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Cellular death, aging, and tissue damage trigger inflammation that leads to

enzymatic and non-enzymatic lipid peroxidation of polyunsaturated fatty acids

present on cellular membranes and lipoproteins. This results in the generation

of highly reactive degradation products, such as malondialdehyde (MDA) and

4-hydroxynonenal (4-HNE), that covalently modify free amino groups of

proteins and lipids in their vicinity. These newly generated neoepitopes

represent a unique set of damage-associated molecular patterns (DAMPs)

associated with oxidative stress termed oxidation-specific epitopes (OSEs).

OSEs are enriched on oxidized lipoproteins, microvesicles, and dying cells, and

can trigger sterile inflammation. Therefore, prompt recognition and removal of

OSEs is required to maintain the homeostatic balance. This is partially achieved

by various humoral components of the innate immune system, such as natural

IgM antibodies, pentraxins and complement components that not only bind

OSEs but in some cases modulate their pro-inflammatory potential. Natural

IgM antibodies are potent complement activators, and 30% of them recognize

OSEs such as oxidized phosphocholine (OxPC-), 4-HNE-, and MDA-epitopes.

Furthermore, OxPC-epitopes can bind the complement-activating pentraxin

C-reactive protein, while MDA-epitopes are bound by C1q, C3a, complement

factor H (CFH), and complement factor H-related proteins 1, 3, 5 (FHR-1, FHR-

3, FHR-5). In addition, CFH and FHR-3 are recruited to 2-(w-carboxyethyl)
pyrrole (CEP), and full-length CFH also possesses the ability to attenuate 4-

HNE-induced oxidative stress. Consequently, alterations in the innate humoral

defense against OSEs predispose to the development of diseases associated

with oxidative stress, as shown for the prototypical OSE, MDA-epitopes. In this

mini-review, we focus on the mechanisms of the accumulation of OSEs, the

pathophysiological consequences, and the interactions between different

OSEs and complement components. Additionally, we will discuss the clinical

potential of genetic variants in OSE-recognizing complement proteins – the

OSE complotype - in the risk estimation of diseases associated with

oxidative stress.
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1 Introduction

1.1 Generation of OSE

Increased oxidative stress, characterized by exalted levels

of reactive oxygen species, leads to lipid peroxidation of

polyunsaturated fatty acids localized in cellular membranes. Lipid

peroxidation can be initiated by enzymatic or non-enzymatic

mechanisms, resulting in the generation of reactive lipid mediators.

Adduction of reactive lipid degradation products to free amino-

groups on macromolecules generates novel neo-epitopes, termed

oxidation-specific epitopes (OSEs) (1). Once adducted, OSEs have

the capacity to alter the function of the affected biomolecule and tag

their carrier as “altered-self”. Although there is a large amount of

different lipid degradation byproducts that can create OSEs, the best

studied examples are malondialdehyde and the more advanced

malondialdehydeacetaldehyde, which we are collectively calling

MDA (as umbrella term for different MDA-epitopes), 4-

hydroxynonenal (4-HNE), 2-(w-carboxyethyl)-pyrrole (CEP),

oxidized cardiolipin (OxCL) and the phosphocholine head group-

containing oxidized phospholipids (OxPC).

Within tissues or in the circulation, OSE-decorated structures

are considered to be markers of oxidative stress and are found in

many pathological conditions such as chronic inflammation,

autoimmunity, infections, cancer, and neurological disorders (1–7).
1.2 Biological carriers and function of
OSEs

The ubiquitous presence of lipids in living cells enables OSEs

formation on versatile biological carriers. Major carriers are free

biomolecules, oxidized lipoproteins, microvesicles, and

apoptotic cells (1).

1.2.1 Free biomolecules
1.2.1.1 Proteins

On proteins, OSEs are attached to the amino groups of lysine

and arginine side chains, but modifications of other amino acids

have been shown (8–12). This irreversible adduction can alter

protein carrier function, lead to aggregation, and increase its

immunogenicity (13, 14). The ultimate fate of OSE-modified

proteins in homeostasis is proteolytic degradation or clearance

by immune responses.

