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Crystal structures of the ATP-binding and
ADP-release dwells of the V1 rotary motor
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V1-ATPases are highly conserved ATP-driven rotary molecular motors found in various

membrane systems. We recently reported the crystal structures for the Enterococcus hirae

A3B3DF (V1) complex, corresponding to the catalytic dwell state waiting for ATP hydrolysis.

Here we present the crystal structures for two other dwell states obtained by soaking

nucleotide-free V1 crystals in ADP. In the presence of 20 mM ADP, two ADP molecules bind to

two of three binding sites and cooperatively induce conformational changes of the third site

to an ATP-binding mode, corresponding to the ATP-binding dwell. In the presence of 2 mM

ADP, all nucleotide-binding sites are occupied by ADP to induce conformational changes

corresponding to the ADP-release dwell. Based on these and previous findings, we propose a

V1-ATPase rotational mechanism model.
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I
on-transporting rotary ATPases are divided into three types
based on their function and taxonomic origin: F-, V- and
A-type ATPases. F-ATPases function as ATP synthases in

mitochondria, chloroplasts and oxidative bacteria1. V-ATPases
function as proton pumps in acidic organelles and plasma
membranes of eukaryotic cells2. A-ATPases function as ATP
synthases similar to the F-ATPases in Archaea (the ‘A’
designation refers to Archaea), but the structure and subunit
composition of A-ATPases are more similar to those of
V-ATPases3. These ATPases possess similar overall structures
consisting of a globular catalytic domain (F1, V1 or A1) and a
membrane-embedded ion-transporting domain (Fo, Vo or Ao).
These catalytic domains are similar rotary molecular motors, in
which the central axis complexes rotate within pseudo-
hexagonally arranged catalytic complexes powered by energy
from ATP hydrolysis1–6.

The rotational catalysis of F1-ATPase has been investigated
using structural analyses of bovine7–11, yeast12,13 and
bacterial14,15 samples, and by single-molecule dynamics
studies of bacterial samples16–21. However, contradictory
findings have been obtained depending on the methods,
conditions and species, leading to controversy regarding the
general rotational model of F1 (refs 10,18). Recently, a
model was proposed that could consistently explain both the
structural and single-molecule data obtained for mammalian
F1-ATPase22,23. In this model, the central axis rotates at 120�
per ATP molecule with three dwell states: waiting for ATP
binding (ATP-binding dwell) at 0� (and 120�), waiting for Pi

release (Pi-release dwell) at 65�, and waiting for ATP hydrolysis
(catalytic dwell) at 90� (see Fig. 1).

Similar V1-ATPase experiments have been conducted
using bacterial enzymes from Thermus thermophilus24–28 and

E. hirae29–33. These enzymes are sometimes called A-ATPases.
However, they are derived from Eubacteria, rather than Archaea3.
Furthermore, E. hirae V-ATPase physiologically functions
as an ion pump, similar to eukaryotic V-ATPases34–37, and is
composed of nine subunits with amino acid sequences that are
homologous to those of the corresponding subunits of eukaryotic
V-ATPases6,38. Therefore, we believe the enzyme is a homologue
of eukaryotic V-ATPases. We previously established the in vitro
expression, purification and crystallization of E. hirae V1-ATPase
(EhV1) from the A3B3 and DF complexes29,30. The crystal
structures of the nucleotide-free and nucleotide-bound A3B3

(eA3B3 and bA3B3) and V1 (eV1 and bV1) complexes revealed
conformational changes of the A3B3 complex induced by the
binding of nucleotides and the DF axis (Supplementary Fig. 1),
suggesting that the EhV1 structure corresponds to the catalytic
dwell waiting for ATP hydrolysis in the rotary cycle31. We have
also directly confirmed the unidirectional rotation of EhV1 with
single-molecule observations32,33. EhV1 shows only three pausing
positions separated by 120� at all ATP concentrations without
distinct substeps, in contrast to that of F1-ATPase17,22. This
suggests that the ATP hydrolysis step(s), for example, ATP
binding, phosphate bond cleavage, ADP release or Pi release,
is/are the rate-limiting step(s) in the three-pause rotation39,40. In
this study, we performed experiments in which nucleotide-free V1

crystals were soaked with AMP-PNP (non-hydrolysable
ATP analog adenosine 50-(b,g-imino)triphosphate), ADP or
phosphate, and obtained two previously unidentified crystal
structures corresponding to the ATP-binding dwell and
ADP-release dwell states in the rotary cycle of EhV1. Our
proposed rotational mechanism of EhV1 based on these crystal
structures is apparently different from those previously reported
for F1-ATPases18–23 (see Fig. 1).
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Figure 1 | Coupling scheme for the 120� rotation and ATP hydrolysis of mammalian F1- and Enterococcus hirae V1-ATPases. Each circle represents the

chemical state of the nucleotide-binding site, viewed from the cytoplasmic side (that is, the N-terminal b-barrel side of V1). The central arrows in the

ellipses represent the orientation of the central axis beginning from the twelve o’clock position, which corresponds to the ATP-binding dwell (a waiting state

for ATP binding). PDB ID numbers of the corresponding crystal structures are shown under the schemes. ATP* represents an ATP molecule that is

committed to hydrolysis. (a–d) A model for mammalian F1 (refs 22,23). ATP binding to the ATP-binding dwell (a) induces a 65� rotation concomitant with

ADP release from another binding site and resulting conformational changes to the Pi-release dwell7,9,23 (b). Pi release induces a 25� rotation and

consequent conformational changes to the catalytic dwell11,23 (c), which is waiting for ATP hydrolysis. ATP* hydrolysis to produce ADP and Pi induces a

30� rotation and conformational changes to the ATP-binding dwell (d). (e–h) A model for E. hirae V1 (this study). ATP binding to the ATP-binding dwell

(e) induces conformational changes to the ADP-release dwell (f) without an apparent rotational substep of the central axis. ADP release induces a

