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Chiral phosphoric acid catalyzed aminative
dearomatization of α-naphthols/Michael addition
sequence
Zi-Lei Xia1, Chao Zheng 1, Ren-Qi Xu1 & Shu-Li You 1,2

Asymmetric dearomatization reactions have recently emerged as a powerful tool for the rapid

build-up of the molecular complexity. Chiral three-dimensional polycyclic molecules bearing

contiguous stereogenic centers can be synthesized from readily available planar aromatic

feedstocks. Here we report that an intermolecular asymmetric dearomatization reaction of α-

naphthols bearing a tethered nucleophile at the C4 position of the naphthol ring is achieved

by a chiral phosphoric acid. The reaction proceeds via a highly chemo- and regioselective

aminative dearomatization/Michael addition sequence, affording a wide array of functiona-

lized cyclic ketones in good yields (up to 93%) with excellent enantioselectivity (up to >99%

ee). The catalyst loading can be reduced to 0.1 mol%. Preliminary mechanistic investigations

identify that the enantioselectivity is established in the dearomatization step, while the

Michael addition is the rate-limiting step. A working model accounting for the origin of the

stereochemistry is proposed based on DFT calculations.

https://doi.org/10.1038/s41467-019-11109-9 OPEN

1 State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of
Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, 200032 Shanghai, China. 2 Collaborative Innovation Center of Chemical
Science and Engineering, 300072 Tianjin, China. Correspondence and requests for materials should be addressed to C.Z. (email: zhengchao@sioc.ac.cn)
or to S.-L.Y. (email: slyou@sioc.ac.cn)

NATURE COMMUNICATIONS |         (2019) 10:3150 | https://doi.org/10.1038/s41467-019-11109-9 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-7349-262X
http://orcid.org/0000-0002-7349-262X
http://orcid.org/0000-0002-7349-262X
http://orcid.org/0000-0002-7349-262X
http://orcid.org/0000-0002-7349-262X
http://orcid.org/0000-0003-4586-8359
http://orcid.org/0000-0003-4586-8359
http://orcid.org/0000-0003-4586-8359
http://orcid.org/0000-0003-4586-8359
http://orcid.org/0000-0003-4586-8359
mailto:zhengchao@sioc.ac.cn
mailto:slyou@sioc.ac.cn
www.nature.com/naturecommunications
www.nature.com/naturecommunications


The demands for effective assembly of diverse molecular
scaffolds are continuously growing along with the devel-
opment of organic chemistry. Among various kinds of

strategies that aim to rapidly increase molecular complexity,
catalytic asymmetric dearomatization (CADA) reactions1–12 have
recently received considerable attention of the synthetic com-
munity. They are capable of significantly enriching the chemical
space by converting readily available planar aromatic compounds
to diverse three-dimensional molecules bearing spiro or fused
polycyclic skeletons with multiple stereogenic centers including
quaternary ones.

Naphthols serve as important aromatic feedstocks in organic
chemistry. However, the asymmetric dearomatization reactions of
naphthols are relatively less explored compared with those of
other electron-rich arenes like indoles13–18. With the oxidation
system consisting of a chiral hypervalent iodine reagent and
m-CPBA as the terminal oxidant19–29, or transition-metal cata-
lysts that are capable of promoting single electron oxidation30,31,
α- or β-naphthols could react with intra- or intermolecular
nucleophiles to yield chiral functionalized cyclic ketones. Notably,
the asymmetric dearomatization reactions under non-oxidative
conditions are rather limited within β-naphthols32–52, and the
corresponding reactions of α-naphthols are relatively rare. In
2015, Luan and coworkers reported an elegant Pd-catalyzed
dynamic kinetic asymmetric transformation of 4-(2-bromoaryl)-
α-naphthols with alkynes for the synthesis of chiral spirocyclic
enones53. Sporadic examples of non-oxidative asymmetric dear-
omatization of α-naphthols via organocatalytic chlorination37,
annulation54, Ir-catalyzed allylic alkylation38, or Pd-catalyzed
cross coupling55–57 were disclosed. However, the dearomatization
reactions in these examples generally relied on the pre-installation
of an intramolecular electrophile (Fig. 1a). Notably, during the
preparation of this manuscript, Shao and coworkers reported an
intermolecular asymmetric allylic dearomatization reaction of
α-naphthols at the C2 position by a chiral phosphoric acid58.
However, highly efficient asymmetric dearomatization reactions of
α-naphthols with intermolecular electrophiles still remain
underdeveloped.