1.2.1.2 Nucleic acids

Nuclear and mitochondrial DNA modifications by MDA

and 4-HNE are mutagenic and cancerogenic by causing

nucleotide exchange or forming cross-links (11, 15).
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1.2.1.3 Phospholipids

Amino group-containing phospholipids, such as

phosphatidylethanolamine (PE) and phosphatidylserine (PS),

can be modified by MDA, 4-HNE, and CEP (16–21). OSEs on

phospholipids alter their recognition by pattern recognition

receptors (PRR) and their ability to serve as phospholipase

substrates (22–24).

1.2.2 Lipoproteins
1.2.2.1 Low-density lipoprotein

Oxidized LDL has been discovered as the initial carrier of

OSEs, where they are considered to be major drivers of

atherosclerosis development (25, 26). Following the retention

of plasma LDL in the intima of the arterial wall, both the lipid

and protein components of LDL can become oxidized (OxLDL).

Newly oxidized LDL is pro-inflammatory, chemotactic, and pro-

coagulatory (2, 27). Upon OxLDL clearance, engulfing

macrophages are converted into foam cells - hallmark cells of

atherosclerotic plaques (28–30). Additionally, MDA-, 4-HNE-,

OxPC-, and OxCL-epitopes have been documented in

atherosclerotic plaques of mice and humans (25, 31–36).

1.2.2.2 High-density lipoprotein

Once modified by OSEs, HDL loses its function to remove

cholesterol from cells via the ATP-binding cassette transporter

A1 (ABCA1) pathway and, via CD36, promotes platelet

aggregation (37–41).

1.2.3 Microvesicles
Microvesicles are extracellular vesicles (0,1 - 1 µm) with a

phospholipid bilayer enriched in phosphatidylserine. They are

generated by cellular activation or apoptosis and are pro-

coagulatory and pro-inflammatory (2, 42, 43). As carriers of

parental cells’ biological cargo, they play a role in inter-organ

communication, and alterations in their numbers and content

are associated with many pathologies (43, 44). The presence of

OSEs, namely MDA- and OxPC-epitopes, has been

demonstrated on a subset of circulating MVs and MVs from

in vitro stimulated cells (45–47).

1.2.4 Dying cells
The presence of OSEs on dying cells and apoptotic

blebs seems to be independent of the mechanism of

apoptosis induction and the cell types undergoing apoptosis

(33, 34, 48–52). Early experiments already proposed that the

presence of OSEs on cells undergoing programmed cell death

(apoptosis and necrosis) plays a role in their clearance by

enhancing their ability to be recognized by phagocytic cells

(48, 53).
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1.3 The function of OSEs as danger-
associated molecular pattern molecules

Among well-established DAMPs, like histones, cholesterol

crystals, DNA, and others, OSEs represent a distinct group

(1, 54). Exposure of OSEs mediates the recognition by innate

immunity sensors and can trigger sterile inflammation

(51, 52, 55–60). The main cellular innate sensors of OSEs are

scavenger receptors and - typically in cooperation - toll-like

receptors (TLRs), which are responsible not only for recognition

but also for the initiation of downstream signaling events (1).

In vitro, treatment with MDA-modified proteins and MDA+

MVs induces cytokine secretion (e.g., interleukin-8 (IL-8), or its

murine functional homologues chemokine ligand 1(CXCL1) and

CXCL2) in various human or murine cell types and cell lines (47,

51, 52, 61). Moreover, in vivo, intravitreal injection of MDA-

modified bovine serum albumin (BSA) led to an increase in

CXCL1 expression in retinal pigment epithelial (RPE) cells (52).

Similarly, in a mouse peritonitis model, injection of MDA-BSA

resulted in secretion of CXCL1 and CXCL2 and recruitment of

neutrophils and monocytes. Moreover, treatment with the anti-

MDA IgM antibody (LR04) attenuated hepatic pro-inflammatory

cytokine secretion and leukocyte infiltration induced by the western

diet (51). Scavenger receptor A1 (SRA1), CD36, lectin-like OxLDL

receptor (LOX1), and CD16 on monocytes and macrophages have

been shown to act as sensors for MDA (51, 62–64).