120� rotation and consequent conformational changes to the catalytic dwell (g). ATP* is hydrolysed to produce ADP and Pi, and the Pi release induces

conformational changes to the ATP-binding dwell state (h) without a rotational substep.
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Results
Structure of the 2AMP-PNP-bound V1 complex. We previously
reported that nucleotide-free EhV1 (eV1) is composed of three
different conformations of AB pairs: ‘empty’ (AOBC), ‘bound’
(ACBO’), and ‘tight’ (ACRBCR)31 (Fig. 2a,b). A crystal structure of
bV1 corresponding to the catalytic dwell state was also obtained
by soaking eV1 crystals in mother liquor containing 200 mM
AMP-PNP, which is sufficient to inhibit the ATP hydrolysis
activity of purified EhV1 (Supplementary Table 1). Two AMP-
PNP:Mg2þ molecules were bound to the binding sites of the
‘bound’ and ‘tight’ forms of eV1, which did not cause further
conformational changes of the A (Eh-A) and B (Eh-B) subunits,
and the overall structure was similar to that of eV1 (root mean
square deviation (r.m.s.d.)¼ 0.69 Å)31(Fig. 2c,d). These findings
suggest that the binding affinities of AMP-PNP to the ‘bound’
and ‘tight’ forms are high, but that of the ‘empty’ form is low. In
this study, in order to verify whether the third ‘empty’ form is
able to bind AMP-PNP or not in the presence of a high
concentration, we soaked the eV1 crystals with 2 mM AMP-PNP,
and solved the crystal structure (denoted 2ATPV1) at a 2.7 Å
resolution (Table 1). The structure showed two AMP-PNP

molecules bound in the ‘bound’ and ‘tight’ forms and was almost
identical to that of bV1 (r.m.s.d.¼ 0.51 Å) (ref. 31) (Fig. 2e,f). No
electron density peak for AMP-PNP was found in the ‘empty’
form (Supplementary Fig. 2), indicating that it has a very low
affinity for AMP-PNP.

Structure of the 2ADP-bound V1 complex. Next, we soaked the
crystals of eV1 in 20 mM ADP, and the crystal structure (denoted
2ADPV1) was solved at a resolution of 3.3 Å (Table 1). Two
ADP:Mg2þ molecules were bound to the ‘bound’ and ‘tight’
forms of eV1, as in the case of 2ATPV1 (Supplementary Fig. 3),
and induced conformational changes with the crystal packing
rearrangements (Supplementary Fig. 4). The structure of 2ADPV1

was validated for possible model bias by generating omit maps of
conformationally changed regions (Supplementary Fig. 5). ADP
binding changed the structure of eV1, but the crystal packing
force might have the potential to distort the actual conforma-
tional changes for 2ADPV1.

The structural differences between eV1 and 2ADPV1 that should
have been induced by ADP binding are compared in Fig. 3
(see also Supplementary Movie 1). The eV1 ‘bound’ form did
not show a conformational change upon ADP binding
(r.m.s.d.¼ 0.48 Å; Fig. 3c,d). However, the eV1 ‘tight’ form
changed to a more open conformation (AC from ACR; BC’ from
BCR) upon ADP binding (Fig. 3e,f). We designated the new
ADP-bound ACBC’ pair of 2ADPV1 as the ‘ADP-bound’ form. The
g-phosphate contained in AMP-PNP of the bV1 ‘tight’ form
interacted with the Lys238 residue of the P-loop (Pi-binding loop)
and the Arg262 residue of the ‘arm’ region (fixed a-helix during
the conformational changes: residues 261–275) in Eh-A, and the
Arg350 residue (the so-called ‘Arg-finger’ in ATPases) in Eh-B to
stabilize the ‘tight’ conformation31 (Fig. 4b), thus preventing any
further conformational change. In contrast, ADP, which does not
contain g-phosphate, interacted with these side chains by binding
to b-phosphate (Fig. 4a and Supplementary Figs 6 and 7). These
different binding contacts induced an apparent conformational
change to the ‘ADP-bound’ form (Fig. 4a–c), which seems to be a
more stable conformation for the ADP-binding mode than the
‘tight’ form. According to the observed conformational changes,
the DF axis became tilted towards the ‘ADP-bound’ form to
maintain the extensive protein–protein interactions between DF
and the ‘ADP-bound’ form (Fig. 3b–h).

The last conformation of the AB pair (eV1-‘empty’), which did
not bind to ADP, also showed a cooperative conformational
change. Specifically, Eh-A (AO) and Eh-B (BC) of the ‘empty’
form were attracted to the DF axis and the ‘ADP-bound’ form,
respectively (Fig. 3b,g,h and Supplementary Movie 1). The wider
conformation of the resultant AB (AO’BO’’) pair was most similar
to that of the eA3B3-‘bindable’ form (AO’BO: ATP-accessible
state) among all AB pairs (r.m.s.d.¼ 0.94 Å) (Supplementary
Table 2), and was thus denoted a ‘bindable-like’ form. The
structure at the nucleotide-binding site was also more similar to
that of eA3B3-‘bindable’ (ATP-accessible state) than to that
of eV1-‘empty’ (ATP-unbound state). Similar to the ‘bindable’
form, the topology between the Arg-finger (Eh-B-Arg350) and
Eh-A-Arg262 of the ‘bindable-like’ form was more open than that
of the ‘empty’ form (Fig. 4d–f; green boxes). Therefore, the
‘bindable-like’ conformation seemed to be able to bind a
nucleotide and probably changes to the ‘bound’ form, as observed
for eA3B3-‘bindable’31. Based on these findings, we inferred that
the structure of 2ADPV1 corresponds to the state of waiting for
ATP binding (that is, the ATP-binding dwell) in the rotation.

Structure of the 3ADP-bound V1 complex. Next, we soaked the
eV1 crystals in a high concentration (2 mM) of ADP to verify
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Figure 2 | Structures of the nucleotide-free V1 (eV1) and 2AMP-PNP-

bound V1 complexes (bV1 and 2ATPV1). (a) Side view of eV1. (b) Top view

of the C-terminal domain (transparent surface in a) from the cytoplasmic

side. Open (O and O’; light), closed (C; dark) and closer (CR; darker)

conformations of Eh-A and Eh-B are shown. Red arrows indicate the

nucleotide-binding sites. (c,e) Side views of bV1 (c) and 2ATPV1 (e).