In 2017, we reported a Pd-catalyzed arylative dearomatization/
aza-Michael addition sequence between aryl bromide and α-
naphthols bearing a tethered nucleophile at the C4 position of the
naphthol ring59. The exclusive chemo-, and regioselectivity

favoring the C4 position among the multiple potential nucleo-
philic sites encouraged us to further probe the possibility of
developing a highly enantioselective dearomatization of α-naph-
thols/Michael addition sequence. However, all attempts to realize
such an asymmetric reaction under Pd catalysis have been failed
in our hands. In this regard, we speculated that azodicarbox-
ylates60–66 might be employed as suitable electrophilic amination
reagents which are compatible with the dearomatization of
electron-rich arenes in the presence of a chiral phosphoric acid
(CPA)67–70.

Here, we accomplished the efficient synthesis of a wide array of
functionalized cyclic ketones bearing two consecutive stereogenic
centers in excellent diastereo- and enantioselectivity (Fig. 1b). The
products are readily involved in further transformations towards
various enantioenriched polycyclic molecules.

Results
Reaction development. Our studies commenced with the attempt
of the reaction of α-naphthol 1a with 1.5 equivalents of diethyl
azodicarboxylate (DEAD) (Table 1). In the presence of 10 mol%
of chiral phosphoric acid C1, the target reaction proceeded
smoothly in 1,2-dichloroethane (DCE) at 50 °C for 24 h, affording
the dearomatized product 2a in 85% yield with 75% ee as a single
trans diastereoisomer (Table 1, entry 1). The structure and
absolute configuration of 2a (3R,4R) were established unam-
biguously by X-ray crystallographic analysis of an enantiopure
sample. Interestingly, the Friedel–Crafts reaction at the C2 posi-
tion was not observed. Systematic evaluation of a series of CPAs
(C2–C7) was conducted (Table 1, entries 2–7). The results
revealed that the catalysts have great influence on the reaction
outcome. Notably, TRIP-CPA C2 gave the optimal results (90%
yield and 99% ee, Table 1, entry 2). Utilizing SiPh3-derived catalyst
C4 also led to comparable results with those of C2 (90% yield and
98% ee, Table 1, entry 4). On the other hand, 2a was obtained in the
nearly racemic form (2% ee) when 4-NO2C6H4 derived C6 was
employed (Table 1, entry 6). Although excellent enantioselectivity
has been obtained, other reaction parameters were further investi-
gated. Typical solvents including EtOAc, THF or toluene also well
facilitated the reaction (Table 1, entries 8-10). When the tempera-
ture was lowered to 40 °C, prolonged time (36 h) was necessary to
provide 2a in 88% yield (Table 1, entry 11). Similar results (85%
yield and 99% ee) could be achieved in shorter time when ele-
vating the reaction temperature to 60 °C (Table 1, entry 12).
However, slightly decreased yield (77%) was observed when 1.1
equivalents of DEAD was used (Table 1, entry 13). The reactions
proceeded well with reduced loading of C2 (≤1 mol %, Table 1,
entries 14-17). The remarkably high catalytic efficiency was
exemplified by the fact that 2a was afforded in 52% yield
with 97% ee in the presence of 0.1 mol% of C2 at 80 °C (Table 1,
entry 17). However, only complex mixture was obtained in the
absence of a CPA catalyst (Table 1, entry 18).

Scope and limitation. With the optimal conditions in hands
(Table 1, entry 2), we next explored the substrate scope (Fig. 2).
The desired reactions of 1a with other azodicarboxylates all
proceeded smoothly, leading to 2b–2d in high yields (88–89%).
The N-protecting group of α-naphthol substrates could be swit-
ched to Ns, CO2Me or p-MeC6H4CO2. The corresponding pro-
ducts (2e–2g) could be obtained in 89–92% yields. The prolonged
tether at the C4 position of the naphthol ring was well accom-
modated, affording the piperidine-fused product 2h in 93% yield.
Besides nitrogen nucleophiles, the hydroxyl group could also
work as the nucleophile. The tetrahydrofuran-fused product 2i
was accomplished smoothly in 87% yield. Notably, when a mal-
onate diester nucleophile was employed, only the dearomatization
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Fig. 1 Catalytic Asymmetric Dearomatization of α-Naphthols at the C4
Position. a Intramolecular dearomatization. b Intermolecular sequential
dearomatization/Michael addition. Ar: aromatic ring, El: electrophile, Nu:
nucleophile, R: substituent
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process occurred under the standard conditions. The target
product 2j could be obtained (81% yield) after a subsequent
Michael addition promoted by tBuOK.

