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Background: Classification of glomerular diseases and identification of glomerular lesions

require careful morphological examination by experienced nephropathologists, which is

labor-intensive, time-consuming, and prone to interobserver variability. In this regard,

recent advance in machine learning-based image analysis is promising.

Methods: We combined Mask Region-based Convolutional Neural Networks (Mask ReCNN)

with an additional classification step to build a glomerulus detection model using human

kidney biopsy samples. A Long Short-Term Memory (LSTM) recurrent neural network was

applied for glomerular disease classification, and another two-stage model using ResNeXt-

101 was constructed for glomerular lesion identification in cases of lupus nephritis.

Results: The detection model showed state-of-the-art performance on variedly stained

slides with F1 scores up to 0.944. The disease classification model showed good accuracies

up to 0.940 on recognizing different glomerular diseases based on H&E whole slide images.

The lesion identification model demonstrated high discriminating power with area under

the receiver operating characteristic curve up to 0.947 for various glomerular lesions.

Models showed good generalization on external testing datasets.

Conclusion: This study is the first-of-its-kind showing how each step of kidney biopsy

interpretation carried out by nephropathologists can be captured and simulated by ma-

chine learning models. The models were integrated into a whole slide image viewing and

annotating platform to enable nephropathologists to review, correct, and confirm the

inference results. Further improvement on model performances and incorporating inputs

from immunofluorescence, electron microscopy, and clinical data might realize actual

clinical use.
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At a glance commentary

Scientific background on the subject

Pathological examination of kidney biopsy requires

careful searching for glomeruli, distinguishing different

kinds of glomerulonephritides, and identifying specific

glomerular lesions, which is repetitive and time

consuming. Advances in computer-aided image analysis

and handy digital pathology tools might provide an op-

portunity to establish a better diagnostic workflow.

What this study adds to the field

The study here described the construction of three ma-

chine models capturing the crucial aspects of kidney

biopsy interpretation including glomerular detection,

glomerulonephritis classification, and multi-label

glomerular lesion identification. In addition, we

demonstrated how these models can be integrated in

pathologists’ workflow on a computational pathology

platform to assist daily practice.
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Introduction

Machine learning-based image analysis has gradually attrac-

ted much attention in the field of pathology. In recent years,

deep learning techniques such as convolutional neural net-

works (CNN) have become the de facto standard in computer-

aided image analysis [1e3]. Several utilities such as breast

cancer lymph node metastasis identification [4], prostate

cancer detection [5], and colon cancer outcome prediction

have been described [6]. Most machine learning studies in

nephrology focus on utilizing clinical parameters and bio-

markers [7]. Prediction of developing acute kidney injury after

coronary artery intervention, forecasting rapid kidney func-

tion decline in patients with diabetes, subtyping transplant

glomerulopathy in renal transplant recipients, and risk strat-

ifying IgA nephropathy have been reported [8e11]. On the

other hand, research on deep learning-based image analysis is

still scarce in the field of medical renal pathology. Kolacha-

lama et al. reported predicting renal survival from patholog-

ical images [12]. Zeng et al. utilized deep learning to identify

different intrinsic glomerular cell types [13]. Few other studies

have focused on different structural compartments such as

interstitium, peritubular capillaries, and interstitial fibrosis

[14e16], and some hand-crafted feature-based methods or

CNN-based methods for glomerulus detection have been re-

ported [17e23].

Pathological examination of kidney biopsy requires

careful inspection of glomerular, tubular, interstitial, and

vascular compartments in the biopsy. In most of the time,

examination of glomeruli is crucial for diagnosis. However,

examination of glomeruli does not end at glomerulus

detection but needs further interpretations including dis-

tinguishing different kinds of glomerulonephritides and
identifying glomerular lesions. For example, by combining

glomerular histologic features and information from

immunofluorescence and clinical laboratory data, neph-

ropathologists first identify a kidney biopsy as a case of

lupus nephritis and then search for different kinds of le-

sions in glomeruli. The searching needs to be repeated on

every glomerulus to get a final interpretation. It is tedious,

time consuming, and suffers from poor concordance even

among expert nephropathologists [24,25]. In this regard,

computer-aided image analysis may be helpful in estab-

lishing a better diagnostic workflow [26]. However, studies

on identifying glomerular lesions using computer-aided

image analysis techniques are scarce, and they focused on

only one or few pathological features such as global scle-

rosis, hypercellularity, or glomerular capillary loop thick-

ening [20,27e30]. Furthermore, a model distinguishing

different glomerular disease based on light microscopic

morphology has not been reported.