4-HNE increased cytokine secretion, e.g., IL-8, recruitment

of neutrophils and macrophages via TLR4/NFkB in animal

models of atherosclerosis and chronic obstructive pulmonary

disease (59, 60). Also, it stimulated the release of pro-coagulatory

tissue factor-positive MVs from perivascular cells (65). LOX1

has been identified as the scavenger receptor for 4-HNE (66).

OxPC or OxPC-rich MVs have been reported to induce

endothelial cell activation, monocyte recruitment, cytokine
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secretion (e.g., IL-6) by macrophages, and apoptosis in smooth

muscle cells (3, 45, 49, 67). Furthermore, OxPC drives

hypercholesterolemia-induced inflammation and atherogenesis

and restrains bone formation in vivo (4, 35). SRB1, TLR2, and

CD36-TLR4-TLR6 heterotrimeric signaling complex are

required to recognize Ox-PC (68–70).

CEP has been shown to activate the NLRP3 inflammasome

and stimulate the production of IL-1b (71). Moreover, injection

of CEP into the mouse eye increased Th1 response and enhanced

angiogenesis (72–74). Additionally, in a peritonitis model, CEP

generated by neutrophils promotes infiltration of monocytes and

macrophages by binding to b2 integrins on their surfaces (75).

For CEP binding and clearance, the coordinated action of CD36

and TLR2 is required (76).
2 Recognition of OSEs by innate
humoral immunity

Both innate and adaptive immune responses against OSEs

have been demonstrated, and their functional implications are

being elucidated. Thus, in this mini-review we will focus solely

on representatives of soluble innate immune responses to OSEs:

natural IgM antibodies, pentraxins, and several components of

the complement cascade because their levels and genetic variants

have been implicated in the development of diseases associated

with increased oxidative stress (Table 1).
2.1 Natural antibodies

Natural IgM antibodies are pre-existing antibodies that

typically contain unmutated variable regions encoded by

germline gene sequences. In mice, natural antibodies are
TABLE 1 Plasma proteins recognizing OSEs and their reported biological effects.

Complement
component

OSEs The biological effect of OSE binding Reference

Natural antibodies MDA-,
OxLDL

Clearance and neutralization of OxLDL-, MV-, and apoptotic cells-induced inflammation; protection
against atherosclerosis and CVDs; inhibition of MV-mediated coagulation

(42, 45, 47, 77–92)

CRP OxPC- Binding to apoptotic cells and in atherosclerotic lesions; activation of CCC (49, 93, 94)

PTX3 OxLDL Promoting OxLDL uptake by macrophages (95, 96)

C1q MDA-,
OxLDL

CCC activation; clearance of oxLDL in an anti-inflammatory manner (97–100)

C3a MDA- OxLDL facilitates clearance of C3a by macrophages (101, 102)

CFH MDA-a, OxLDL
(OxPC-)b, 4-HNE-c,
CEP-d

Decreasing inflammationa, inhibition of complement activationb,d, protection from cell deathc (52, 103–109)

FHR-1 MDA- Propagation of inflammation and deregulation of CFH function (105, 110, 111)

FHR-3 MDA-, CEP- Propagation of inflammation (105, 112)

FHR-5 MDA- Reducing CFH cofactor activity and increasing C3 deposition (113)
The superscript letter in the second column designates the reported biological function in the third column.
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secreted by B1 cells, but marginal zone B cells may also contribute

