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Abstract

Introduction

Regulating excessive activation of fibroblasts may be a promising target to optimize extra-

cellular matrix deposition and myocardial stiffness. Fibroblast activation protein alpha (FAP)

is upregulated in activated fibroblasts after myocardial infarction (MI), and alters fibroblast

migration in vitro. We hypothesized that FAP depletion may have a protective effect on left

ventricular (LV) remodeling after MI.

Materials and methods

We used the model of chronic MI in homozygous FAP deficient mice (FAP-KO, n = 51) and

wild type mice (WT, n = 55) to analyze wound healing by monocyte and myofibroblast infil-

tration. Heart function and remodeling was studied by echocardiography, morphometric

analyses including capillary density and myocyte size, collagen content and in vivo cell-pro-

liferation. In non-operated healthy mice up to 6 months of age, morphometric analyses and

collagen content was assessed (WT n = 10, FAP-KO n = 19).

Results

Healthy FAP-deficient mice did not show changes in LV structure or differences in collagen

content or cardiac morphology. Infarct size, survival and cardiac function were not different

between FAP-KO and wildtype mice. FAP-KO animals showed less LV-dilation and a thicker

scar, accompanied by a trend towards lower collagen content. Wound healing, assessed by

infiltration with inflammatory cells and myofibroblasts were not different between groups.

Conclusion

We show that genetic ablation of FAP does not impair cardiac wound healing, and attenu-

ates LV dilation after MI in mice. FAP seems dispensable for normal cardiac function and

homeostasis.
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Introduction

The myocardial extracellular matrix (ECM) is a critical component in normal and pathophysi-

ological conditions of the heart, and is mainly regulated by cardiac fibroblasts [1]. During

early ventricular remodeling after myocardial infarction (MI) the invasion and activity of myo-

fibroblasts is critical for wound healing and scar development [2, 3]. However, elevated deposi-

tion of ECM by fibroblasts leads to cardiac dysfunction in late remodeling [4]. Protecting the

left ventricle (LV) from detrimental remodeling after MI is still a challenge. Even if the current

medical treatment options after MI including RAAS inhibitors, mineralocorticoid antagonists

and beta blockers show beneficial effects, there is still no specific antifibrotic treatment option

for chronic ventricular remodeling [4].

The dipeptidyl-peptidase Fibroblast activation protein α (FAP) is a serine protease expressed

by activated fibroblasts after MI in animals and humans [5, 6]. FAP is highly expressed in acti-

vated fibroblasts by a TGFβ-driven mechanism after MI in rats, and promotes fibroblast

migration and exerts gelatinolytic activity in vitro [5]. FAP pos activated fibroblasts are present

in hearts of patients with chronic ischemic cardiomyopathy, demonstrating persistent fibrotic

activity in these patients [5]. FAP was also detected in human atherosclerotic plaques and asso-

ciated with plaque progression and fibrous cap thinning [7], whereas deletion of FAP

decreased atherosclerotic plaque formation in a mouse model [8]. Increased expression of FAP

was also found in pathological fibrotic diseases like idiopathic pulmonary fibrosis [9], liver cir-

rhosis [10] and keloids [11] as well as in stromal soft tissue of several kinds of cancer [12–14].

In healthy hearts and other tissues the expression of FAP is absent or very low [12, 15].

A first successful attempt has been described to reduce cardiac fibrosis by targeting FAP-

expressing fibroblasts in rodents using antigen-specific CD8pos T cells in angiotensin II/phen-

ylephrine induced myocardial fibrosis [16]. Because therapies targeting FAPpos myofibroblasts

will also alter myocardial FAP levels, it is important to understand the function and patho-

physiological significance of FAP deficiency in normal healthy hearts and post-MI in vivo.

Since FAP is upregulated in fibrotic diseases and especially after MI and alters fibroblast

migration, we hypothesized that FAP depletion may have a protective effect on LV remodeling

after MI.

Materials and methods

Additional materials and methods are presented as Supplementary Online Material.