In this study, we demonstrated an integrated computa-

tional pathology workflow on kidney biopsy whole slide im-

ages (WSIs) by a sequence of glomerular detection,

glomerulonephritis classification, and glomerular lesion

identification models. Previous studies mostly focused on

single task such as glomerulus detection or single lesion

identification. The current study represents the first-of-its-

kind aiming at capturing and integrating multiple tasks

what nephropathologists carry out when interpreting kidney

biopsies on a computational pathology platform.
Methods

Datasets

Kidney biopsy slides between 2015 and 2019 from Linkou

Chang Gung Memorial Hospital (LKCGMH), Kaohsiung Chang

Gung Memorial Hospital (KSCGMH), and Kaohsiung Medical

University Memorial Hospital (KMUMH) were used. Numbers

of case for model building are described separately in the

following sections, and a comprehensive list of cases/lesions

formodel testing is shown in Table 1. Patient characteristics of

each model are shown in supplemental Table 1-3. The slides

were centrally scanned at LKCGMH by a NanoZoomer S360

Digital slide scanner C13220-01 at 400X magnification,

resulting in WSIs with highest resolution (0.23 mm) possible.

Human data collection and the use of tissue sections followed

protocols approved by the Chang Gung Medical Foundation

Institutional Review Board (IRB No.: 201900002B0C501) and

Kaohsiung Medical University Memorial Hospital (KMUHIRB-

E(I)-20200,193).

Glomerulus detection

1379 kidney biopsy slides from LKCGMHwere used, and 15,298,

5649, 5641, and 5679 glomeruli on hematoxylin and eosin

(H&E), periodic acideSchiff (PAS), periodic acid methenamine-

silver (PAM), and trichrome stained sections were annotated.

Annotations were done by three trained assistants and

reviewed by a nephropathologist through a Django-based tool

https://doi.org/10.1016/j.bj.2021.08.011
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Table 1 Number of cases/lesions for model testing.

Model

Detection Case Number Number of

Glomerulus

LKCGMH 20 1585

KSCGMH 20 4211

KMUMH 20 2837

Total 60 8633

Classification Glomerular Disease Categories and Number for Testing

Total DM IGAN LN MCD/FSGS MN
LKCGMH 50 10 10 10 10 10

KSCGMH 103 21 15 30 24 13

KMUMH 105 22 26 22 16 19

Total 258 53 51 62 50 42

Identification Lesion Categories and Numbers Used for Testing (from 20 Cases of Each Hospital)

GS CR EC HD NK SS

LKCGMH 125 70 339 91 118 57

KSCGMH 120 12 117 15 17 55

KMUMH 57 20 300 61 28 27

Total 302 102 756 167 163 139

DM, diabetic nephropathy; IGAN, IgA nephropathy; LN, lupus nephritis; MCD/FSGS, minimal change disease/focal segmental glomerulo-

sclerosis; MN, membranous nephropathy; GS, global sclerosis; CR, cellular/fibrocellular crescents; EC, endocapillary hypercellularity; HD, hy-

aline deposits; NK, neutrophils/karyorrhexis; SS, segmental sclerosis.

b i om e d i c a l j o u r n a l 4 5 ( 2 0 2 2 ) 6 7 5e6 8 5 677
developed by aetherAI, Co., Ltd., an image AI company

