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Abstract: Active and passive smoking are serious public health concerns Assessment of tobacco
smoke exposure using effective biomarkers is needed. In this study, we developed a simultaneous
determination method of five tobacco-specific nitrosamines (TSNAs) in hair by online in-tube solid-
phase microextraction (SPME) coupled to liquid chromatography-tandem mass spectrometry (LC–
MS/MS). TSNAs were extracted and concentrated on Supel-Q PLOT capillary by in-tube SPME
and separated and detected within 5 min by LC–MS/MS using Capcell Pak C18 MGIII column and
positive ion mode multiple reaction monitoring systems. These operations were fully automated
by an online program. The calibration curves of TSNAs showed good linearity in the range of
0.5–1000 pg mL–1 using their stable isotope-labeled internal standards. Moreover, the limits of
detection (S/N = 3) of TSNAs were in the range of 0.02–1.14 pg mL–1, and intra-day and inter-day
precisions were below 7.3% and 9.2% (n = 5), respectively. The developed method is highly sensitive
and specific and can easily measure TSNA levels using 5 mg hair samples. This method was used to
assess long-term exposure levels to tobacco smoke in smokers and non-smokers.

Keywords: tobacco-specific nitrosamines; hair; exposure biomarkers; in-tube solid-phase microex-
traction (SPME); liquid chromatography-tandem mass spectrometry (LC–MS/MS)

1. Introduction

Active and passive smoking are serious public health concerns because they in-
crease the risk of various cancers, cardiovascular diseases and respiratory diseases [1,2].
A 2020 study by the World Health Organization (WHO) reported that tobacco kills up to
half of the world’s 1.3 billion tobacco users, with active and passive smoking estimated to
kill about 7 million and 1.2 million people per year, respectively [3,4]. In particular, persons
with passive smoking have been reported to have a 1.3-fold higher risk of developing lung
cancer than those without passive smoking [5]. To prevent the health hazards caused by
active and passive smoking, it is essential to understand the exposure level to tobacco
smoke, and the development of a sensitive and specific method for measuring effective
exposure biomarkers is an urgent issue [1,2,6–9].

Tobacco smoke, which can be broadly classified into gaseous and particulate compo-
nents, contains about 5300 chemicals, including more than 500 substances associated with
mutagenicity and carcinogenesis, such as tobacco-specific nitrosamines (TSNAs) [1,7–10].
TSNAs are formed by the nitrozation by nitrite and nitric acid of tobacco leaf alkaloids,
such as nicotine, nornicotine, anatabine and anabasine, in the process of tobacco produc-
tion and combustion [10–12]. The main TSNAs detected in tobacco products and smoke
includes 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK), N’-nitrosonornicotine
(NNN), N’-nitrosoanatabine (NAT), and N’-nitrosoanabasin (NAB). NNK, its major metabo-
lite 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanol (NNAL), and NNN play important
roles as cancer inducers [1,8,10]. NNK and NNN are classified as human carcinogens
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(group 1) in the WHO International Agency for Research on Cancer (IARC), but NAT and
NAB as unclassifiable for human carcinogenicity (group 3) [13].

Although the metabolism of TSNAs is not fully understood, about 31% of NNK ab-
sorbed into the body is metabolized to NNAL [7,11]. The half-life of NNK is 2.6 h [7],
and it is eliminated rapidly from the body after exposure to tobacco smoke. In contrast,
the half-life of NNAL is relatively long, ranging from 10 days to 3 weeks in smokers [1,6,9]
and 40–45 days in oral tobacco users [1,7,8]. Urinary concentrations of NNAL have been
regarded as a biomarker of tobacco smoking and exposure to tobacco smoke [1,6–9,11].
However, urinary concentrations of these compounds are lower in passive than in active
smokers, making them unsuitable for assessing the effects of long-term exposure to en-
vironmental tobacco smoke in non-smokers. On the other hand, hair samples have been
frequently used to assess and monitor the bioaccumulation due to long-term exposure to
exogenous compounds, such as environmental pollutants, drugs and carcinogens [14–19],
because these compounds can remain trapped in hair shafts and the periods and amount of
exposure can be identified depending on their distribution in hair [18]. Another advantage
of using hair is that samples can be collected easily and less invasively and can be stored
at room temperature for up to five years [7,20]. In addition, the amounts of compounds
in the hair are less affected by daily exposure and variations in metabolism than those
in other biological matrices [7,21]. However, the levels of TSNAs in the hair are not only
significantly lower than those in urine but are much lower in passive smokers than in
active smokers [6,7,21–23].