Experimental myocardial infarction in mice

Myocardial infarction (MI) was induced in female homozygous FAP-deficient mice (FAP-KO,

n = 51) on a C57BL/6NCrl background [17], generated by Niedermeyer et al. [18], or wildtype

C57BL/6NCrl mice (n = 55) aged 12 weeks as described previously [19, 20]. Briefly, under 1.5–

2% isoflurane anesthesia (induction with 5% isoflurane), the thorax was opened and the proxi-

mal left anterior descending coronary artery was occluded using a 5–0 suture. Animals were

kept warm with a heating pad. Depth of anesthesia was tested using the pedal withdrawal

reflex. Analgesia was maintained using buprenorphine (0.05 mg/kg BW i.p.). Before and after

surgery, animals were housed in the animal facility and monitored daily for activity and signs

of pain. Surviving animals were euthanized by cardiac arrest using intracardiac injection of

saturated potassium chloride solution and hearts removed at 7 days and 4 weeks after MI. An

additional group of mice was studied without surgery for six months to assess physiological

changes in animals (WT n = 10, FAP-KO n = 19). The hearts were removed for anatomical,

histological and western blot analyses and fixed with paraformaldehyde or frozen. Short term

survival analysis was performed in a subgroup of 56 operated animals (WT operated n = 26,
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surviving n = 12; FAP-KO n = 30, surviving n = 12). Analysis for ventricular rupture was per-

formed by macroscopic inspection in a subgroup of WT (n = 11) and FAP KO (n = 13) oper-

ated animals. Animal studies were conducted in accordance with the principles and

procedures outlined in the Guide for the Care and Use of Laboratory Animals and were

approved by the local government (Regierung von Unterfranken permission number K 55.2–

2531.01-64/09).

Echocardiographic analysis

We performed serial transthoracic echocardiography at days 1, 14 and 28 after MI by an expe-

rienced technician as described previously by Vogel et al. [21]. Echocardiography was per-

formed under isoflurane anesthesia and spontaneous respiration. The endocardial borders

were traced at end-systole and end-diastole with the help of a prototype analysis off-line system

(NICE; Toshiba Medical System, Netherlands). Parameters were measured at the mid-papil-

lary and apical muscle level in B-Mode images.

Immunohistochemistry of mouse myocardial tissue

Frozen or formalin-fixed paraffin-embedded sections from mouse hearts were stained with

antibodies against CD68, α smooth muscle actin (SMA) and CD31 and quantified as described

in S1 Material. At 28 days after MI, hearts were analyzed for the number of CD31pos capillaries.

For analysis of myocyte size, H&E stained formalin fixed paraffin embedded sections were

imaged at 20x magnification, and areas of cross sectioned myocytes were analyzed in the intact

myocardium using Image Pro Plus software (Media Cybernetics, Bethesda, USA).

Analysis of cell proliferation in vivo

For detection of myocardial cell proliferation in vivo, MI was induced in female WT and

FAP-KO mice at 12 weeks of age (n = 4 each). BrdU (Roche), 50 mg per kg body weight, was

injected twice a day every day before sacrifice on day 14. For immunofluorescent staining of

BrdU, formalin fixed, paraffin embedded tissues were sectioned at 4 μm, and heat induced

antigen retrieval was performed using Histosafe Enhancer (Linaris, Germany). After a block-

ing-step using 10% donkey serum in PBS, sections were sequentially incubated with primary

antibodies against BrdU (5-Bromo-2deoxy-uridine Labeling and detection kit, Roche) and

detected by fluorescent secondary antibodies (Jackson ImmunoResearch). Nuclear DNA was

labeled using DAPI (Invitrogen). Images were obtained at 20x with a Nikon NiE microscope,

quantitative analysis of BrdU-positive and BrdU-negative nuclei was performed in the scar

and the surviving free wall adjacent to the scar using Image Pro Plus software (Media Cyber-

netics, Bethesda, USA), and proliferation index was calculated. Image processing with Photo-

shop (Adobe) included changes in brightness, contrast and tonal range, and was applied

equally across the entire image.

Analysis of collagen content after MI and in healthy mice

Collagen content in the intact myocardium was analyzed 28d after MI by analyzing picrosirius

red stained tissues sections. In healthy mice 6 months of age, collagen content was measured

by use of hydroxyproline assay.

Statistics

Data are presented as mean ± SE. We used the Mann-Whitney-U test for analysis of differ-

ences between two groups. Differences in ventricular ruptures between groups were analyzed
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by Fisher’s exact test. A value of P less than 0.05 was considered statistically significant. Statisti-

cal analysis was performed with Prism 5 (GraphPad).