specialized in digital pathology. A two-stage glomerulus

detection model was proposed. The model detected and

segmented glomeruli fromWSIs by trained Mask Region Based

Convolutional Neural Networks (Mask ReCNN) [31] at the first

stage and reduced false positive inferences by a second refining

stage. We used ImageNet-pretrained ResNet-101 as the back-

bone for the Mask ReCNN. TheWSIs were too big to be fed into

the model. Therefore, we applied bilinear interpolation to

downscale the WSIs by 64 times, and the annotated glomeruli

were cropped out at a fixed size of 512 � 512 pixels. The crop-

ped image patches were randomly shifted from �128 to þ128

pixels for data augmentation. The model was firstly built with

H&E images, and transfer learning was adopted to train three

additional models for PAS, PAM, and trichrome. For inference,

a sliding windowmethod of 512� 512 pixels with strides of 256

was used to enumerate the WSIs. The second refining stage

was trained with false-positive inference output from the first

stage Mask ReCNN and ground truth glomeruli using ResNeXt-

101 [32]. All inferences output from the Mask ReCNN were fed

into the second refining stage to get the final prediction. 20

additional biopsies from each of the three hospitals (8633

glomeruli in total) were randomly chosen for testing.
Glomerular disease classification

Biopsies diagnosed as diabetic nephropathy (104 case), IgA

nephropathy (123 case), ISN/RPS class III or IV lupus nephritis

(148 case), minimal change disease/focal segmental glomer-

ulosclerosis (202 cases), and membranous glomerulopathy (76

case) at LKCGMH from 2015 to 2019 were used for training.

Glomerular images were cropped at a fixed size of 1024 � 1024

pixels by the glomerular detection model mentioned above,

and a label was given based on the diagnosis of the case. For
example, all glomeruli from a case of lupus nephritis were

labeled as so. A two-stage model was proposed. The first stage

of the model is a single glomerulus classification task predict-

ing the glomerulus label. A DenseNet-based CNN model [33]

was trained with balanced data generated by data augmenta-

tion and output probabilities of each of the five disease classes

for every single glomerulus. For tuning, we sequentially

doubled layer units or deleted layer units for each layer from

the input to the output while freezing other layers. Focal loss

[34] was applied to force the model focus on the difficult

glomeruli while training. The second stage of the model is a 4-

layer-stacked bi-directional Long Short-Term Memory (LSTM)

model [35] using the 5-class probabilities of each glomerulus

output from the first stage CNN for disease classification on

case basis. For a case with N glomeruli on the tissue section, a 5

xNmatrix arraywas created by the 5-class probabilities of each

of the N glomeruli sorted according to the order of class prob-

ability. This process was repeated for five times for each of the

five disease classes, and a (5 � 5) x N combined matrix as the

input of LSTM was created for each of the N glomeruli from a

single case. Model generalization was achieved by randomly

combining glomeruli from the same category to create a cor-

responding pseudo-sample for each training example.
Multiclass and multilabel identification of glomerular
lesions

A two-stage glomerular lesion identification model was pro-

posed. For training, 146 class III or IV (±class V) lupus nephritis
biopsies diagnosed at LKCGMH were used. 5459 glomerular

imageswere extracted by the glomerular detectionmodel from

H&EWSIsandannotatedbyanephropathologist. Pureclass I, II,

and V lupus nephritis cases are not included because they do

not have scorable lesions defined by ISN/RPS classification.

https://doi.org/10.1016/j.bj.2021.08.011
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Three exclusive labels: unremarkable (the glomerulus is either

normal or shows only reactive change), global sclerosis (the

glomerulus is totally sclerotic), and abnormal, NOS (the

glomerulus has pathological findings, but the findings are not

scorable lesions defined in lupus nephritis ISN/RPS classifica-

tion), or one or more non-exclusive labels (endocapillary

hypercellularity, neutrophils/karyorrhexis, fibrinoid necrosis,

hyaline deposits, cellular/fibrocellular crescents, segmental

sclerosis, and fibrous crescents) were assigned to each

glomerulus. The term “exclusive label” used here means the

label is stand-alone and does not co-exist with other labels. On

the other hand, “non-exclusive” means the label can co-exist

with other labels. Fibrinoid necrosis and fibrous crescents

were not included given these two lesions were very few in our

datasets. For training and testing, glomeruli labeled “unre-

markable” and “abnormal, NOS”were grouped together. In the

first stage of the model, we used an ImageNet-pretrained

ResNeXt-101 which outputs probabilities of three group labels

which are Unremarkable/Abnormal, NOS (no scorable lesions),

Global sclerosis, and Multi-label (having one or more scorable

lesions). If Multi-label is favored according to the output, the

imagewill subsequentlybe fed intosecondstageof themodel to

determine the presence/absence of various non-exclusive la-

bels. The second stage of the model used the same ImageNet-

pretrained ResNeXt-101 as the backbone but the last layer was

changed to sigmoid activation. Rotation, random shifting, hue

adjustment, color augmentation, and random oversampling in

minority class were adopted. Early stopping was used to pre-

vent overfitting. 20 cases from each of the three hospitals (2482

glomeruli in total) were randomly chosen for testing.
Statistics and performance analysis