All of the sensitive analysis methods reported for TSNAs in the hair are based on liq-
uid chromatography–tandem mass spectrometry (LC–MS/MS) [21–23]. These methods are
sensitive and specific and useful to identify and quantitate TSNAs in hair, but they require
relatively large amounts (20–150 mg) of hair samples. Moreover, sample preparation is
both tedious and time-consuming, requiring steps, such as liquid–liquid extraction with
dichloromethane and solvent evaporation to dryness, or solid-phase extraction, for sep-
aration and preconcentration of TSNAs. We recently developed a simple and sensitive
method for the simultaneous determination of four TSNAs, excluding NNAL, in main- and
side-stream smoke, involving online in-tube solid-phase microextraction (SPME) coupled
to LC–MS/MS [24]. In-tube SPME, using an open tubular capillary column with an inner
surface coating as an extraction device, is an efficient sample preparation method that
allows automation of the extraction and concentration process and can be easily coupled
online to HPLC or LC–MS system using column switching technique [25–27]. It not only
reduces the use of and exposure to harmful organic solvents but also reduces analysis times
and gives higher sensitivity and good precision. We have reported analytical methods
for various trace contaminants in hair samples using this technique [28–30]. The present
study describes the development of an online in-tube SPME LC–MS/MS method for the
simultaneous determination of five TSNAs, including NNAL, in hair samples and applying
this method to the assessment of tobacco smoke exposure in smokers and non-smokers.

2. Results and Discussion
2.1. Optimization of In-Tube Solid-Phase Microextraction and Desorption of TSNAs

We previously described the optimization of in-tube SPME conditions for four TSNAs,
excluding NNAL [24]. In this study, several parameters, such as type of capillary coating
and number and flow-rate of draw/eject cycles, were optimized for 1 ng mL–1 each of five
TSNAs, including NNAL. Although the peak amount of NNAL was lower than those of the
other TSNAs, all five TSNAs could be efficiently extracted into a Supel-Q PLOT capillary
by more than 25 repeated draw/eject cycles of 40 µL sample at a flow rate of 0.2 mL min–1

(Figures S1 and S2). The absolute extractable amounts of TSNAs onto the capillary column
were calculated by comparing peak area counts with the corresponding amount in standard
solution directly injected onto the LC columns. Although the extraction yields of NNK,
NNN, NAT, NAB and NNAL onto the Supel-Q PLOT column from 1 mL of a standard
solution containing 1.0 ng mL–1 of each compound were 21.0%, 13.3%, 22.0%, 21.8% and
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5.0%, respectively, their coefficients of variation (CVs) were below 5% due to the use of
an autosampler. The TSNAs extracted into the stationary phase of the capillary column
were dynamically desorbed and introduced directly into the LC column by online mobile
phase flow. Since the capillary column was cleaned and conditioned by methanol and
mobile phase flow prior to extraction, no carryover of each analyte or matrix component
was observed.

2.2. LC–MS/MS Analysis of TSNAs and Their Stable Isotope-Labeled Compounds

TSNAs and their stable isotope-labeled compounds were efficiently ionized in the
ESI-positive ion mode. The MS/MS operation parameters, including curtain gas, nebulizer
gas stream ion spray voltage, the corresponding potentials (DP and EP), CE, and CXP,
were optimized for each TSNAs. Under optimum MS/MS conditions, protonated ions [M
+ H]+ (Q1 mass) and prominent fragment ions (Q3 mass) for each compound were detected
as precursor and product ions, respectively. The MRM transitions for confirmation and
quantification and MS/MS parameters set are shown in Table S1. These data were in good
agreement with previously reported data [21,22].