Results

FAP deficiency does not impact LV morphology and fibrosis in healthy

mice

We performed histological analyses in nonoperated healthy mice up to the age of six months.

No differences between FAP-KO mice and WT mice in body weight, heart weight, LV mor-

phology were observed (S1 Fig). Of note, collagen content, as measured by hydroxyproline

assay, was similar in both groups indicating unaltered collagen homeostasis in healthy mice up

to 6 months of age. Moreover, isolated fibroblasts from hearts of WT and FAP-KO mice

showed no overt difference in phenotype and growth properties (S2 Fig).

LV dilation is reduced in FAP deficient animals after MI

We used the established model of chronic occlusion of the left coronary artery to induce large

MI. Infarct size did not differ significantly between the FAP-KO group and WT group 7 and

28 days after MI (Fig 1A). Postoperative survival rate was similar in FAP-KO and WT mice

two weeks after MI (WT: 50%, FAP-KO: 45%, n.s., Fig 1B). No difference in number of ven-

tricular ruptures between FAP-KO and WT mice was observed in a subgroup of infarcted

Fig 1. Infarct size, anatomical and morphometric measurements in FAP-KO and WT mice 7 days (WT: n = 8, FAP-KO: n = 5) and 28 days

(WT: n = 8, FAP-KO: n = 12) after MI. A) Myocardial infarction (MI) size was not different between groups after 7 or 28 days. At 28 days after MI,

average scar thickness and minimal scar thickness was higher in FAP-KO animals, resulting in reduced infarct expansion index compared to WT. B)

Survival after MI was not different in both groups in the first 14 days. C) H&E stained sections of the LV 7d (left panels) and 28d (right panels) after

MI. � = p<0.05 WT vs. FAP-KO. Plots show individual data and mean. Mann-Whitney-U test. Scale bars = 1mm.

https://doi.org/10.1371/journal.pone.0248196.g001
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mice: Ventricular rupture was assumed in 5 out of 11 (45%) infarcted WT animals, and in 5

out of 13 (39%) infarcted FAP-KO animals (n.s.). FAP deficiency in FAP-KO animals was con-

firmed by western blot in infarcted hearts and in isolated cardiac fibroblasts from normal

healthy hearts (S2A and S2B Fig).

To evaluate anatomical changes after MI, we performed morphometric analyses in trans-

versal sections of infarcted hearts. At 7 days after MI, morphometric parameters were not dif-

ferent between groups (Fig 1A). In contrast, at 28 days after MI minimum and average scar

thickness were about 70% larger in the FAP-KO group compared to the WT group (p<0.05).

Accordingly, infarct expansion index was decreased in FAP-KO animals (WT: 5.7±0.6,

FAP-KO: 3.5±0.3, p<0.05). No differences were observed in LV area (WT: 8.2±0.6mm2,

FAP-KO: 8.8±0.6mm2, n.s.), LV cavity area (WT: 18.4±2.3mm2, FAP-KO: 14.6±1.2mm2, n.s.)

and septum thickness after MI at 28 days after MI (Fig 1A). Body weight, wet lung weight, LV

weight and RV weights did not show any difference between groups (S3 Fig).

We performed echocardiographic analyses to examine functional effects of FAP deficiency

at days 1, 14 and 28 after MI (Fig 2; S1 Table). Corresponding to the reduced infarct expansion

index in FAP-KO animals, end-diastolic area at papillary muscle level was decreased at 14 days

(-21%, p<0.05) and 28 days (-17%, p<0.05) after MI in FAP-KO animals as compared to WT

animals. Furthermore, end-systolic area at the papillary muscle level was also decreased 28

days after MI in FAP-KO animals (-21%, p<0.05). In agreement with the previous findings a

trend towards reduced end-systolic and end-diastolic LV area was also detected when mea-

sured at the LV apical levels (S1 Table). LV systolic function as measured by fractional shorten-

ing was not different between groups at both time points.

Together, these results demonstrate improved LV remodeling by reduced LV dilation in

FAP-KO animals at 28 days after MI.