The performance of models was assessed by area under the

receiver operating characteristic curve (AUC), accuracy,

balanced F score (F1 score), recall, and precision. Comparisons

between human and model performance and comparisons

between different datasets were assessed by paired or inde-

pendent t-test.
Results

Glomerulus detection

To facilitate downstream glomerular disease classification

and lesion identification, a robust glomerular instance
Table 2 Performance of the glomerular detection model.

Dark bold font indicates the case group with the best performance. Grey

case group not available (trichrome stain is not routinely done in KMUM
segmentation model was developed. 32,267 glomeruli of 1379

kidney biopsy slides were used for training and validation,

and the model was tested on 8633 glomeruli of 60 biopsies

obtained from three hospitals [Table 1]. The performance of

the model on four different histochemically stained kidney

biopsy WSIs from three hospitals is summarized in Table 2.

Overall F1 scores, which strike a balance between recall (true

positive rate) and precision (positive predictive value), were

around 0.9. In general, the model did best on trichrome

stained slides (highest F1 score: 0.944). Detectionperformance

on H&E slides from LKCGMH, but not on other stainings, was

better over slides from KSCGMH and KMUMH [Fig. 1A]. The

numbers of glomerulus correctly inferred by the model were

significantly higher than the numbers reported in patholog-

ical reports (p < 0.001, Fig. 1B). The performance on external

testing dataset with lower F1 score was comparable with that

on internal testing dataset and did not show further

improvement after fine tuning, suggesting good generaliza-

tion of the model [Fig. 1C]. The number of glomerulus docu-

mented on pathological reports, annotated by

nephropathologists (representing the ground truth), and

correctly inferred by glomerular detection model showed

nearly perfect correlation (R2 ¼ 0.7888e0.9962 by Pearson

correlation coefficient, p < 0.0001; Fig. 2A and B).
Glomerular disease classification

Further lesion identification and interpretation of glomerular

diseases depend on primary glomerular disease classification.

For example, ISN/RPS class will be assigned to a case of lupus

nephritis [36], and Tervaert classification would be applied on

cases of diabetic nephropathy [37]. Therefore, a glomerular

disease classification model was trained and validated by 653

kidney biopsies and tested on 258 biopsies obtained from

three hospitals. Detailed numbers and distribution of

glomerular disease categories in the testing dataset were

shown in Table 1. A representative image of the glomerulus

belonging to the most frequently encountered glomerular

diseases and the performance of the classificationmodel were

showed in Fig. 3A. The average classification accuracies were

0.864, 0.794, and 0.783 on LKCGMH, KSCGMH, and KMUMH

datasets. The best performance on LKCGMH testing dataset

was achieved by lupus nephritis (accuracy: 0.940; recall: 0.800;

precision: 0.889) and followed by diabetic nephropathy (ac-

curacy: 0.880; recall: 0.900; precision: 0.643). The classification

accuracies of lupus nephritis among different datasets are

much varied (0.699e0.940) compared to that of diabetic
bold font indicates the case group with the worst performance. N/A:

H).
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Fig. 1 Performance of the glomerulus detection model. (A) Grouped bar chart of the performance of glomerular detection model

on variedly stained slides from three different hospitals. (B) Comparison of the numbers of glomerulus documented in

pathological reports and the numbers of glomerulus correctly inferred by the glomerular detection model. *p < 0.05,

***p < 0.001. Presented as grouped bar chart with dot plots (individual numbers) and error bars as mean ± SEM. (C) Performance

of the glomerulus detection model on KSCGMH PAS-stained dataset before and after fine tuning. There was no obvious

improvement on F1 score, precision, nor recall after fine tuning with up to 30 additional cases. Rightmost bars were the

performance of LKCGMH PAS-stained dataset for comparison.

