 [218]
EPSVR Discontinuous 2010 [219]
CBTOPE Discontinuous 2010 [220]
MIMOPRO Discontinuous 2011 [221]
PEPMAPPER Discontinuous 2012 [222]
SnugDock Antibody-specific

epitopes
2010 [185]

ASEP Antibody-specific
epitopes

2010 [223]

ClusPro Antibody-specific
epitopes

2012 [224]

EpiPred Antibody-specific
epitopes

2014 [186]

PEASE Antibody-specific
epitopes

2014 [187,188]
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on support vector machine (SVM) classifiers with a string kernel, is
able to predict linear B cell epitopes of varying length [171].
Another SVM-based method developed by Gupta et al. aims at pre-
dicting the specific antibody class induced by an antigen [172].

As most B cell epitopes are conformational, it is desirable to not
only predict linear epitopes but also discontinuous epitopes. The
conformational epitope predictor (CEP) was the first tool predict-
ing linear and conformational epitopes based on spatial distance
and accessibility of residues in an antigen with known structure
[173]. For some of the prediction tools, newer versions are avail-
able by now. For example, DiscoTope-2.0 is also based on surface
measure and spatial distance, but with the addition of amino acid
statistics derived from the comparison between epitopes and non-
epitopes, and achieves better prediction results than the first ver-
sion [174]. ElliPro [175] which implements three algorithms, was
shown to outperform CEP [173] and DiscoTope [176]. ElliPro uses
an approximation of the protein shape as an ellipsoid [177] com-
bined with a residue protrusion index (PI) [178] and a
MODELLER-based clustering [179] of neighboring residues on the
basis of the PI values [175]. Additional B cell prediction tools are
summarized in Table 2. Overall, B cell epitope prediction remains
challenging and has not been very successful so far [174,180].
2.4.2. Antibody-specific B cell epitope prediction
The incredible number and diversity of antibodies circulating in

the body could explain why B cell epitope prediction has been far
from satisfactory, since any antigen surface region can possibly
serve as an epitope [146]. Therefore, the research question was
recently redefined and focused more on the prediction of epitopes
for specific antibodies [181]. The first approaches in this direction
used general protein–protein interaction algorithms to predict
antibody-antigen interaction while only considering interactions
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with the CDRs of the antibody [181]. The CDRs, which correspond
more or less to the antigen-binding regions (ABRs), define the
specificity of the unique interface between antibody and antigen
and can be identified computationally [182,183]. It was shown that
antibodies usually do not recognize typical protein–protein inter-
faces but rather regions identical to the rest of the surface [184].
Therefore, antigen–antibody specific docking approaches were
developed, such as SnugDock [185]. SnugDock simultaneously
optimizes the CDRs, the relative orientation of the antibody light
and heavy chains and the antigen–antibody orientation. This
allows for antibody flexibility and might capture intramolecular
changes happening in the antibody upon antigen binding [185].
The flexibility introduced during docking allows to overcome inac-
curacies originating from homology modeling of the antibody
structure [185]. The EpiPred tool identifies possible epitopes on a
given antigen structure for a specified antibody. Interestingly, no
significant differences were observed between prediction based
on an experimentally determined antibody structure and predic-
tion based on a homology model of the antibody [186].
Antibody-specific epitope prediction based on antibody sequence
and antigen structure or sequence was implemented in the tool
PEASE [187,188]. This machine learning algorithm was trained on
known antibody-antigen complex data obtained from different
experimental epitope mapping methods [188]. The increase in per-
formance achieved through this is likely due to the combination of
epitope prediction with cross-blocking experimental data [188].
Similarly, EpiScope also combines computational prediction with
experimental validation [189]. This tool minimizes experimental
effort by computationally predicting promising mutant variants
of the antigen based on docking models with minimal prior knowl-
edge. This approach narrows down the number of variants to be
tested experimentally for validation [189]. Most recent advances
in computational antibody-specific B cell epitope prediction were
proposed by Jespersen et al. [146] who developed a Feed Forward
Neural Network capable of differentiating between the epitope and
other similar surface patches. The algorithm that is able to gener-
ate those surface patches was based on a statistical approach that
identified correlation of structural, geometrical and physicochem-
ical features of the interacting residues of antigen–antibody com-
plexes [146]. Even though the tool performed better than other
prediction methods, and correct epitopes were predicted and
paired with correct antibodies, it is still far from perfect [146].
With an increasing number of known structures of antibody-
antigen complexes, machine learning approaches trained on more
extensive datasets, and new algorithms developed, further
advances in tackling the complexity of B cell epitope prediction
can be expected in the future.
3. Summary and outlook