(d,f) Top views of bV1 (d) and 2ATPV1 (f) as shown in b, which are

superimposed at the ‘bound’ form onto that of eV1 (grey). The bound

AMP-PNP molecules are shown in space-filling representation, coloured

in red.
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nucleotide binding to the third ‘bindable-like’ form of 2ADPV1, and
obtained the crystal structure (denoted 3ADPV1) at a resolution of
3.0 Å (Table 1). Three ADP:Mg2þ molecules were bound at all
three nucleotide-binding sites (Supplementary Fig. 8) and induced
conformational changes with the crystal packing rearrangements
(Fig. 5a, Supplementary Fig. 4, and Supplementary Movie 2).
The structure was verified by generating omit maps of
conformationally changed regions (Supplementary Fig. 5),
although it is possible that the crystal packing force will distort the
actual conformational changes for 3ADPV1. The structural differ-
ences between the 2ADP-bound (2ADPV1) and 3ADP-bound
(3ADPV1) V1 complexes, which are considered to be induced by
ADP binding to the ‘bindable-like’ form of 2ADPV1, are compared
in Fig. 5b–h (see also Supplementary Movie 3). ‘Bindable-like’
Eh-A (AO’) changed to the half-closed conformation (denoted
AHC) upon ADP binding, whereas the B subunit (BO’’) did not
(Fig. 5c,d). We thus designated the unique half-closed AHCBO’’

pair of 3ADPV1 as the ‘half-closed’ form. A strong electron density
peak for Pi or SO4

2� (a Pi analog) was observed at the nucleotide-
binding site with ADP:Mg2þ (Fig. 6a, and Supplementary Figs 7
and 8). We assigned this peak to SO4

2� because 3 mM MgSO4, but
not Pi, was contained in the crystallization condition. The adjacent
‘bound’ form was not affected by this conformational change to
the ‘half-closed’ form. In contrast, the DF axis and ‘ADP-bound’
forms were slightly attracted to the AHC of the ‘half-closed’
form (Fig. 5b–h). The shifted ‘ADP-bound’ form was rather
more similar to the observed ‘tight’ conformation (Fig. 5g,h).

Furthermore, the nucleotide-binding site was also more similar to
that of the ‘tight’ form than to that of the ‘ADP-bound’ form
(Fig. 6b–d, and Supplementary Fig. 7). We, therefore, designated
this shifted ‘ADP-bound’ form of 3ADPV1 as the ‘tight-like’ form.
The distances between the b-phosphate of ADP and the inter-
acting residues in the ‘tight-like’ form were slightly longer than
those in the ‘ADP-bound’ form (Supplementary Fig. 6), suggesting
that the binding affinity for ADP of the ‘tight-like’ form is lower
than that of the ‘ADP-bound’ form. Consequently, an ADP
molecule will be easily released from the binding site. Therefore,
we inferred that the structure of 3ADPV1 corresponds to the state
of waiting for ADP release (that is, ADP-release dwell) in the
rotation. ATP hydrolysis activity of purified EhV1 was inhibited at
a high (2 mM) concentration of ADP (Supplementary Table 1),
which is significantly higher than the natural concentration in
E. hirae cells. Therefore, the ADP-release dwell state might be a
minor intermediate state, which might exist in the catalytic cycle
with high [ADP] and low [ATP].

Structure of the Pi-bound V1 complex. Next, we soaked the eV1

crystals with 20 and 200 mM Pi, and solved the crystal structures
at a resolution of 3.0 Å (0PiV1:20 mM) and 2.8 Å (0PiV1:200 mM),
respectively (Table 1). However, no electron density peak for Pi,
nor any conformational change was observed for either of the
structures (Supplementary Fig. 9), and ATP hydrolysis activity of
EhV1 was not inhibited, even in the presence of 20 mM Pi

(Supplementary Table 1). These findings suggest that the binding

Table 1 | Data collection and refinement statistics of the V1-ATPase.

Denoted as 2ATPV1 2ADPV1 3ADPV1 0PiV1:20 lM 0PiV1:200 lM 1PiV1

Crystallization condition
Soaking with 2 mM AMP-PNP

3 mM MgCl2

20mM ADP
3 mM MgSO4

2 mM ADP
3 mM MgSO4

20mM Pi

3 mM MgCl2

200mM Pi

3 mM MgCl2

2 mM Pi

3 mM MgCl2
Soaking time 6.5 h 4.5 h 4.5 h 5.5 h 5.0 h 5.0 h

Data collection
Beamline PF BL1A PF BL1A PF BL1A PF BL17A PF BL1A PF BL1A
Wavelength (Å) 1.1000 1.1000 1.1000 0.9800 1.1000 1.1000
Space group P212121 P212121 P212121 P212121 P212121 P212121

Cell dimensions
a, b, c (Å) 128.3, 128.4, 226.9 127.4, 129.6, 237.2 121.7, 126.5, 225.3 128.5, 128.5, 226.5 127.9, 128.4, 226.7 128.2, 128.4, 228.0
a,b,g (�) 90.0, 90.0, 90.0 90.0, 90.0, 90.0 90.0, 90.0, 90.0 90.0, 90.0, 90.0 90.0, 90.0, 90.0 90.0, 90.0, 90.0

Resolution (Å) 50–2.73
(2.89–2.73)*

50–3.25
(3.45–3.25)

50–3.02
(3.21-3.02)

50–3.04
(3.23-3.04)

50–2.84
(3.01-2.84)

49.04–2.89
(2.99-2.89)

Rmerge 0.170 (0.916) 0.199 (1.064) 0.221 (1.064) 0.251 (0.873) 0.222 (0.961) 0.157 (0.824)
I/sI 10.14 (1.87) 10.33 (1.88) 10.08 (1.92) 8.79 (2.08) 9.34 (1.99) 12.5 (2.2)
Completeness (%) 98.9 (94.4) 99.4 (97.2) 99.2 (95.4) 99.7 (99.2) 99.7 (98.7) 99.9 (100)
Redundancy 6.5 (6.3) 6.7 (6.6) 6.6 (6.5) 6.3 (6.5) 6.7 (6.8) 6.6 (5.3)