Fig. 2 Correlation between correctly inferred glomeruli, reported (documented) glomeruli, and annotated (ground truth)

glomeruli. (A) Correlation between correctly inferred glomeruli and reported glomeruli. (B) Correlation between correctly

inferred glomeruli and annotated glomeruli.
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nephropathy (0.857e0.903) and membranous glomerulopathy

(0.838e0.883), whichmight reflex the heterogeneous nature of

lupus nephritis morphology. The confusion matrix demon-

strated that lupus nephritides were occasionally misclassified

as IgA nephropathy and membranous glomerulopathy
[Fig. 3B]. Among classes with poorer performance, minimal

change disease was easily misclassified as membranous glo-

merulopathy, and IgA nephropathywas easilymisclassified as

diabetic nephropathy, which generally correlate well with

their similar glomerular morphologies.

https://doi.org/10.1016/j.bj.2021.08.011
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Fig. 3 Performanceof theglomerulardiseaseclassificationmodel. (A)Representativeglomerular imageofeachglomerulardisease

and the corresponding model performance. Red color indicates the best performance in each testing dataset. Bars ¼ 100 mm (B)

Confusionmatrix of glomerular disease classificationmodel on LKCGMH testing dataset. Recall of LNwas slightly lower than that

of DM and MN, but LN hadmuch fewer false positive prediction instances, resulting in highest accuracy (0.940). Note the poorer

performances on IGAN and MCD resulted from their morphological mimickers DM and MN, respectively.
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Multiclass and multilabel identification of glomerular
lesions

Glomerular lesions are the focus and key findings in kidney bi-

opsy interpretation. The glomerular lesion identificationmodel

was trained and validated by 5459 glomeruli of 146 kidney bi-

opsies and tested on 60 biopsies obtained from three hospitals.

Detailed numbers and distribution of glomerular lesions in the

testing dataset were shown in Table 1. The first stage of the
Table 3 Confusion matrix for the first stage of the glomerular l

Classification of global sclerosis showed both best recall and precision. Hig

would go through second stage of the model for scorable lesion identific
glomerular lesion identification model showed high recall

(93.6%) for theMulti-label class,which indicates thatmost of the

glomeruli need tobescoredwerecorrectly foundout [Table3]. In

addition, the glomerular lesion identification model accurately

identified globally sclerotic glomeruli with nearly perfect accu-

racies (0.98e0.99) on all testing datasets. Among scorable le-

sions, the areaunder the receiver operating characteristic curve

(AUC)ofeachkindof lesionsontestingdatasetsare from0.687to

0.947 [Fig. 4]. Best performance was achieved on cellular/
esion identification model.

h recall (93.6%) ensured thatmost of the glomeruli inMulti-label class

ation.
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Fig. 4 Performance of the glomerular lesion identification model. Area under the receiver operating characteristic curve for

cellular/fibrocellular crescents, endocapillary hypercellularity, hyaline deposits, neutrophils/karyorrhexis, and segmental

sclerosis of lupus nephritis cases from LKCGMH, KSCGMH, and KMUMH.
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fibrocellular crescents (AUC¼0.80e0.95;overall accuracy¼0.95;

Table 4), followed by endocapillary hypercellularity

(AUC ¼ 0.85e0.94; accuracy ¼ 0.81). The model did not show a

clearpredilectionofbetterperformanceoncases fromLKCGMH,

suggesting good generalization. Localizationmaps produced by

gradient-weighted class activation mapping (Grad-CAM) high-

lighted the most informative areas for the model to identify

glomerular lesions [Fig. 5].
Discussion

Pathologists spendmuch time on detection, classification, and

quantification of histopathological features. Our study

showed the prospect of outsourcing these mundane and re-

petitive work to trained machine learning models, which

might effectively reduce pathologists’ workload and enable

them to focus on more complex tasks such as clinicopatho-

logical correlation, gestalt interpretation, and finalizing

reports.
Table 4 AUC/accuracy of glomerular lesion detection model.