On the other hand, various substituted α-naphthols underwent
the desired dearomatization reactions. Electron-donating groups
such as MeO and Me could be tolerated at the C6 to C8 positions
(2k–2p, 91–93% yields). The C6 and C7 positions could
accommodate halogen atoms including Cl and Br (2q–2s,
90–93% yields). Besides, when a CN group was installed at the
C6 or C7 position, the dearomatization reaction delivered the
desired products in high yields (2t, 93% yield; 2u, 91% yield).
Gratifyingly, exceedingly high enantioselectivity was observed in
all the above cases (2a–2u, 98 to >99% ee). However, when the
substrate bearing a methyl group at the C2 position was subjected
to the standard conditions, the reaction outcomes decreased
apparently in terms of yield and enantioselectivity (2v, 34%
yield and 78% ee). It should be noted that only complex mixtures
were obtained when substrates bearing a substituent at the C5
position were utilized.

The dearomatization reaction of phenols is much more
challenging compared with that of naphthols. In addition, by-
products of Friedel–Crafts reactions are difficult to be avoided. To
further expand the substrate scope of this aminative dearomatiza-
tion/Michael addition sequence, several phenol analogs were
tested (Fig. 3). Encouragingly, α-tetrahydronaphthol-derived
substrate 3a participated the title reaction smoothly, delivering
the desired product 4a in 90% yield with 96% ee, without the
observation of Friedel–Crafts by-product. The reaction of
sterically less demanding phenol substrate (2,3-Me2) also

proceeded well. The corresponding product 4b was obtained in
good yield (82%) but with rather decreased enantioselectivity
(53% ee). Notably, a mixture of Friedel–Crafts-type byproducts
became dominating for the substrates bearing one substituent
(Me, MeO, or Br) at the C2 or C3 position. Compound 5 was
isolated in 84% yield for the phenol substrate bearing no
substituent at the C2 or C3 position.

Mechanistic studies. To shed light on the reaction mechanism,
we first attempted to isolate the intermediate of this sequential
reaction (Fig. 4). When the reaction of 1a was quenched within
30 min, only trace amount of 2a was observed (<5% NMR yield),
while conjugated enone 6 was isolated in 86% yield with >99% ee.
Compound 6 was found stable enough to be stored at −20 °C for
weeks without apparent transformation into 2a or decomposition.
Taking into consideration that much longer time (24 h) was
required for most substrates to fully transfer into the final pro-
ducts, and the identical enantiopurity of 6 and that of 2a obtained
under the standard conditions, we proposed that the stereo-
chemistry of the whole reaction is established irreversibly in the
aminative dearomatization step, whereas the following Michael
addition is the rate-limiting step.

To explore the origin of the exceedingly high enantioselectivity,
DFT calculations were then performed for the aminative
dearomatization step (Fig. 5). The relative Gibbs free energy of
TS-major, the transition state leading to the major product, was
2.0 kcal/mol lower than that of TS-minor, which was in
qualitative agreement with the experimental results. The two

Table 1 Optimization of the reaction conditionsa

Ar

Ar

C1, Ar = 9-phenanthryl
C2, Ar = 2,4,6-(iPr)3C6H2
C3, Ar = 1-naphthyl
C4, Ar = SiPh3
C5, Ar = 3,5-(CF3)2C6H3
C6, Ar = 4-NO2C6H4
C7, Ar = 9-anthryl

O

O
P

O

OH

2a1a

OH

NTs
EtO2CN

O

NHCO2Et

(S )-C
(10 mol%)

DEAD
(1.5 equiv)

Solvent
temperature

TsHN

Entry C Solvent Temperature (°C) Time (h) Yield (%)b ee (%)c

1 C1 DCE 50 24 85 75
2 C2 DCE 50 24 90 99
3 C3 DCE 50 24 87 63
4 C4 DCE 50 24 90 98
5 C5 DCE 50 24 85 57
6 C6 DCE 50 24 83 2
7 C7 DCE 50 24 83 59
8 C2 EtOAc 50 24 86 97
9 C2 THF 50 24 85 96
10 C2 toluene 50 24 87 98
11 C2 DCE 40 36 88 99
12 C2 DCE 60 12 85 99
13d C2 DCE 50 36 77 99
14e C2 DCE 50 96 81 99
15e C2 DCE 80 30 81 99
16f C2 DCE 80 24 69 98
17g C2 DCE 80 24 52 97
18 / DCE 50 12 complex N.D.