to their production. Natural antibodies arise in newborns without

infections or exposure to exogenous antigens and thus can be

found in gnotobiotic mice. Thirty percent of all natural IgM

antibodies have specificity for OSEs, such as MDA, OxPC, and 4-

HNE, among which MDA is the predominant antigen (50). A

series of OSE-specific natural IgM antibodies have been cloned, of

which the best characterized are LR04, NA17, and E014

(recognizing MDA), T15/E06 (recognizing OxPC), and LR01

(recognizing OxCL) (25, 33, 34, 48, 50, 114). They bind to

microbial antigens and altered-self structures, which allows

them to mediate important functions in host defense, but also

makes them essential in homeostasis maintenance, respectively

(115). Natural IgM antibodies neutralize the pro-inflammatory

effects of oxidized lipids and MVs, mediate apoptotic cell

clearance, and are anti-atherogenic by blocking OxLDL uptake

and foam cell formation (45, 47, 77–79). Additionally, we have

shown that anti-MDA IgM hinders the binding of coagulation

factors X/Xa on MVs, attenuating the propagation of coagulation

and protecting from pulmonary thrombosis in mice (42).

Moreover, MDA-targeted passive and active immunization

strategies that increase the levels of MDA-specific IgM protect

from atherosclerosis and hepatic inflammation (80–82).

Furthermore, mice unable to secrete natural IgM antibodies

display impaired clearance of apoptotic cells and develop

arthritis and lupus-like disease, which can be in part explained

by the lack of OSE-specific IgMs (83–85). Finally, studies in

various human cohorts demonstrated that low levels of IgMs

against OSEs are associated with an elevated risk of developing

cardiovascular diseases (CVDs), confirming the beneficial role of

anti-OSE IgMs (86–92).
2.2 Pentraxins

Pentraxins are acute-phase proteins and represent soluble

innate pattern recognition proteins. As such, they facilitate the

removal of invading microorganisms and damaged host cells.

There are two types of pentraxins, short (C-reactive protein

(CRP) and serum amyloid P (SAP)) and long ones (pentraxin 3

(PTX3)) (116). CRP has been shown to bind to OxPC on

OxLDL, and they colocalize on the surface of apoptotic cells

and in human atherosclerotic lesions (49, 93). When CRP is

complexed with OxPC-epitopes, it recruits C1q and activates the

C1 complex of the classical complement cascade (CCC) (94). In

contrast to CRP, SAP and PTX3 do not bind to OSEs, although

SAP competes out the binding of plasma IgM and CRP on late

apoptotic cells (93). Interestingly, OxLDL enhanced the

expression of PTX3, which promoted OxLDL uptake by

macrophages and blocked cholesterol efflux (95, 96).

Furthermore, PTX3 protects against 4-HNE-induced

complement activation by recruiting CFH to the basal RPE

and inner Bruch’s membrane in AMD (117).
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2.3 Complement components

The complement cascade protects and orchestrates the

removal of invading pathogens and altered self- or foreign-

structures by employing three pathways. Its activity is steered by

complement activators and regulators that prevent collateral

damage to host tissues.

2.3.1 C1q
C1q is a multimeric protein, a part of the initiator complex of

the CCC. With its globular head, it can recognize pathogen-

associated molecular patterns (PAMPs), DAMPs, and immune

complexes, and once bound, it activates the CCC with the

collagen-like domain. It binds to OxLDL, which leads to the

complement activation and deposition of C3b, facilitating

OxLDL uptake by monocytes and macrophages (97, 98).

Additionally, the engulfment of OxLDL with C1q suppresses

macrophage NFkB and NLRP3 activation, resulting in an

enhancement of IL-10 and a reduction in IL-1b secretion (99).

The initial notion that the binding of C1q to oxidized

lipoproteins is mediated through OSEs came from the finding

that MDA-LDL binds C1q, resulting in the deposition of C4b

and activation of the CCC, which can be inhibited by ApoE

(100). Furthermore, C1q is found both on circulating MVs, and

apoptotic cells; however, if this binding is (in part) OSE-

dependent has not been investigated so far (118–120). Due to

the impairment of apoptotic cell clearance, C1q deficiency in

mice and men predisposes to the development of systemic lupus

erythematosus (SLE) (118, 121).

2.3.2 C3a
Complement anaphylatoxin C3a is a small degradation

product of C3 generated by C3 convertase. It is a chemotactic

molecule of the immune system, and although classically

considered a pro-inflammatory molecule, C3a has been shown

to have some anti-inflammatory functions (122, 123). MDA-

epitopes are ligands for C3a on OxLDL and apoptotic cells.