Refinement
Resolution (Å) 50–2.73 50–3.25 50–3.02 48.93–3.04 50–2.84 49.04–2.89
No. of reflections 99,064 62,128 67,952 72,486 88,898 84,446
Rwork/ Rfree (%) 20.5/23.2 20.9/24.5 21.4/25.3 23.0/27.3 18.5/20.1 20.7/25.1
No. of atoms

Protein 26,653 25,976 26,554 26,389 26,414 26,309
Ligand/ion 137 68 173 44 80 43
Water 299 33 72 29 268 64

B-factors
Protein 55.37 83.02 55.82 49.78 44.90 64.84
Ligand/ion 47.81 57.03 57.91 56.10 50.85 70.55
Water 38.22 52.84 39.93 17.61 29.66 46.61

r.m.s. deviations
Bond lengths (Å) 0.004 0.003 0.003 0.002 0.002 0.003
Bond angles (�) 0.872 0.673 0.660 0.548 0.678 0.757

PDB ID – 5KNB 5KNC – – 5KND

All data sets were obtained from single crystal each. *Highest resolution shell is shown in parentheses.
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affinity for Pi is lower than that of either AMP-PNP or ADP. We
further soaked the crystals in a higher concentration (2 mM) of Pi,
and the crystal structure (denoted 1PiV1) was determined at a
resolution of 2.9 Å (Fig. 7 and Table 1). A Pi molecule with Mg2þ

was found in the ‘tight’ form, which was fixed by the Arg-finger as
observed for the binding of the g-phosphate of AMP-PNP in bV1

(Fig. 7 and Supplementary Fig. 7). Importantly, no conforma-
tional change was observed upon Pi:Mg2þ binding (Fig. 7b); the
overall structure was similar to those of eV1 (r.m.s.d.¼ 0.46 Å)

and 2ATPV1 (r.m.s.d.¼ 0.47 Å), but not to that of 2ADPV1

(r.m.s.d.¼ 2.05 Å) or 3ADPV1 (r.m.s.d.¼ 2.78 Å). Thus, the
soaking of eV1 crystals in Pi did not induce conformational
changes, as in the case of 2ATPV1 after soaking with AMP-PNP.
We also soaked the crystals of eV1 in the mixture of various
concentrations of AMP-PNP, ADP and/or Pi to obtain other
intermediate states. However, diffraction of these soaked crystals
was not sufficient to solve the structure. Careful optimization of
the ligand concentrations and crystal soaking times are necessary
to improve the resolutions.

Binding affinities of nucleotide to V1 complex. We performed
isothermal titration calorimetry (ITC) experiments to estimate the
binding affinities of AMP-PNP to nucleotide-free EhV1. Exother-
mic reactions were observed upon the addition of AMP-PNP
(Fig. 8a). The binding isotherm was saturated for titrations to an
AMP-PNP/EhV1 molar ratio of 2.2 (B14mM AMP-PNP); no addi-
tional binding was observed for titrations up to the molar ratio of
1,400 (2.4 mM AMP-PNP) (Supplementary Fig. 10). The curve was
fit by the two sets of sites model with the following parameters. The
numbers (n1 and n2) of binding sites per EhV1 were 0.68 and 0.77,
respectively. The Kd1 and Kd2 values were 9.4 and 40 nM, respec-
tively. The DH1 and DH2 values were � 9.3 and � 9.7 kcal mol� 1,
respectively. The DS1 and DS2 values were 5.5 and 1.4 cal mol� 1 per
degree, respectively. These ITC data suggested that the binding
affinities of AMP-PNP to the ‘bound’ and ‘tight’ forms were both
high, and that of the third ‘empty’ form was very low (o2 mM),
corresponding to the structural findings described above.

Next, we quantified the binding affinities of ADP to nucleotide-
free EhV1 using ITC. The binding isotherm for ADP titration was
remarkably different from that for AMP-PNP titration, and
showed three distinct zones (Fig. 8b). The first zone, below an
ADP/EhV1 molar ratio of 2, was characterized by a continuous
decrease in the exothermic signal. The second zone, between
ADP/EhV1 molar ratios of 2 and 2.8, exhibited the opposite
trend, with an increase in the exothermic signal throughout the
titration. Finally, in the third zone, the exothermic signal
decreased as the ADP/EhV1 molar ratios increased from 2.8 to
5.6 (a ratio at which saturation was reached), and no additional
exothermic signal was observed for titrations up to an ADP/EhV1

molar ratio of 1,400 (2.4 mM ADP) (Supplementary Fig. 10).
Thus, the triphasic curve, which was likely to contain three
different binding reactions, was analysed using the three sets of
sites model41 with the following parameters. The numbers (n1, n2

and n3) of binding sites per EhV1 were 1.4, 0.82 and 0.65,
respectively. The Kd1, Kd2 and Kd3 values were 6.7 nM, 13 nM and
3.6 mM, respectively. The DH1, DH2 and DH3 values were —4.3,
1.3 and � 10 kcal mol� 1, respectively. The DS1, DS2 and DS3

values were 23, 41 and -10 cal mol� 1 per degree, respectively.
Interestingly, ADP binding to site-2 showed an endothermic
reaction, whereas those to site-1 and site-3 involved exothermic
reactions. This implies a dynamic structural change with ADP
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binding to site-2, corresponding to the structural findings that
ADP binding to the ‘tight’ form induces conformational changes
to the ‘ADP-bound’ form and the adjacent ‘empty’ form then
changes to a ‘bindable-like’ form in a cooperative manner.
According to this interpretation, site-1, -2 and -3 correspond to
the ‘bound’, ‘tight’ and ‘bindable-like’ forms of EhV1, respectively.