A chromatogram of standard TSNAs by in-tube SPME LC–MS/MS is shown in
Figure 1. Five TSNAs and their IS compounds were eluted as well-formed peaks within
4 min on a Capcell Pak C18 MGIII column and detected selectively in MRM mode. The CV%
of the retention time for each compound was within 5%. The analysis time per sample
was about 28 min, allowing automated analysis of about 50 samples per day by operat-
ing overnight.

1 

 

 Figure 1. Multiple reaction monitoring (MRM) chromatograms of standard tobacco-specific ni-
trosamines (TSNAs) and their stable isotope-labeled compounds. In-tube solid-phase microextraction
(SPME) LC–MS/MS conditions are described in the Experimental section.

2.3. Analytical Method Validation

Linearity was validated by triplicate analyses each for four TSNAs at eight concentra-
tions (0.5, 1.0, 2.0, 5.0, 10, 20, 50, and 100 pg mL–1) and for NNAL at eight concentrations
(5, 10, 20, 50, 100, 200, 500 and 1000 pg mL–1), in the presence of 0.1 ng mL–1 each of
NNK-d3, NNN-d4, NAT-d4 and NAB-d4, and 1 ng mL–1 NNAL-d5. Calibration curves for
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each compound were linear with correlation coefficients above 0.9998 (Table 1). The CVs of
the peak height ratios at each compound’s concentration ranged from 0.3 to 17% (n = 3).

Table 1. Linearity and sensitivity of the in-tube SPME LC–MS/MS method for TSNAs.

TSNA

Linearity LOD 2 (pg mL–1) LOQ 3

(pg mg–1)

Range
(pg mL–1)

Linearity 1

(R2)
Direct

Injection
In-Tube
SPME

In-Tube
SPME

NNK 0.5–100 0.9999 1 0.05 0.03

NNN 0.5–100 1 1.8 0.04 0.03

NAT 0.5–100 0.9999 1.1 0.02 0.02

NBT 0.5–100 0.9998 3.5 0.07 0.04

NNAL 5–1000 0.9999 12.9 1.14 0.75
1 correlation coefficient (n = 24). 2 Limits of detection: pg mL–1 sample solution (signal-to-noise ratio of 3). 3 Limits
of quantification: pg mg–1 hair sample (signal-to-noise ratio of 10).

TSNAs gave superior responses in MRM mode detection, with the LODs (S/N = 3)
of TSNAs in standard solutions ranging from 0.02 to 1.14 pg mL–1 (Table 1). The in-tube
SPME method was about 11 times more sensitive than the direct injection method (5 µL
injection). The LOQs (S/N = 10) of TSNAs were 0.02–0.04 pg mg–1 hair for all of the TSNAs
assayed except NNAL (Table 1). The previously reported LOQs for NNK and NNN were
0.10 and 0.25 pg mg–1 hair, respectively [20], indicating that our method’s sensitivity was
more than 2.5-fold higher. In contrast, the LOQ of NNAL was 0.75 pg mg–1 hair, while that
of previous methods ranged from 0.063 to 0.24 pg mg–1 hair [20,21].

Precision and accuracy were assessed at low and high concentrations of 2 and 20 pg
mL–1 for the four TSNAs except for NNAL and 20 and 200 pg mL–1 for NNAL. The preci-
sion, expressed as CV (%), was validated by performing five independent analyses on the
same day and on five different days. The intra-day and inter-day precisions of these analy-
ses were found to be 2.1–7.3% and 3.0–9.2%, respectively (Table 2). Accuracy was validated
by comparing the measured concentrations of analytes in samples with the known concen-
trations of the analyte added to the samples ((found/added) x 100%). The intra-day and
inter-day accuracies of these analyses were found to be 94–115% and 96–119%, respectively
(Table 2).