Furthermore, this OxLDL-C3a interaction results in increased

internalization of C3a by macrophages, thus making OxLDL a

platform enhancing uptake of C3a (101). Myeloperoxidase-rich

MVs can also be the carriers of C3a; however, if recruitment of

C3a to MVs is mediated by OSEs has to be elucidated (124).

2.3.3 Complement factor H
Complement factor H is the regulator of the alternative

complement pathway. It comprises 20 short consensus repeat

(SCR) domains and acts as a sensor of PAMPs and DAMPs.

Additionally, a splice variant of CFH exists – factor H-like

protein 1 (FHL-1). Impairment of CFH functions contributes

to the development of many diseases, with AMD and atypical

hemolytic uremic syndrome as the most prominent examples

(125, 126). Weismann et al. demonstrated that CFH and FHL-1
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recognize MDA-epitopes and colocalize within the retina and

atherosclerotic lesions. MDA recognition is achieved by SCR7

and SCR19-20, where SCR7 is the most critical, but SCR19-20

also matter (103–106). CFH protects from MDA-induced IL-8

secretion and inactivates C3b into iC3b on MDA-carrying

surfaces (52). Furthermore, the CFH variant Tyr402His

(rs1061170) within SCR7 that predisposes to AMD results in

decreased binding to MDA-epitopes in healthy individuals and

AMD patients (52, 105). Similarly, transgenic mice with human

SCR6-8 402His inserted into a mouse CFH display an AMD-like

phenotype (103). In addition, CFH binds CEP-decorated

surfaces and this binding is attenuated in the presence of

complement factor H-related protein 3 (FHR-3) (112). The

observation that CFH binds to OxPC-epitopes requires further

validation (52, 107, 108). Although CFH does not directly

interact with 4-HNE-epitopes, it protects ARPE-19 cells from

4-HNE-induced cell death by attenuating apoptotic and

necroptotic cell death pathways (52, 109). Next to OSEs, CFH

binds many other DAMPs on the surface of dying cells,

apoptotic blebs, and MVs (52, 110, 127, 128). There, CFH

compensates for the loss of membrane-bound complement

inhibitors by protecting cells from excessive complement

activation and limiting inflammatory potential (127, 128).

2.3.4 Complement factor H-related proteins
FHRs are five plasma proteins that share high structural and

functional similarities with CFH, among other recognition of

OSEs by FHR-1, 3-, and -5. Interestingly, FHRs do not have

potent complement regulatory activity like CFH. Their

competition with CFH in recruitment to various ligands labels

them as “deregulators of CFH activity” (129, 130).

Using a genome-wide association study, we identified FHR-1

as the main competitor to CFH for binding MDA-epitopes in a

cohort of healthy individuals. Once bound to MDA-epitopes,

FHR-1 blocks CFH-mediated C3b inactivation, allowing C3b

and Bb deposition and propagation of the alternative

complement pathway. MDA-epitopes on necrotic cells are

recognized by FHR-1 via SCR1-2 (105, 110, 111). This

activates monocytes in the vicinity via EMR2 receptors and

NLRP3 pathway (111). Consequently, in necrotic cores of

atherosclerotic lesions, FHR-1 colocalizes with macrophages

and stimulates IL-1b and IL-8 secretion (110). Considering its

property to bind MDA-epitopes, deletion of the gene encoding

for FHR-1 (CFHR1) is assumed to be beneficial in chronic

inflammation. Indeed, carriers of this deletion have a reduced

risk of atherosclerotic CVDs and anti-neutrophil cytoplasmic

antibody-associated vasculitis and display lower levels of

inflammatory markers (110, 111). Therefore, on MDA-

carrying host surfaces, FHR-1 is pro-inflammatory. Of note,

FHR-1 does not bind any other OSEs (105).