We also performed displacement ITC experiments of
ADP-bound and AMP-PNP-bound EhV1 by addition of
AMP-PNP and ADP, respectively. The titration experiment
of AMP-PNP into 3ADP-bound EhV1 with 35mM ADP
(saturated concentration) showed that the exothermicity was
remarkably lower than that into nucleotide-free EhV1 (Fig. 8a,c).
No noticeable exothermic signal was observed for titrations up to
an AMP-PNP/EhV1 molar ratio of 600 (2.4 mM AMP-PNP)
(Supplementary Fig. 10). This suggests that AMP-PNP binding
sites are already occupied by ADP in 3ADP-bound EhV1, and
these nucleotides competitively bind to EhV1. In the competitive
displacement experiment, the apparent Kd values for AMP-PNP
to 3ADP-bound EhV1 were expected to be very high42, and were
actually estimated to be very high. The weak binding of
AMP-PNP yields a nearly horizontal trace in binding isotherm
whether or not the real displacement of nucleotides takes place43.
Therefore, it is difficult to investigate the exchange reaction
precisely from the ITC data. Similarly, the titration experiment of
ADP into 2AMP-PNP-bound EhV1 with 21 mM AMP-PNP
(saturated concentration) also showed that the exothermicity
was remarkably lower than that into nucleotide-free EhV1

(Fig. 8b,d), and no noticeable exothermic signals were observed
for titrations up to an ADP/EhV1 molar ratio of 600 (2.4 mM
ADP) (Supplementary Fig. 10); It is also predicted the exothermic
signal should be very small because the apparent Kd values for
ADP to 2AMP-PNP-bound EhV1 were estimated very high42,43.

This finding suggests that ADP is not able to bind to the ‘empty’
form of 2ATPV1 owing to low affinity, as in the case of AMP-PNP.
Therefore, the ‘half-closed’ form of 3ADPV1 seems to be obtained
by ADP binding to the ‘bindable-like’ form of 2ADPV1, but not to
the ‘empty’ form of eV1 in the soaking experiment of ADP to eV1

crystals, consistent with the structural findings in this study.

Tryptophan fluorescence change of V1 complex. Tryptophan
fluorescence is very sensitive to conformational changes in
proteins44. In order to verify the conformational change induced
by ADP binding, which was observed by X-ray crystallography of
ADP-soaked crystals, we measured the tryptophan fluorescence
of EhV1 in the presence of AMP-PNP and/or ADP. Eh-A and
Eh-B subunits of EhV1 have 8 and 1 tryptophan residues,
respectively. Emission spectra of the intrinsic tryptophan fluore-
scence of EhV1 without added nucleotides showed a peak at
335 nm (Supplementary Fig. 11). The fluorescence intensity
around 335 nm had distinct increase (2.3±0.2 a.u.) by the
addition of 500 nM AMP-PNP (a higher concentration than
estimated Kd values for AMP-PNP by ITC) (Fig. 8e, lane 1).
However, the overall structure of 2ATPV1 was very similar to that
of eV1 (Fig. 2). Therefore, we attributed this change in intensity to
a side-chain shift of the Trp248 residue near the P-loop
from AMP-PNP binding, rather than overall conformational
changes of EhV1 (Supplementary Fig. 12). The fluorescence
intensity was not affected by the re-addition of AMP-PNP (21
and 100 mM) (Fig. 8e, lane 2 and 3), consistent with the ITC data.
On the other hand, the addition of 500 nM ADP (a higher
concentration than the two Kd values for ADP and lower than the
third Kd value for ADP) induced fluorescence change (3.1±0.2
a.u.), which was higher than that of AMP-PNP (Fig. 8e, lane 4).
This fluorescence increase is consistent with the conformational
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changes observed for the 2ADP-bound crystal structure (2ADPV1)
(Supplementary Fig. 12). Addition of 35mM ADP (a higher
concentration than the third Kd value for ADP) induced further
changes in fluorescence intensity (Fig. 8e, lane 5), and the
intensity was not affected by the addition of ADP at a higher
concentration (that is, 100 mM ADP) (Fig. 8e, lane 6). This
intensity change might correspond to the conformational changes
to 3ADPV1 by ADP binding to the third ‘bindable-like’ form of
2ADPV1 (Supplementary Fig. 12).

We also performed competitive displacement experiments
of ADP-bound and AMP-PNP-bound EhV1 by addition of
AMP-PNP and ADP, respectively. When 2 mM AMP-PNP was
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added into 3ADP-bound EhV1 pre-incubated with 35mM ADP
(saturated concentration), the fluorescence intensity decreased
rapidly (Supplementary Fig. 11), and reached an equilibrium
within 5 min (2.3±0.1 a.u.; change from nucleotide-free EhV1)
(Fig. 8f, lane 1), which was very similar to that of AMP-PNP
bound EhV1 (Fig. 8e, lanes 1–3). Similarly, when 2 mM ADP was
added into 2AMP-PNP-bound EhV1 pre-incubated with 21 mM
AMP-PNP (saturated concentration), the fluorescence intensity
increased slowly to 3.6±0.1 a.u. (change from nucleotide-free
EhV1) (Fig. 8f, lane 2 and Supplementary Fig. 11), which was very
similar to that of 3ADP-bound EhV1 (Fig. 8e, lanes 5 and 6).
These findings suggest that EhV1 is able to bind AMP-PNP and
ADP at two or three binding sites competitively and to reversibly
change the conformations.

Discussion
We previously reported that the structure of bV1 represents the
catalytic dwell state (that is, a state of waiting for ATP hydrolysis)
in which two ATP analogs (AMP-PNP) are bound, one in the
‘bound’ and the other in the ‘tight’ form. ATP hydrolysis is
thought to occur in the ‘tight’ form due to induction caused by
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the approach of the Arg-finger31. However, the details of the
reaction after hydrolysis remain unresolved. A new ATP molecule
is unable to bind to the ‘empty’ form owing to its low affinity.
In order for the reaction to continue, certain structural changes in
the ‘tight’ form need to be induced via conversion to ADP and Pi.
In this study, we solved the crystal structures of the 2ADP-bound
V1 complex (2ADPV1) by soaking eV1 crystals in 20 mM ADP. The
‘tight’ form changed to the ‘ADP-bound’ form, and cooperatively
induced conformational changes from the ‘empty’ to ‘bindable-
like’ forms. In contrast, soaking with 20 and 200mM Pi did not
produce an electron density peak for Pi or any conformational
change. Thus, ADP has a much higher binding affinity to the
‘tight’ form than does Pi. In the presence of 2 mM Pi, Pi:Mg2þ

was bound to the ‘tight’ form, but this binding did not
induce conformational changes. Therefore, we concluded that
Pi is released first after ATP hydrolysis, which changes the
conformation to the ATP-binding dwell state (2ADPV1). If ADP
was released first, the conformational change required to continue
the rotational reaction would not be induced, as observed for the
1PiV1 structure.