Table 2. Precision and accuracy of the in-tube SPME LC–MS/MS method for TSNAs.

TSNA
Nominal Concentration

(pg mL–1)
Precision (CV 1%) (n = 5) Accuracy (%) (n = 5)

Intra-Day Inter-Day Intra-Day Inter-Day

NNK
2 3.6 6.4 100.5 102.5

20 2.7 3.7 100.7 100.3

NNN
2 7.3 9.2 104.5 104.5

20 2.7 4.6 104.7 104.2

NAT
2 4.4 5.2 113.5 112.0

20 2.1 3.0 103.9 105.2

NBT
2 3.1 8.0 114.5 118.5

20 3.0 7.7 94.2 99.3

NNAL
20 4.2 7.6 95.0 96.3
200 4.2 7.0 94.3 99.2

1 CV, coefficient of variation.

These results obtained based on the generally accepted validation criteria recom-
mended in the ICH guidelines [31] show that the method has good linearity, precision
and accuracy.
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2.4. Application to the Analysis of Hair Samples

Since TSNAs absorbed into the body accumulate in the hair, they can be effective
biomarkers for evaluating long-term exposure to tobacco smoke. However, internal TSNAs
accumulated in the hair must be separated from external TSNAs deposited on the outer
surface of the hair before analysis. To remove the external contaminants, the hair samples
are usually prewashed with dichloromethane, methanol or 0.1% sodium dodecyl sul-
fate [14,16,19,22,28]. We ensured that the external TSNAs could be completely removed by
washing the hair samples one each with 0.1% sodium dodecyl sulfate, water and methanol.
The internal TSNAs in hair samples were easily extracted into distilled water by heating
at 80 ◦C for 30 min, and the extract could be directly used for in-tube SPME/LC–MS/MS
without any other pretreatment.

Stable isotope-labeled compounds as IS were added to hair samples prior to extraction
to minimize the influence of matrix effects on the analysis of TSNAs in the samples. Figure 2
shows typical chromatograms obtained from hair samples (corresponding to 2.5 mg) from
smokers and non-smoker. The specificity of this method was verified by analyzing both
blank hairs (i.e., TSNA-free) from a non-smoker and the same hair spiked with the five
TSNAs to check for co-eluting interferences at the retention times of the compounds of
interest. These chromatograms showed no interference with the TSNAs, and their IS
compounds from hair samples. In addition, the overall recovery rates of TSNAs spiked
into hair samples were over 92% (Table 3).
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Figure 2. Typical MRM chromatograms were obtained from hair samples of (A) smokers and (B) non-smoker by in-tube
SPME LC–MS/MS. Analytical conditions are described in the Material and Methods section.
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Table 3. Recoveries of TSNAs spiked into hair samples of a non-smoker.

TSNA
Concentration (pg mg–1 Hair) Recovery

Spiked Mean ± SD (n = 3) (%)

NNK
0 ND 1

2 1.85 ± 0.12 92.3
20 20.0 ± 0.4 100.2

NNN
0 ND -
2 1.95 ± 0.09 97.3

20 19.0 ± 0.8 94.9

NAT
0 ND -
2 1.97 ± 0.07 98.4

20 20.1 ± 0.2 100.4

NAB
0 ND -
2 1.92 ± 0.05 96.2

20 19.7 ± 0.2 98.3

NNAL
0 ND -

20 18.7 ± 0.9 93.7
200 205.4 ± 0.8 102.7

1 not detectable.

The developed method was used to analyze TSNA concentrations in hair samples
from 25 smokers and 29 non-smokers. Of the five TSNAs assayed, NNK and NNN were
present at higher concentrations in hair samples from smokers than the other compounds
(Table 4). Although NAT and NBT were often detected at low concentrations, NNAL was
not detected at all. In contrast, NNK and NNN were present at low concentrations in hair
samples from some non-smokers, whereas NAT, NBT and NNAL were not detected at all.