Monocyte and fibroblast infiltration are not altered in FAP deficient mice

after MI

To understand possible mechanisms responsible for improved LV remodeling in FAP-KO

mice, we analyzed the myocardium by immunohistochemistry at 7 days after MI. In both

groups, infarcted myocardium was infiltrated with SMApos myofibroblasts and CD68pos

monocytes at 7d after MI, and no difference in expression of both markers was apparent

between groups (Fig 3A and 3B). Additionally, total cell density and cell proliferation in intact

Fig 2. Echocardiography in FAP-KO and WT mice 14 and 28 days after MI. Left ventricular end-diastolic (PA

EDA) and end-systolic area (PA ESA) measured at the papillary level was reduced in FAP-KO animals as compared to

wild-type animals. Moreover, there was a trend towards increased fractional shortening (PA 2D FS) at papillary level in

the FAP-KO group. � = p<0.05 WT vs. FAP-KO. Mann-Whitney-U test. Plots show individual data and mean. WT:

n = 8, FAP-KO: n = 12.

https://doi.org/10.1371/journal.pone.0248196.g002
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Fig 3. Quantitative analysis of stained area fractions of CD68 (A) and α-SM actin (B) in the intact and infarcted myocardium

(inf.) at 7 days after myocardial infarction (MI). In the intact myocardium, CD68 and α-SM actin expression was very low. In

contrast, infarcted myocardium showed robust expression of both CD68 and alpha-SM actin, with no significant difference

between both groups. Representative LV sections shown in A (CD68) and B (α-SM actin) are from the same animal in WT (left

panels) or FAP-KO group (right panels), respectively. C) Nuclear density and proliferation index were analyzed in animals

treated with twice daily BrdU injections for 14 days after MI. While there was increased nuclear density and proliferation in the

infarcted myocardium compared to intact myocardium at 14 days after MI, no differences between nuclear density or

proliferation index in WT vs. FAP-KO animals were detected (n.s.). Plots show individual data and mean. A: WT n = 7, FAP-KO

n = 4; B: WT n = 8, FAP-KO n = 5; C: WT n = 3, FAP-KO n = 4; Mann-Whitney-U test. Scale bars = 500μm (A,B) or 10μm (C).

https://doi.org/10.1371/journal.pone.0248196.g003
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or infarcted myocardium was not different between groups at 14d after MI, respectively (Fig

3C), indicating integrity of the cellular wound healing response after MI in FAP-KO mice.

Next, we analyzed the intact myocardium by immunohistochemistry at 28 days after MI to

evaluate possible effects of FAP deficiency on myocytes, capillaries and collagen content.

There were no differences in myocyte cross sectional area as well as capillary density in

FAP-KO and WT mice (Fig 4). Collagen content, as measured by picrosirius red staining,

showed a modest trend towards less collagen deposition in the FAP-KO group (n.s.).

Together, the morphometric results indicate unaltered inflammatory and fibroblast infiltra-

tion at the early wound healing phase, and a slight trend towards less collagen deposition in

the chronic remodeling phase after MI in FAP-KO animals.

Discussion

The serine protease FAP is upregulated after MI and primarily identifies activated myocardial

fibroblasts [5, 6], but so far no studies have analyzed the physiological role of FAP in the heart

in vivo. In this study, we show that genetic ablation of FAP does not alter cardiac wound heal-

ing but attenuates LV dilation after MI in mice.

FAP deficiency attenuates LV dilation without affecting collagen content

after MI

We analyzed the role of FAP on LV geometry and scar morphology after MI and show that the

minimal and average scar thickness was greater in FAP deficient animals as compared to wild-

type animals, thus attenuating LV dilation after 28 days. This data was also supported by echo-

cardiography showing less LV dilation in FAP deficient animals. At the same time, animals did

not show differences in signs of heart failure as body weight, heart and lung weights were not

different in both groups.

Adverse cardiac remodeling with LV enlargement determines clinical impairment and

mortality [22]. Therefore, improvement of cardiac remodeling is one of the main aims of cur-

rent heart failure therapy [4]. LV morphology and dilation is dependent on collagen accumula-

tion and structure, and balanced matrix degradation and production is a hallmark of post-MI

wound healing. Matrix degradation is primarily performed by enzymes such as matrix metal-

loproteinases (MMP). In fact, inhibition of MMP activity has been studied extensively and

shown to improve myocardial remodeling [23]. Genetic deletion of MMP-9 improved LV

remodeling after MI [24]. Instead, cardiac overexpression of membrane type-1 matrix metallo-

proteinase (MT1-MMP) resulted in reduced LV function and increased fibrosis after MI [25].