In contrast, the mammalian F1-ATPase reaction model
proposes that ADP is released first after hydrolysis (Fig. 1). This
ADP-release-first order has also been observed for single-
molecule manipulation of thermophilic F1 (refs 19,20) and in
molecular dynamics simulations based on the crystal structures of
eukaryotic F1 (refs 45–47). However, the release order is still
uncertain owing to several inconsistent results among structural
and single-molecule studies10,21. Regardless of the order, it is clear
that the catalytic cycles of F1 and V1-ATPases differ substantially
(see Fig. 1).

EhV1 showed three 120� steps in a 360� rotation without
apparent substeps in our single-molecule dynamics studies32,33.
This rotational cycle pattern is similar to the rotational steps
observed for T. thermophilus V1 (ref. 25), whereas mammalian F1

rotation involves two rotational substeps for 120� steps (Fig. 1). In
this study, we obtained the crystal structures of three different
states in the rotational cycle, corresponding to the catalytic dwell
(2ATPV1), ATP-binding dwell (2ADPV1), and ADP-release dwell
(3ADPV1) states. There are several potential explanations for why
these states were not distinguished in our singe-molecule analysis.

First, there were clear structural differences between the catalytic
dwell (eV1¼ 2ATPV1) and ATP-binding dwell (2ADPV1). The DF
axis of 2ADPV1 did not rotate significantly, but was instead tilted
toward the ‘ADP-bound’ form owing to the conformational
changes induced by the binding of ADP to the ‘tight’ form of eV1

(see Supplementary Movie 1). Such a tilt of DF without apparent
rotation would be difficult to detect using the single-molecule
observations as an additional substep32,33. Second, there were
clear structural differences between the ATP-binding dwell
(2ADPV1) and the ADP-release dwell (3ADPV1). The DF axis of
3ADPV1 was slightly bent towards the ‘tight-like’ form, but did not
induce any rotational changes (see Supplementary Movie 3). This
small shift in DF without apparent rotation would also be difficult
to be detected using our single-molecule observations as
additional substeps32,33. These findings suggested that EhV1

exists in at least three dwell states in the 120� rotation without
any rotational substeps. Thus, although the number of dwell
states in EhV1 and mammalian F1 appears to be the same, these
V1 and F1 motors show clear differences in the release order
of cleavage products, rotational arrest points, dynamics and
conformational changes.

Three-dimensional structures for three rotational states of the
whole V-ATPase complex of Saccharomyces cerevisiae have been
obtained by electron cryo-microscopy48. The samples for this
analysis were obtained in the absence of nucleotides during the
purification procedures. Therefore, the V1 part of the three
structures (PDB number: 3J9T, 3J9U and 3J9V) seemed to
correspond to the nucleotide-free form. These three structures of
yeast V1 are comparable to those of EhV1, and are the most
similar to that of eV1 (the nucleotide-free form of EhV1

corresponding to the catalytic dwell state), although the tilts of
these DF complexes are different (Supplementary Fig. 13). Thus,
nucleotide-free V1-ATPases seem to form the catalytic dwell state,
rather than the ATP-binding dwell and ADP-release dwell states.
Recently, the crystal structure of S. cerevisiae V1-ATPase has been
obtained at a 6.2 Å resolution49. This structure appears to be an
inhibitory state wherein the subunit H inhibits the ATPase
activity by stabilizing ADP binding to the catalytic site.
We compared these structures of yeast V1 and EhV1, and
found a lack of similarity between the yeast structure and EhV1

Emptya

e

b c dBindable-like Half-closed Bound

ATP ADP
AO

ACR
Rotate

~0°
Rotate

~0°
Rotate
120°

AC

Catalytic dwell

Eh-A Open (O) Open (O')

Open (O, O'')

Half-closed (HC) Closed (C) Closer (CR, CR') Closed (C)

Closed (C')

ADP-bound

ADP-bound

Closer (CR, CR')

Tight

Tight-like

ATP-hydrolysing

Open (O')

Bound

ATP-bound

Open (O'')

Half-closed

ATP-binding

Bindable

Closed (C)

Empty

ATP-unbound

Eh-B

AB pair

State

Catalytic dwellATP-binding dwell ADP-release dwell

B
ound

B
ound

B
ound

TightTi
gh

t

AD
P-

bo
un

d

Ti
gh

t-l
ik

e

E
m

pt
yA

A
PPP

A
A

PPP P

A P PP
A

A

PPP

P
P
P

PP

A

A

P
P
P

PP PP

BCR

BO'

AO' AHC
AC

BCR

ACR

AO

BO'

BCAC

ACR'

BCR'

AC

AC
BC'

BO'

BO''

BO'

BO''BC

Pi

Bindable-like

ATP-accessible

Figure 9 | Proposed model of the rotation mechanism of Enterococcus hirae V1-ATPase. (a–d) The structure models are based on the crystal structures

of 2ATPV1 (catalytic dwell; a,d), 2ADPV1 (ATP-binding dwell; b), and 3ADPV1 (ADP-release dwell; c) determined in this study. ATP indicated as a yellow

‘P’ in (a) and (d) represents an ATP molecule that is committed to hydrolysis. (e) Correspondence table for all AB pairs observed in the crystal structures of

the A3B3 and V1 complexes. See text for additional details.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13235 ARTICLE

NATURE COMMUNICATIONS | 7:13235 | DOI: 10.1038/ncomms13235 | www.nature.com/naturecommunications 9

http://www.nature.com/naturecommunications


structures (2ATPV1, 2ADPV1, 3ADPV1), suggesting that the yeast V1

structure provides a unique view of an inhibitory state of a
eukaryotic V-ATPase (Supplementary Fig. 13).