Table 4. Detection frequencies and contents of TSNAs in hair samples of smokers and non-smokers.

TSNA

Smokers (n = 24) Non-Smokers (n = 29)

Detection
Frequency

(%)

Content (pg mg–1 Hair) Detection
Frequency

(%)

Content (pg mg–1 Hair)

Mean ± SD Min.1 Med. 1 Max. 1 Mean ± SD Min. Med. Max.

NNK 100 0.95 ± 0.96 2 0.08 0.68 3.97 34 0.05 ± 0.08 2 0.00 0.00 0.25
NNN 100 0.43 ± 0.85 3 0.02 0.22 4.44 14 0.02 ± 0.06 3 0.00 0.00 0.24
NAT 68 0.09 ± 0.09 0.00 0.08 0.35 0 ND 0.00 0.00 0.00
NBT 88 0.13 ± 0.27 0.00 0.06 1.09 0 ND 0.00 0.00 0.00

NNAL 0 ND 4 ND ND ND 0 ND 0.00 0.00 0.00

Total 100 1.61 ±1.55 5 0.11 1.08 6.72 34 0.08 ± 0.11 5 0.00 0.00 0.31
1 Min., minimum; Med., median; Max., maximum. 2, 3, 5 p < 0.01, probability (significant difference t-test between smokers and non-smokers).
4 Not detectable.

Although analysis of 150 mg samples of hair from smokers showed the presence of
NNAL at concentrations of 0.27–0.67 pg mg–1 [22], analysis of 20 mg samples of hair from
non-smokers failed to detect any NNAL [21]. Our study, however, found that NNAL was
undetectable in hair samples from both smokers and non-smokers. The concentrations of
NNK and NNN in the hair samples from smokers were significantly higher than those
from non-smokers (p < 0.01), and total TSNA concentrations in hair samples were about
20 times higher in smokers than in non-smokers. These results indicate that NNK and
NNN in hair are effective biomarkers to assess long-term exposure to tobacco smoke.
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3. Materials and Methods
3.1. Reagents and Standard Solutions

Five standard TSNAs, NNK, NNN, NAT, NAB and NNAL, and their stable isotope-
labeled compounds, NNK-d3 (isotopic purity 99.9%), NNN-d4 (isotopic purity 97.8%),
NAT-d4 (isotopic purity 98.0%), NAB-d4 (isotopic purity 99.7%) and NNAL-d5 (isotopic
purity 97.8%) as each internal standard (IS) (supplementary Figure S3), were purchased
from Toronto Research Chemicals Inc. (North York, ON, Canada). Stock solutions of
1.0 mg mL–1 of each compound were prepared by dissolving in LC–MS grade acetonitrile
and diluted with distilled water to the required concentration prior to use. The mixed
standard solution consisted of 1 ng mL–1 each of NNK, NNN, NAT and NAB and 10 ng
mL–1 NNAL, whereas the mixed IS solution consisted of 0.1 ng mL–1 each of NNK-d3,
NNN-d4, NAT-d4 and NAB-d4, and 1 ng mL–1 NNAL-d5. These prepared solutions were
stored at 4°C. Methanol and distilled water as mobile phases were of LC–MS grade, while
all other chemicals were of analytical reagent grade.

3.2. Preparation of Hair Samples

Hair samples were provided by 54 healthy Japanese volunteers (46 men and 8 women,
aged 23–68 tea), including 25 smokers and 29 non-smokers. Approximately 10 mg of hair
was collected from the back of each subject’s head, washed with 0.1% sodium dodecyl
sulfate, water and methanol, and stored in an amber glass desiccator at room temperature
until use. About 5 mg of hair cut into small pieces with scissors was weighed into a 7 mL
screw-cap vial, to which 0.1 mL of water and 0.1 mL of the mixed IS solution were added,
and the vial was heated and extracted at 80 ◦C for 30 min with the cap. The extract was
cooled to room temperature and filtered through a 45 µm hydrophilic PTFE syringe filter
(Shimadzu GLC Ltd., Tokyo, Japan). For in-tube SPME LC–MS/MS analysis, 0.1 mL of the
filtrate was taken into a 2.0 mL autosampler vial with the septum, and the total volume
was made up to 0.5 mL with distilled water. The concentrations of each TSNA in hair were
calculated using a calibration curve constructed from the ratios of peak heights of each
TSNA to the peak heights of their IS compounds.