Global Sclerosis Crescents Endocapillary
Hypercellularity

LKCGMH >0.99/0.99 0.95/0.94 0.88/0.78

KSCGMH >0.99/0.98 0.80/0.96 0.94/0.92

KMUMH >0.99/0.99 0.91/0.97 0.85/0.75

Overall >0.99/0.98 0.92/0.95 0.90/0.81

The glomerular detection model showed nearly perfect performance on d

better performance on cases of LKCGMH over the other two datasets.
A glomerular detection model can significantly reduce

the time spending on slides finding glomeruli, and various

methods were proposed with different degrees of success

[19e21,26]. Hermsen et al. reported F1 score of 0.95 on

glomerulus detection [14]. Their study focused on transplant

biopsies and used semantic segmentation; therefore, the

result cannot be directly compared to ours. The only com-

parable one by Kawazoe et al. [38] reached best F1 score of

0.876e0.928, but their study did not include external data-

sets for validation. Our model achieved F1 score of

0.881e0.944 on internal testing datasets and 0.889 to 0.932

on external testing datasets, representing state-of-the-art

performance on glomerulus instance segmentation for

non-selective human kidney biopsies with diverse histo-

logical stainings obtained from clinical settings. A major

advantage of our method is that our model, using mask

ReCNN, can output an exact mask of each inferred

glomerulus instead of a bounding box or a semantic area.

This property will be especially useful if focusing on

glomeruli is needed in subsequent image analysis, because
Hyaline
Deposits

Neutrophils/karyorrhexis Segmental
Sclerosis

0.78/0.80 0.78/0.68 0.78/0.92

0.69/0.95 0.88/0.81 0.77/0.92

0.73/0.88 0.70/0.70 0.88/0.97

0.77/0.86 0.79/0.82 0.77/0.93

etecting global sclerosis. Except for crescents, the model did not show

https://doi.org/10.1016/j.bj.2021.08.011
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Fig. 5 Results of gradient-weighted class activation mapping (Grad-CAM) on glomerular lesions inferred by the model. The

upper row is the original H&E images, and the lower row is the H&E images overlayed by the result of Grad-CAM. Note that the

important region for classifying a glomerulus correlated well with the location of the particular lesion within the glomerulus

(from left to right: cellular/fibrocellular crescents, endocapillary hypercellularity, hyaline deposits, neutrophils/karyorrhexis,

segmental sclerosis).
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tissue surrounding glomeruli can be easily excluded. A drop

of detection accuracy on certain external testing datasets

would be within expectation as the model needs to over-

come the staining variation among slides processed in

different institutions. However, we did not find such decay

except for H&E staining. In addition, fine tuning with addi-

tional cases did not result better performance. This finding

implies a good model generalization, for differences on

performance simply reflexes dataset variances rather than a

decline of performance due to overfitting. Glomerular

feature clustering maps also support the above observation

(supplemental Figure). Most importantly, even without fine

tuning, the numbers of correctly inferred glomerulus were

already significantly higher than the numbers of glomerulus

documented in pathological reports, which provides us fair

confidence on the representativeness of glomeruli found out

by the model.

Our study is the first one to classify different glomerular

diseases purely based on tissue section images using modern

machine learning techniques. The LSTM model for this task

takes a series of input (images of glomeruli) to determine the

output (diagnosis). The logic is remarkably like that of neph-

ropathologists on examining glomerular diseases. We recog-

nized that diagnosis of glomerular disease requires a

combinationofclinical, lightmicroscopic, immunofluorescence,

and electronmicroscopic studies. Therefore, the scopehere is to

identify cases need to be further scored, e.g., class III or IV lupus

nephritis or diabetic nephropathy. Our model successfully clas-

sifiedmost commonglomerulonephritides encountered indaily

practice with good accuracies. The glomerular lesions therefore

can be inferred by trained identification model before neph-

ropathologists seeing theWSIs, which is clinically important for

smoothing and accelerating diagnostic workflow. Pre-selecting

cases which will benefit from other computer-aided image

analysis or special handling (e.g., ordering a PLA2R IHC for

membranous glomerulopathy) is also an important integration

part of computational pathology pipeline. Our study showed
within a confined scenario a classification model can fulfill the

need. However, how far it can be generalized to hundreds of

possible diagnoses on kidney biopsies, of which many are rare,

andhowtocombinethemodelwith immunofluorescencestudy,

electronmicroscopy, and clinical data to get a better prediction,

needs further investigation.