Finally, we propose a potential model to describe the rotation
mechanism of E. hirae V1-ATPase based on the observed crystal
structures and single-molecule observations32,33. Figure 9 shows
the 120� rotation model starting from the catalytic dwell (Fig. 9a),
in which the surface structure of the C-terminal domain of
2AMP-PNP-bound V1 (2ATPV1) is depicted, and the two ATP
molecules are bound to the ‘bound’ and ‘tight’ forms (see
Supplementary Fig. 14 and Supplementary Movie 4 for the 360�
rotation model). The ATP that is tightly bound to the ‘tight’ form
is hydrolysed to produce ADP and Pi

31. The Pi molecule, which
has a lower affinity than ADP, is released, inducing a change from
the ‘tight’ to ‘ADP-bound’ form. Consequently, the DF axis tilts
toward the ‘ADP-bound’ form, but this does not induce a
rotational event of the DF axis. The adjacent ‘empty’ form
(ATP-unbound state) then changes to a ‘bindable-like’ form
(ATP-accessible state) in a cooperative manner (Fig. 9b:
ATP-binding dwell). Next, a new ATP molecule binds to the
‘bindable-like’ form, which induces a conformational change to
the ‘bound’ form, thereby releasing the bound ADP from the
‘ADP-bound’ form. If the ADP stays in the ‘ADP-bound’ form,
the ‘bindable-like’ form will become ‘half-closed’ due to ATP
binding (more specifically, due to ADP:Mg2þ binding with
SO4

2� , as shown in Fig. 6a), which is accompanied by a small
shift of the DF axis, but no apparent rotational substep.
Consequently, the adjacent ‘ADP-bound’ form cooperatively
returns to the ‘tight-like’ conformation, and the binding affinity
for ADP is reduced, as described above (Fig. 9c: ADP-release
dwell). Then, ADP is released from the ‘tight-like’ form, and the
‘half-closed’ form is converted to the ‘bound’ conformation.
Following these conformational changes, the DF axis rotates 120�
with a torque of B25 pNnm (ref. 33), and conformational
changes from ‘tight-like’ to ‘empty’ and from ‘bound’ to ‘tight’
occur as a result of protein–protein interactions with the
DF axis31. Finally, the enzyme resumes its initial catalytic dwell
state, shown in Fig. 9a (Fig. 9d). Thus, the V1 motor achieves its
rotational dynamics via several conformational changes that are
generated by the binding of ATP, release of Pi and ADP, and
cooperative coupling among these conformational changes. We
will refine our model further by performing a combination of
structural, single-molecule and computational analyses to fully
understand the operational mechanism of EhV1.

Methods
Protein preparation. An Escherichia coli cell-free protein expression system
was used to synthesize the A3B3 and DF complexes using a mixture of plasmids
harbouring the corresponding genes with a modified natural poly-histidine
(MKDHLIHNHHKHEHAHAEH) affinity tag, tobacco etch virus cleavage site
(EHLYFQG) and linker (SSGSSG) sequences at the N terminus29–31. The reacted
cell-free lysate was loaded onto a HisTrap HP column (GE Healthcare, Little
Chalfont, UK) equilibrated with buffer-A (50 mM Tris-HCl, 750 mM NaCl, 5 mM
2-mercaptoethanol, and 10 mM imidazole; pH 8.0), and bound proteins were
eluted with buffer-B (50 mM Tris-HCl, 300 mM NaCl, 5 mM 2-mercaptoethanol,
and 500 mM imidazole; pH 8.0). The sample buffer was exchanged to buffer-A
using a HiPrep 26/10 desalting column (GE Healthcare, Little Chalfont, UK).
To obtain non-tagged samples, the proteins were treated with tobacco etch virus
protease at 4 �C for 12 h. The reaction solution was loaded onto a HisTrap HP
column again, and the flow-through fractions containing the non-tagged proteins
were pooled. The protein samples were dialysed against buffer-C (50 mM Tris-HCl,
10 mM NaCl, 5 mM 2-mercaptoethanol; pH 8.5), loaded onto a HiTrap Q HP
column (GE Healthcare, Little Chalfont, UK) equilibrated with buffer-C and eluted
with a linear gradient of 10–1,000 mM NaCl. Finally, the concentrated samples
with an Amicon Ultra 30 K unit (Merck Millipore, Darmstadt, Germany) were
loaded onto a HiLoad 16/60 Superdex 200 pg column (GE Healthcare, Little
Chalfont, UK) equilibrated with buffer-D (20 mM Tris-HCl, 150 mM NaCl, and
2 mM dithiothreitol; pH 8.0) and eluted using buffer-D. The purified A3B3 and DF
complexes were concentrated with an Amicon Ultra 30 K unit.

V1-ATPase (A3B3DF) was reconstituted and purified as follows: purified A3B3

and DF in buffer-D were mixed in a 1:5 molar ratio with the addition of MES
(100 mM final concentration; pH 6.0) and incubated with 0.2 mM AMP-PNP and
5 mM MgSO4 for 1 h. Reconstituted V1-ATPase was purified using a HiLoad 16/60
Superdex 200 pg column equilibrated with buffer-E (20 mM MES, 10% glycerol,
100 mM NaCl, 5 mM MgSO4, and 2 mM dithiothreitol; pH 6.5). Purified complexes
were concentrated with an Amicon Ultra 30 K unit.

Crystallization. Crystals of nucleotide-free A3B3DF (eV1) were obtained by
mixing 0.1 ml of 8 mg ml� 1 purified V1-ATPase in buffer-E (see previous section)
with 0.1 ml of reservoir solution (0.1 M Bis-Tris propane (pH 6.5–7.5), 20–22%
polyethylene glycol (PEG)-3350, and 0.2 M NaF), using the sitting-drop vapour
diffusion method at 296 K. The crystals were soaked in the following conditions
(i–vi), mounted on cryo-loops (Hampton Research, Aliso Viejo, CA, USA),
flash-cooled, and stored in liquid nitrogen.

i. V1-ATPase soaked with 2 mM AMP-PNP (2ATPV1): The eV1 crystals were
soaked for 6.5 h in 0.1 M Bis-Tris propane (pH 6.5), 21% PEG-3350, 2 mM
AMP-PNP, 3 mM MgCl2, 0.28 M NaCl and 20% glycerol.

ii. V1-ATPase soaked with 20 mM ADP (2ADPV1): The eV1 crystals were soaked
for 4.5 h in 0.1 M Bis-Tris propane (pH 6.5), 21% PEG-3350, 20 mM ADP,
3 mM MgSO4, 0.28 M NaCl, and 20% glycerol.