Fig 4. Quantitative analysis of myocyte cross sectional area (A), capillary density (B) and collagen content (C) in surving myocardium at 28

days after myocardial infarction (MI), showing no difference between groups. Plots show individual data and mean. A: WT n = 7, FAP-KO

n = 9; B: WT n = 7, FAP-KO n = 10; C: WT n = 8, FAP-KO n = 12; Mann-Whitney-U test. Scale bars = 10μm (A), 50μm (B), 20μm (C).

https://doi.org/10.1371/journal.pone.0248196.g004
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In the study by Ducharme et al., LV dilation was accompanied by reduced collagen content

and reduced inflammatory cell infiltration in MMP9-deficient mice after MI [24]. In compari-

son to these studies, we found only mild improvement in LV geometry in FAP-KO animals

without difference in LV function, which might be a result of the only slightly reduced collagen

content in the FAP-KO animals after MI, indicating that FAP has only minor effects on colla-

gen homeostasis in the heart in vivo within the first 4 weeks after MI.

FAP is induced by TGFβ and TGFβ is one of the main profibrotic cytokines in the heart,

highly upregulated after MI and necessary for improved wound healing and remodeling [5, 26,

27]. However, the reason why we did not find significant differences in collagen deposition

between groups remains unclear. In this regard, a study using a TGFβ-overexpression model

of chronic pulmonary fibrosis in mice also demonstrated only little effects of FAP deficiency

on pulmonary fibrotic response [28]. This suggests in line with our results that TGFβ-induced

tissue fibrosis is not mediated nor altered by FAP. Moreover, we demonstrated that 6 months

old animals did not show any difference in LV morphology, indicating that FAP is not essen-

tial in normal myocardial homeostasis. This is further supported by data from Niedermayer

et al. describing no developmental defects and normal heart morphology in FAP-deficient

mice [18].

Wound healing is not altered in FAP deficient animals

The initial wound healing phase after MI is critical for myocardial healing and paves the way

for infarct repair [29], and depletion of monocytes/macrophages after MI leads to severely

compromised extracellular matrix remodeling and increased infarct expansion [30]. In our

study we found inflammatory cell infiltration, myofibroblast differentiation, overall cell den-

sity and cell proliferation to be not different between groups, indicating a normal wound heal-

ing response after MI [29]. These results suggest that FAP is not crucial for cell proliferation,

adherence and migration within the myocardium after MI.

Of note, FAP is expressed in atherosclerotic plaques but its role in regulating inflammatory

and fibrotic response is still poorly understood [7, 8, 31]. Two recent studies reported contrast-

ing data: Monslow et al. demonstrated that global deletion of FAP in ApoE−/− mice accelerated

atherosclerotic disease progression by altering macrophage infiltration into the vulnerable pla-

que [31]. Instead, Stein et al. reported that deletion of FAP in ApoE−/− mice resulted in

decreased atherosclerotic plaque formation [8]. These diverging results show that while FAP

has a role in atherosclerotic plaque progression, the mechanisms involved are not yet fully

understood. Together with our findings we assume with reason that other factors, including

well-known matrix degrading enzymes such as matrix-metalloproteinases are involved

together with FAP in regulating myocardial ECM content and cell migration in the heart after

MI, compensating the loss of FAP in the heart in FAP deficient mice [32].

Study limitations

A main limitation of the study was the relatively low number of mice and few time points to be

analyzed. Moreover, we only studied mice at 7 and 28 days after MI. Collagen accumulation

extends with time [33], and there might be a difference in ventricular collagen content at later

timepoints between WT and FAP-KO animals. Likewise, we did not detect differences in heart

failure symptoms, ventricular rupture and mortality between groups. A longer study period

extending 28 days post-MI might have shown a beneficial effect of genetic FAP deletion on

symptoms of heart failure, ventricular rupture or mortality. In this study we only compared

infarcted wild type and FAP-KO mice, but a sham group without MI is missing.
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Our results do not reveal a mechanistic cause for the improved remodeling in FAP-KO

mice, and future studies are needed to assess the clinical value, if any, of FAP deletion after MI.