The efficient deimmunization of biotherapeutics is of increas-
ing interest in human medicine. The design and production of
protein-based vaccines or enzyme-based antimicrobials are just
a few examples of the diversity of applications that can profit
from targeted deimmunization. The process of protein deimmu-
nization can be divided into several steps, i.e., epitope prediction,
epitope identification and epitope deletion, each of them holding
their own complexities and challenges. Not only can epitope
identification and prediction be useful to solve biomedical ques-
tions, but they could also shed light on immunological processes
in general or be used for the prediction of epitopes in the diag-
nosis of disease. One trend common to all three steps of protein
deimmunization is the desired and often successful transition
from experimental to computational methods. Even though
shielding methods have been proven to be an efficient tool to
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deimmunize peptides or proteins, they are possibly not the best
choice for biotherapeutics with enzymatic activity due to the
possible masking of the active sites. Instead, the alteration and
deletion of predicted and identified epitopes on biotherapeutic
drugs through exchange of amino acids appears to be a more
promising approach, particularly when efficient computational
tools are available. The implementation of machine learning
techniques in the field of immunoinformatics for epitope
prediction underpins the complexity of these processes. The
problem is further complicated by the enormous diversity of
the HLA alleles in humans and the resulting variety of epitopes
that can possibly be identified by the immune systems of differ-
ent patients. In order to produce deimmunized biotherapeutic
drugs effective in all patients, all these different alleles would
need to be considered. In this context, an interesting option
may be the development of personalized deimmunized biothera-
peutics, taking into consideration only individual HLA alleles.
These personalized deimmunized drugs, however, would gener-
ate high costs for patients and/or healthcare systems (even
though the use of computationally-driven methods can reduce
costs for drug development significantly) and likely face regula-
tory obstacles. In general, computationally-driven methods for
epitope prediction depend on the quality of the input data that
are provided, the degrees of freedom allowed, and the algo-
rithms used. Nevertheless, computational methods have already
been reported to be more accurate than experimental
approaches in epitope prediction in some cases, e.g., for the
development of peptide-based vaccines [190]. In this context, it
is worth mentioning that overprediction of T cell epitopes (i.e.,
the identification of false positive epitopes) by computational
approaches is more of a problem in protein deimmunization
than in peptide vaccine development, since a few non-
immunogenic peptides within a collection that is enriched over-
all for immunogenic peptides will likely have no or only minor
impacts on the efficacy of the vaccine. The importance of grow-
ing and available databases for epitopes as well as 3D protein
and antigen structures is evident. In recent years, the improve-
ment of B and T cell epitope prediction algorithms has been
enormous. The current limiting factor is possibly not the capabil-
ity of the present algorithms but rather the limited data avail-
able to train these algorithms on. If sufficiently extensive data
sets were available, other problems and questions, such as which
combination of classifiers would lead to better results, could be
addressed more precisely. A problem that cannot be solved by
the enlargement of data sets is the difficulty to determine
whether a protein reacting with an antibody is changing its con-
formation, thereby distorting the tertiary structure that was used
as a basis for computation. This is particularly problematic for
the prediction of discontinuous epitopes, which represents the
largest portion of all B cell epitopes. The incorporation of struc-
tural data from antigen-antibody complexes is an essential factor
to further increase the prediction accuracy of these tools. To con-
clude, in order to advance efficient deimmunization of biothera-
peutics, both T and B cell epitope prediction and deletion should
be considered. The advance that T cell epitope prediction has
gained to this date is mostly due to the higher complexity of
B cell epitopes and the dependence on structural information.
The deimmunization of enzymes compared to peptides and other
proteins is more challenging, since both steric hindrance through
unspecific shielding approaches and alterations of the amino acid
sequence through mutations can reduce enzymatic activity sig-
nificantly. The trend is going towards the development of
increasingly sophisticated algorithms and programs that can (i)
reliably predict epitopes and (ii) suggest possible mutations
which are most effective for deimmunization and at the same
time not detrimental for the activity of the enzyme.
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first listing. Immunogenetics 1995;41(4):178–228.

[78] Andreatta M, Nielsen M. Gapped sequence alignment using artificial neural
networks: application to the MHC class I system. Bioinformatics
2016;32:511–517.

[79] Jones EY, Fugger L, Strominger JL, Siebold C. MHC class II proteins and disease:
a structural perspective. Nat Rev Immunol 2006;6(4):271–82.

[80] Benoist CO, Mathis DJ, Kanter MR, Williams 2nd VE, McDevitt HO. Regions of
allelic hypervariability in the murine A alpha immune response gene. Cell
1983;34:169–77.

[81] Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC.
Structure of the human class I histocompatibility antigen, HLA-A2. Nature
1987;329(6139):506–12.

[82] Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, et al.
Three-dimensional structure of the human class II histocompatibility antigen
HLA-DR1. Nature 1993;364(6432):33–9.

[83] Sette A, Vitiello A, Reherman B, Fowler P, Nayersina R, et al. The relationship
between class I binding affinity and immunogenicity of potential cytotoxic T
cell epitopes. J Immunol 1994;153:5586–92.

[84] Southwood S, Sidney J, Kondo A, del Guercio MF, Appella E, et al. Several
common HLA-DR types share largely overlapping peptide binding repertoires.
J Immunol 1998;160:3363–73.

[85] Sette A, Buus S, Appella E, Smith JA, Chesnut R, Miles C, et al. Prediction of
major histocompatibility complex binding regions of protein antigens by
sequence pattern analysis. Proc Natl Acad Sci U S A 1989;86(9):3296–300.

[86] Rammensee H-G, Bachmann J, Emmerich NPN, Bachor OA, Stevanović S.
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