iii. V1-ATPase soaked with 2 mM ADP (3ADPV1): The eV1 crystals were soaked
for 4.5 h in 0.1 M Bis-Tris propane (pH 6.5), 21% PEG-3350, 2 mM ADP,
3 mM MgSO4, 0.28 M NaCl and 20% glycerol.

iv. V1-ATPase soaked with 20 mM Pi (0PiV1:20 mM): The eV1 crystals were
soaked for 5.5 h in 0.1 M Bis-Tris propane (pH 7.5), 21% PEG-3350, 20 mM
sodium phosphate, 3 mM MgCl2, 0.28 M NaCl and 20% glycerol.

v. V1-ATPase soaked with 200 mM Pi (0PiV1:200 mM): The eV1 crystals were
soaked for 5.0 h in 0.1 M Bis-Tris propane (pH 6.5), 21% PEG-3350, 200mM
sodium phosphate, 3 mM MgCl2, 0.28 M NaCl and 20% glycerol.

vi. V1-ATPase soaked with 2 mM Pi (1PiV1): The eV1 crystals were soaked for
5.0 h in 0.1 M Bis-Tris propane (pH 6.5), 21% PEG-3350, 2 mM sodium
phosphate, 3 mM MgCl2, 0.28 M NaCl and 20% glycerol.

Structure determination. All X-ray diffraction data were collected from a single
crystal at a cryogenic temperature (100 K) at the Photon Factory (Tsukuba, Japan).
The collected data were processed using XDS50 or HKL2000 software
(HKL Research, Inc., Charlottesville, VA, USA). The structures were solved by
molecular replacement with Phaser51 or MOLREP52, using the crystal structures of
bV1, eV1, 2ADPV1, bV1, 1PiV1 and bV1 as a search model for 2ATPV1, 2ADPV1,
3ADPV1, 0PiV1:20 mM, 0PiV1:200 mM and 1PiV1, respectively. The atomic models
were built using Coot53, cross-validated by making various omit maps to minimize
model bias, and iteratively refined using REFMAC5 (ref. 54) and Phenix55.
TLS (Translation/Libration/Screw) refinement was performed in late stages of
refinement. The refined structures were validated with RAMPAGE56. For the
structures of 2ATPV1, 2ADPV1, 3ADPV1, 0PiV1:20 mM, 0PiV1:200 mM and 1PiV1, 99.9,
99.9, 99.9, 100, 99.9 and 99.9% of the residues, respectively, were in favoured or
allowed regions based on a Ramachandran analysis. The crystallographic and
refinement statistics are summarized in Table 1. All r.m.s.d. values were calculated
using Ca atoms. The r.m.s.d. values for the superimpositions for each AB pair in
the crystal structures are listed in Supplementary Table 2. Figures were prepared
using PyMOL (The PyMOL Molecular Graphics System, Version 1.3, Schrodinger,
LLC, New York, NY, USA).

Measurement of ATPase activity and protein concentrations. ATPase activity
of the purified V1-ATPase in the presence of AMP-PNP or ADP was measured by
the colorimetric method using molybdic acid57,58. The reaction was initiated by the
addition of 1 mM ATP, after a 10 min pre-incubation with various concentrations
of AMP-PNP or ADP, and terminated by the addition of 10% sodium dodecyl
sulphate. The initial rate of the ATPase reaction at 23 �C was determined within
4 min, and the measurement was repeated three times. ATPase activities of the
purified V1-ATPase in the presence of various concentrations of sodium phosphate
were measured using an ATP regenerating system31,59. ATP hydrolysis rates at
23 �C were determined in terms of the rate of NADH oxidation, which was
measured as a decrease in absorbance of 340 nm, and the measurement was
repeated three times. Protein concentrations were determined using Pierce BCA
Protein Assay Kit (Thermo Fisher Scientific, Inc., Waltham, MA, USA) with bovine
serum albumin as the standard.

Isothermal titration calorimetry (ITC). V1-ATPase was prepared by mixing
12 mM A3B3 and 60mM DF in 900ml of buffer-D, and the suspended sample buffer
was replaced with buffer-F (100 mM Tris-HCl, 100 mM NaCl, and 5 mM MgSO4;
pH 7.5) using Spectra/Por 3 Dialysis Tubing (Spectrum Laboratories, Inc., Rancho
Dominguez, CA, USA). ITC experiments were performed using the MicroCal
iTC200 calorimeter (Malvern Instruments Ltd., Malvern, Worcestershire, UK), and
the samples (7mM) with/without 21mM ANP-PNP or 35mM ADP were loaded
into the sample cell. Either 200mM AMP-PNP or ADP in buffer-F was injected
into the sample cell at 25 �C using one initial injection of 1.0 ml followed by 18
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injections of 2.0 ml. Binding data were fitted to the two sets of sites model using
Origin 7.0 (MicroCal) or the three sets of sites model using MATLAB41.

Tryptophan fluorescence. V1-ATPase was prepared by mixing 100 nM A3B3 and
500 nM DF in buffer-F in 1.2 ml. Fluorescence experiments were performed using
the FP-6500 spectrofluorometer (JASCO, Tokyo, Japan) at 25 �C. Fluorescence
spectra were recorded with excitation at 300 nm (slit width 1 nm) and emission
between 310 and 450 nm (slit width 20 nm). Time courses of exchange reactions of
AMP-PNP and ADP were measured every 0.5 s at 335 nm with excitation at
300 nm. Time courses were averaged for 20 data points around each point.

Data availability. Coordinates and structure factors for the ADP- and Pi-bound
V1-ATPase complexes have been deposited in the Protein Data Bank under the
accession codes 5KNB (doi: 10.2210/pdb5knb/pdb; 2ADPV1 at 3.3 Å) (ref. 60),
5KNC (doi: 10.2210/pdb5knc/pdb; 3ADPV1 at 3.0 Å)61, and 5KND (doi: 10.2210/
pdb5knd/pdb; 1PiV1 at 2.9 Å)62. The authors declare that all other relevant data
supporting the findings of this study are available within the article and its
Supplementary Information files.
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