Glomerular lesion identification is the key to all

glomerular diseases. We here demonstrated this particu-

larly challenging task can also be tackled by trained ma-

chine learning models with high degrees of accuracy. On

this topic, only a handful of studies are present, and the

lesions analyzed are limited [20,27e30]. In contrast, our

study evaluated six major glomerular lesions required for

proper classification of lupus nephritis. Our datasets are

highly imbalanced, reflexing the nature of glomerular

findings in daily practice. More training data might improve

the performance of low accuracy categories. Modern ma-

chine learning techniques such as few-shot learning or

generative networks might help [39,40]. Incorporating

quantitative techniques or identification of glomerular

intrinsic cell types could be useful to force the models to

focus on important morphological clues and might increase

model performance [13,28]. Unlike tumor classification and

segmentation, in glomerular diseases the “lesions” almost

always have a large morphological spectrum, and both the

physical and conceptual borders between normal and

abnormal are often very subtle and poorly defined, espe-

cially in real world cases. Even expert nephropathologists

cannot achieve good interobserver and intraobserver

reproducibility. Our model was trained on dataset anno-

tated by a single nephropathologist, so it only captured the

interpretation and preference of the annotating pathologist.

However, it is well known that scoring of lupus nephritis

(and other glomerular diseases) exhibits poor interobserver

agreement [24]. A collaboration including large number of

nephropathologists might be needed to develop a

consensus ground truth. At present, nephropathologists

https://doi.org/10.1016/j.bj.2021.08.011
https://doi.org/10.1016/j.bj.2021.08.011


Fig. 6 Representation of glomerulus detection and lesion inference/annotation in operation. Glomeruli found by the detection

model were boxed in green. Lesions found in the target glomerulus (boxed in red) were showed on the right lower panel, and

users can modify annotations using the right upper control panel. A video of how the platform works is provided in

supplemental material.

Fig. 7 The ideal full model composed of all relevant steps imitating nephropathologists' workflow on kidney biopsy

interpretation and reporting. In this paper, three essential steps were carried out by machine learning models (colored in grey).

In addition to models described in this paper, comprehensive interpretation of a kidney biopsy will need additional inputs from

light microscopy, clinical data, immunofluorescence, and electronmicroscopy. Items colored in red are steps also required for a

complete computer-aided analysis of kidney biopsy interpretation.
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can review, correct, or confirm the inference results on a

computational pathology platform [Fig. 6], and the feed-

backs can also be helpful in further improving the model

performance.

Supplementary video related to this article can be found at

https://doi.org/10.1016/j.bj.2021.08.011

Our models showed good and sometimes even better per-

formance on certain external testing datasets on various

tasks. This finding might be explained by that higher vari-

ances of small testing datasets can result better performance

just by chance (when cases of external testing datasets are

easier to interpret compared to internal testing datasets). We

took it as evidence of good representation of our training

datasets and good generalization of trained models.

In this study the detection of glomerulus, the determina-

tion of glomerular disease, and the identification of glomer-

ular lesion were carried out on a single section and/or slide

basis. In real world information from multiple sections/slides

must be integrated to a final decision. We acknowledged this
weakness and are currently working on glomerulus registra-

tion and image overlay. In addition, tubulointerstitial and

vascular compartment may provide clues and are occasion-

ally essential to the diagnosis of kidney diseases. They should

be incorporated into current workflow stepwise.
Conclusion

To summarize, we showed how the concept and workflow of

kidney biopsy interpretation can be simulated by machine

learning models. A detection model was built for glomerulus

detection, and the glomeruli found by the detection model

went through a classification model to determine the

glomerular disease. A lesion identification model was then

applied to find out glomerular lesions relevant to the disease.

The whole process imitates the way nephropathologists

interpreting kidney biopsies, which is the first-of-its-kind

representation how computational pathology can be imple-

mented into daily practice of medical renal pathology. The

https://doi.org/10.1016/j.bj.2021.08.011
https://doi.org/10.1016/j.bj.2021.08.011
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models were integrated into a WSI viewing and annotating

platform for nephropathologists to review, correct, and

confirm the inference results. Further improvement with

more training data, refining algorithms, and integration of

multimodal input will enable the models for actual clinical

use [Fig. 7].
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