DEAD diethyl azodicarboxylate, Ts tosyl, Et ethyl, iPr isopropyl, Ph phenyl, DCE 1,2-dichloroethane, EtOAc ethyl acetate, THF tetrahydrofuran, N.D. not determined
aReaction conditions: 1a (0.1 mmol), DEAD (0.15 mmol) and C (10 mol%) in solvent (2.0 mL) at specified temperature
bIsolated yield
cDetermined by HPLC analysis on a chiral stationary phase
dDEAD (1.1 equiv) was used
eC2 (1 mol%) was used
fC2 (0.2 mol%) was used
gC2 (0.1 mol%) was used
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prochiral faces at the C4 position of α-naphthol were well
discriminated by the chiral phosphoric acid. In TS-major, the Si-
face of the C4 position was attacked, which allowed the intact
benzene ring of α-naphthol in distal to the chiral pocket. Whereas
in TS-minor, strong steric congestion was developed due to the
Re-face attack and the concomitant approximation of the intact
benzene ring to one TRIP group of C2. These computational
results corresponded well with the fact that substituents were
tolerated at the C6 to C8 positions of α-naphthol (2k–2u), but not
at the C2 position (2v). In addition, a fused saturated skeleton
that is sterically roughly comparable with a benzene ring should
be beneficial for the high enantioselectivity (4a), but sterically less
demanding 2,3-Me2 groups were not that effective (4b).

Product transformations. To highlight the practicality and
synthetic utility of this method, a gram-scale reaction of 1a with
DEAD was performed under the standard reaction conditions. 2a
was obtained in 87% yield (1.35 g) with 99% ee. In addition,
several functional group transformations of 2a were demon-
strated (Fig. 6). Tertiary alcohol 7 was delivered in 91% yield
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when treated with NaBH4. The ketone group could also be
hydrogenated to methylene group under the catalysis of palla-
dium on charcoal, leading to 8 in 78% yield. In addition, the N–N
bond could be cleaved by treating 2a with ethyl bromoacetate and
cesium carbonate. The corresponding product 9 was afforded in
52% yield. Notably, no erosion of enantiomeric purity was
observed in all these transformations.

Discussion
In conclusion, we have achieved a chiral phosphoric acid-
catalyzed dearomatization reaction of α-naphthols bearing a
tethered nucleophile at the C4 position of the naphthol ring.
Preliminary mechanistic investigations confirmed that the reac-
tion proceeded via two steps, a stereochemistry-determining
aminative dearomatization followed by a rate-limiting Michael
addition. The reaction occurred under mild conditions, affording
a wide array of polycyclic ketones in good yields with excellent
enantioselectivity. Besides, the reaction features high catalytic
efficiency and diverse transformations of the products. A working
model accounting for the origin of the stereochemical induction
was proposed based on DFT calculations.

Methods
Representative procedure. To a flask containing a mixture of 1a (0.1mmol) and
(S)-C2 (7.5mg, 0.01mmol) under argon was added a solution of the corresponding
azodicarboxylate (0.15mmol) in anhydrous 1,2-dichloroethane (2mL). The reaction
was stirred at 50 °C until TLC showed complete consumption of the starting material.
The reaction mixture was cooled to room temperature, quenched with NaHCO3 (aq.,
10mL) and extracted with CH2Cl2 (3 × 15mL). The combined organic layer was
washed with brine, separated, dried over Na2SO4 and filtrated. After the solvent was
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Fig. 4 Isolation of the Intermediate. Reaction conditions: 1a (0.1 mmol), DEAD (0.15 mmol) and (S)-C2 (10mol%) in DCE (2 mL) at 50 °C for 30min
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Fig. 5 Transition states. Optimized structures and relative Gibbs free energies (in kcal/mol) of the transition states of the aminative dearomatization step
(ωB97XD/def2-TZVPP//B97D/6-31G**). The catalysts are presented with the van der Waals model. The substrates are presented with the stick model.
The forming C–C bonds are shown in yellow dash lines. The transferring protons are shown in green spheres. The intact benzene rings of α-naphthols are
shown in pink
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removed under reduced pressure, the residue was purified by silica gel column
chromatography (ethyl acetate/petroleum ether= 1/6 to 1/2) to afford 2a.

Data availability
The X-ray crystallographic coordinates for product 2a have been deposited at the
Cambridge Crystallographic Data Centre (CCDC) with the accession code 1888563.
These data can be obtained free of charge from The Cambridge Crystallographic Data
Centre via www.ccdc.cam.ac.uk/data_request/cif. The authors declare that all other data
supporting the findings of this work, including experimental procedures, compound
characterization data, and computational details, are available within the article and its
Supplementary Information files.
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