3.3. LC–MS/MS Analysis

LC–MS/MS analysis was essentially performed as described in our previous work [24]
using an Agilent Technologies Model 1100 series LC system and an Applied Biosys-
tems API 4000 triple, quadruple mass spectrometer. A Capcell Pak C18 MGIII column
(100 mm × 2.0 mm, particle size 5 µm; Shiseido, Tokyo, Japan) was used as a separation
column. The LC conditions were as follows: column temperature, 40 ◦C; mobile phase,
5 mM ammonium acetate/methanol containing 0.1% acetic acid (50/50, v/v); flow rate,
0.2 mL min–1. Electrospray ionization (ESI)–MS/MS conditions were as follows: turbo ion
spray voltage and temperature, 5000 V and 600 ◦C; ion source gases (GS1 and GS2) flows,
50 and 80 L min–1; curtain gas (CUR) flow, 40 L mL–1, collision gas (CAD) flow, 4.0 L min–1.
Multiple reaction monitoring (MRM) transitions in positive ion mode and other setting
parameters, including dwell time, declustering potential (DP), entrance potential (EP),
collision energy (CE), and collision cell exit potential (CXP), are shown in Supplementary
Table S1. Analyst Software 1.3.1 (Applied Biosystems, Foster City, CA, USA) was used for
LC–MS/MS data analysis.

3.4. In-Tube SPME

In tube, SPME was essentially performed as described in our previous works [24,29].
A GC capillary column (60 cm × 0.32 mm i.d.) as an extraction device was connected
between the injection needle and injection loop of the autosampler. The capillary column
was threaded through a 1/16 inch polyetheretherketone (PEEK) tube with a 2.5 cm long,
330 µm inner diameter and connected using standard 1/16 inch stainless steel nuts, ferrules
and connectors. Supel-Q PLOT (Supelco, Bellefonte, PA, USA), Carboxen 1010 PLOT
(Supelco), CP-Sil 5CB (Varian Inc., Lake Forest, CA, USA), CP-Sil 19CB (Varian), CP-Wax
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52CB (Varian), and Quadrex 007-5 (Quadrex Corporation, Woodbridge, CT) were used to
compare extraction efficiencies. The control of extraction, desorption, and injection was
programmed by the autosampler software (Table S2) [24,29].

4. Conclusions

The automated online in-tube SPME LC–MS/MS method developed in this study
enabled continuous extraction and enrichment of five TSNAs and their sensitive and
selective simultaneous analysis. The method is easy to apply to the analysis of a few
milligrams of hair samples without tedious pretreatment. Therefore, the proposed method
can be a useful tool for biomonitoring smoking levels and for assessing long-term exposure
to tobacco smoke over days to months.

Supplementary Materials: The following are available online, Figure S1: Structures of the five
TSNAs and their stable isotope-labeled TSNAs as internal standards; Figure S2: Schematic diagrams
of the automated online in-tube SPME/LC–MS/MS system; Figure S3: Effects of capillary coatings
on the in-tube SPME of TSNAs. TSNAs were extracted by 30 draw/eject cycles of 40 µL of standard
solution (1 ng mL–1) at a flow rate of 200 µL min–1; Figure S4: Effects of the number of draw/eject
cycles on the in-tube SPME of TSNAs. TSNAs were extracted on a Supel-Q PLOT capillary column
by the indicated number of draw/eject cycles of 40 µL of standard solution (1 ng mL–1) at a flow
rate of 200 µL min–1; Table S1: MRM transitions and setting parameters for TSNAs and their stable
isotope-labeled compounds; Table S2: Program for the in-tube SPME process.
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