Because collagen metabolism and ventricular remodeling are different between species [34],

studies of FAP depletion in larger animal models are necessary.

Conclusion

The aim of the present study was to analyze whether FAP deficiency may have a protective

effect after MI. In fact, MI in FAP-KO mice was associated with reduced LV dilation and did

not negatively impact wound healing.

High left ventricular FAP signal intensities as measured by positron-emission-tomography

are associated with cardiovascular and metabolic risk factors such as hypertension, diabetes

mellitus and obesity [35]. Moreover, advances have been made using therapies depleting FAP

cells to treat cancer disease, which could potentially affect the heart [16, 36]. Because therapies

targeting FAPpos (myo)fibroblasts will likely alter myocardial FAP levels, it is of importance to

understand the function and pathophysiological significance of FAP deficiency in normal

healthy hearts and post-MI in vivo.

Here, we describe for the first time that genetic ablation of FAP has beneficial effects after

MI, and does not alter myocardial structure in healthy animals until 6 months of age. Our

study indicates that new therapies associated with a reduction of myocardial FAP levels are

safe and can be further developed. More studies are warranted to evaluate the effect of deplet-

ing FAPpos cell populations on cardiac function and healing after MI in larger animal models.

Supporting information

S1 Fig. Anatomical and morphometric measurements, collagen content in healthy

FAP-KO and WT mice at age of 6 months. Body weight was slightly, but significant less in

FAP-KO animals compared to WT (A). However, heart weight corrected for tibia length, as

well as LV area and LV cavity area (LV area/LV cavity) were not different between groups (B).

Collagen content, as measured by hydroxyproline assay, showed no significant difference

between groups (C). H&E stained representative examples of LV transversal sections at age 6

months (D). � = p<0.05 WT vs. FAP-KO. Plots show individual data and mean. A: WT n = 10,

FAP-KO n = 19; B: WT n = 5, FAP-KO n = 9; C: WT n = 5, FAP-KO n = 5; Mann-Whitney-U

test. Scale bars = 1mm.

(TIF)

S2 Fig. Expression of FAP in wildtype and FAP-KO mice was analyzed by western blot.

FAP was expressed in the infarct area of WT mice 7 days after myocardial infarction (MI), but

not in FAP-KO mice (A). Likewise, FAP was expressed in isolated cardiac fibroblasts of WT

mice, but not in FAP-KO mice (B). The monoclonal FAP-antibody detects the FAP monomer

(85 kDa) and DPPIV (115 kDa) under reducing conditions, as shown previously (1). Cardiac

fibroblasts isolated from hearts of healthy WT and FAP-KO animals showed no differences in

cell morphology and growth (C).

(TIF)

S3 Fig. Body weight, lung weight, as well as left ventricular (LV) and right ventricular (RV)

weights were not different between WT (n = 8) and FAP-KO mice (n = 12) at 28 days after

MI. Plots show individual data and mean. Mann-Whitney-U test.

(TIF)

S1 Raw image. A) Uncropped western blot of expression of FAP in wildtype (WT) and

FAP-KO (KO) mice in samples of infarct area as shown in S2A Fig. On the left panel the

PLOS ONE FAP-KO attenuates LV dilation after MI

PLOS ONE | https://doi.org/10.1371/journal.pone.0248196 March 5, 2021 9 / 12

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0248196.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0248196.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0248196.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0248196.s004
https://doi.org/10.1371/journal.pone.0248196


staining with FAP antibody is shown. The blot was flipped horizontally in S2A Fig to match

lane layout (left: WT, right: KO) with S2B Fig. On the right panel staining with antibody for

housekeeping gene GAPDH for loading control is shown. B) Uncropped western blot of iso-

lated cardiac fibroblasts shown in S2B Fig. Left panel shows staining with FAP antibody. Right

panel shows staining with antibody for housekeeping gene GAPDH for loading control. The

western blot analysis contained also samples from wildtype HT 1080 cells (HT1080 cells wild

type), FAP-overexpressing HT1080 cells (hFAP overexpressing HT 1080 cells) and recombi-

nant human FAP- and DPPIV-Protein (recombinant human FAP/ human DPPIV) serving as

controls. In S2A and S2B Fig only the groups WT and KO are shown. Antibodies used are

given in S1 Material.

(PDF)
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