The deletion of CFHR3&CFHR1 genes was shown to

enhance CFH binding to MDA-epitopes because, as FHR-1,

FHR-3 competes for them. Compared to FHR-1 and CFH, it
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displays the lowest affinity towards MDA-epitopes. Once bound

to MDA-epitopes, FHR-3 does not cause deregulation of CFH

function (105). Moreover, FHR-3 has been shown to also bind to

CEP-epitopes but does not interact with OxPC- and 4-HNE-

modifications (105, 112). Interestingly, when attached to the

surface of polarized senescent ARPE-19 cells, FHR-3 is

internalized. Engulfed FHR-3 drives pro-inflammatory

responses of RPE cells by upregulating C3 and factor B

expression and translocating newly generated C3a from the

cytoplasm to the membrane (112). Although the relation

between OSE-binding and FHR-3 has not been investigated in

diseases associated with a high level of oxidative stress, in many

of them, e.g., rheumatoid arthritis and SLE, FHR-3 serum levels

are increased, and the lack of CFHR3 gene is protective (131).

Complement factor H-related protein 5, one of the largest

members of the FHR family, attaches itself to apoptotic and

necrotic cells through SCR5-7 domains. MDA-epitopes were

shown to be the predominant ligands responsible for this

recruitment, as demonstrated by the fact that the density of

these epitopes determines the amount of FHR-5 bound. Like

FHR-1 and FHR-3, when attached to MDA-epitopes, FHR-5

reduces CFH cofactor activity and enhances C3 deposition.

Additionally, a hybrid protein FHR-21-2-FHR-5 obtained

from the serum of a patient with C3 glomerulopathy binds to

MDA-epitopes (113). When adhered to apoptotic and necrotic

cells’ surfaces, FHR-5 and FHR-1 recruit CRP and PTX3 and

activate classical and alternative complement pathways,

facilitating opsonization (132).
2.4 The connection between natural
IgM antibodies, pentraxins, and
complement proteins

Although OSE-recognizing IgM antibodies and pentraxins

have been shown to instruct phagocytic cells for clearance of

damaged structures individually, they can also employ the

complement cascade to ensure even more efficient and potent

removal machinery (1, 49, 114, 133).

Natural IgM antibodies, CRP, and SAP have been shown to

recruit early components of the CCC, such as C1q, mannose-

binding lectin, and ficolins in efferocytosis (49, 84, 93, 134–137).

Additionally, on the surface of apoptotic cells, regulators of

complement activity - C4-binding protein (C4BP) and CFH -

can attach directly to DAMPs or indirectly, e.g., through CRP

(108, 138, 139). Recruitment of these complement regulators

prevents the assembly of the membrane attack complex and

lysis, keeping efferocytosis immunosilent. After engulfment of

apoptotic cells opsonized with CRP and complement,

macrophages maintain an anti-inflammatory status (136, 140,

141). In contrast to other complement components, FHR-1, -3,

and -5 have been shown to bind to the surface of necrotic cells

via OSEs, CRP, or other DAMPs to enhance opsonization by
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complement activation and act pro-inflammatory (111, 113,

132, 142).

Importantly, it has to be kept in mind that the combined

recognition of MDA and any other co-expose OSE by various

humoral immune responses as well as the cellular receptors

binding them and/or the cellular receptors binding OSE directly

will ultimately determine the net biological effect. The

elucidation of these functional responses will provide insights

into the pathophysiological relevance of OSE recognition by

humoral immunity.
3 OSEs, recognition of OSEs and its
clinical potential

Structures modified by OSEs have been detected practically

everywhere, in various tissues and body fluids (4, 10).

As markers of enhanced oxidative stress, OSEs occur early,

contribute to disease development, and have strong biomarker

potential that has not been explored enough. The most commonly

used assay for lipid peroxidation, thiobarbituric acid reactive

substances assay (TBARS), is not specific, while mass

spectrometry, immunological, chromatography, and imaging
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techniques are much more specific and reliable but costly. Still,

even today, TBA-based assays are used in many clinical studies

(143, 144). In contrast, studies that monitor immune responses

against OSEs and their effects have not been broadly performed.

Many such investigations have been conducted for atherosclerosis

as a prototypical OSE-driven pathology with a vital contribution

of the immune system. Evidence obtained from this research

supports the observation that IgG antibodies to OxLDL are pro-

atherogenic and increase the risk of developing CVDs – though

this association may be more complex and depend on the IgG

isotype. In contrast, IgM antibodies to OxLDL have largely shown

to be associated with atheroprotection (145, 146). An even more

precise prediction for CVD events was observed in a prospective

15-year-long study when the multivariable prediction models,

including levels of oxidized phospholipids (OxPL)/apolipoprotein

B (apoB) as OSEs, OSE-specific IgM and IgG antibodies, and CRP

were used (88). It is known that the levels of CRP correlate with

the levels of OSEs (MDA and 4-HNE), but if this association

depends on CRP genetic variants influencing CRP levels and/or

recruitment to damaged surfaces have not been investigated so

far (147).

Furthermore, OSE-recognizing complement components

have been associated with the development of autoimmunity,
FIGURE 1

Schematic illustration of OSE humoral immunorecognition and consequences thereof. AMD, age-related macular degeneration; CFH,
complement factor H-related protein; CRP, C-reactive protein; CVDs, cardiovascular diseases; FHL-1, factor H-like protein 1; FHR-1, -3, -5,
complement factor H-related protein 1, 3, 5; OSE, oxidation-specific epitopes; OxLDL, oxidized low-density lipoprotein; RA, rheumatoid
arthritis; SLE, systemic lupus erythematosus.
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emphasizing the importance of these proteins in the clearance of

damaged cells and prevention of autoantigen spill-over. So far,

the interaction between C1q and MDA has not been

characterized; therefore, no polymorphisms in C1q were

shown to influence MDA-binding or levels. However,

congenital C1q deficiency is associated with the development

of lupus-like autoimmunity due to the impaired clearance of

apoptotic cells (118, 148). Interestingly, in SLE, the OSE levels

(MDA, 4-HNE, and OxPC) and OSE-specific IgM and IgG

antibodies are altered (149–151).

The most important modulators of CFH binding to MDA-

epitopes – the CFH variant Tyr402His and the deletion of

CFHR3&CFHR1 genes – are frequent in the population and

affect the development of the two most common diseases,

atherosclerosis and AMD (52, 105). Although these diseases affect

different organs, they have a similar underlying pathology linked

with increased oxidative stress. Deletion of CFHR3&CFHR1 genes

offers protection in both of them, while Tyr402His is deleterious in

AMD and possibly atherosclerosis, highlighting CFH’s importance

in homeostatic responses (110, 152–155). Since CFH is a crucial

player in regulating complement activation, variants affecting its

activity have been used in combined genetic risk scores/haplotypes

for some complementopathies (153).

Based on the available literature, it is evident that the early

appearance of OSEs and innate humoral immune responses are

critical players in the development and progression of

pathologies caused by oxidative stress (Figure 1). Therefore,

using individual genetic variants or levels of OSE-recognizing

proteins in disease prediction models generates less accurate

prediction scores. To obtain a more precise, personalized risk

prediction score for the ability of the host to deal with increased

oxidative stress, we suggest using integrative analysis that

considers all individual OSE-related parameters combined

(levels of OSE and OSE-recognizing proteins and genetic

variant within OSE-recognizing proteins). A strong argument

for such an approach comes from a study in which combining

CEP levels with AMD risk alleles in ARMS2, HtrA serine

peptidase 1 (HTRA1), CFH or C3 showed a twofold to

threefold increased risk score compared to a genotype-based

score alone (156).

Thus, we propose a novel concept – the OSE complotype.

The OSE complotype would include levels of specific OSEs,

immune responses involved in their detection and clearance, and
Frontiers in Immunology 07
a repertoire of inherited genetic variants that modulate

properties of OSE-recognizing proteins. This integrative

method would allow for a more precision medicine-directed

approach to evaluate the individual risk, progression, and

therapeutic responses in oxidative stress-related diseases.
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