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Abstract: Temperature across the globe is increasing continuously at the rate of 0.15–0.17 ◦C per
decade since the industrial revolution. It is influencing agricultural crop productivity. Therefore,
thermotolerance strategies are needed to have sustainability in crop yield under higher temperature.
However, improving thermotolerance in the crop is a challenging task for crop scientists. Therefore,
this review work was conducted with the aim of providing information on the wheat response in three
research areas, i.e., physiology, breeding, and advances in genetics, which could assist the researchers
in improving thermotolerance. The optimum temperature for wheat growth at the heading, anthesis,
and grain filling duration is 16 ± 2.3 ◦C, 23 ± 1.75 ◦C, and 26 ± 1.53 ◦C, respectively. The high
temperature adversely influences the crop phenology, growth, and development. The pre-anthesis
high temperature retards the pollen viability, seed formation, and embryo development. The post-
anthesis high temperature declines the starch granules accumulation, stem reserve carbohydrates,
and translocation of photosynthates into grains. A high temperature above 40 ◦C inhibits the
photosynthesis by damaging the photosystem-II, electron transport chain, and photosystem-I. Our
review work highlighted that genotypes which can maintain a higher accumulation of proline,
glycine betaine, expression of heat shock proteins, stay green and antioxidant enzymes activity viz.,
catalase, peroxidase, super oxide dismutase, and glutathione reductase can tolerate high temperature
efficiently through sustaining cellular physiology. Similarly, the pre-anthesis acclimation with heat
treatment, inorganic fertilizer such as nitrogen, potassium nitrate and potassium chloride, mulches
with rice husk, early sowing, presoaking of a 6.6 mM solution of thiourea, foliar application of
50 ppm dithiothreitol, 10 mg per kg of silicon at heading and zinc ameliorate the crop against the
high temperature. Finally, it has been suggested that modern genomics and omics techniques should
be used to develop thermotolerance in wheat.

Keywords: heat stress; photosynthesis; antioxidant enzymes; HSPs; QTLs; omics

1. Introduction

Climate change is the result of a higher level of greenhouse gases such carbon dioxide
(CO2), nitrous oxide, and methane (CH4). These gases can entrap the sun rays leading
towards the severity of extreme events for crops development [1,2]. It has been observed
that CO2 was increased 0.6 ± 0.1 ppm/year in the early 1960s and 2.3 ± 0.6 ppm/year
during the last decade. Meanwhile, the CH4 gas was doubled after the industrial revolution
until the 1980s and it is increasing at the rate of 12 parts per billion per year. However,
during the last three decades it was increasing 2–5 parts per billion per year. The nitrous
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oxide concentration was enhanced 18% more than the 1970s and increased 0.8 parts per
billion per year [3,4].

The escalating global warming evokes an extreme weather pattern, increases disease
incidences, insect pest survival, and ultimately influences crop productivity [5,6]. Global
warming potential (GWP) is the contribution of one molecule of compound over 100 years
to global warming as compared to CO2. It allows the comparison of different gas contri-
butions to global warming and how much energy emissions of 1 ton of gas absorbs more
than 1 ton of CO2 over a given time period. The larger global warming potential represents
more potential of the given gas to persist and the ability to warm the Earth temperature
over a given time period. The GWP of carbon dioxide is 1, CH4 28–36, and nitrous oxide
265–298 over 100 years. However, these gases possess more potential and persistency to
entrap the sun rays than CO2 but a major contributor in global warming is CO2 [7].

Agricultural crop productivity depends on biotic (diseases and insect pest) and abiotic
(heat, drought, and salinity) factors [8]. Among the abiotic stresses, the higher temperature
is a major concern influencing crop growth and development. The global temperature
roughly increased by 1.5 ◦C with the same accelerating trend in all regions from the 1970s,
as reported by the intergovernmental panel of climatic change (IPCC) and was predicted
to increase 2.5–5.8 ◦C until the 2100s [3]. The global average temperature annually in-
creased by 0.04–0.07 ◦C and 0.15–0.17 ◦C per decade since the 1880s and 1970s, respectively
according to the National Oceanic and Atmospheric Administration (NOAA, 2018). There-
fore, global warming characterized by an extreme temperature possesses the challenge to
improve the yield potential of crops.

Terminal and continual heat stresses are two major constraints influencing crops
growth and development. The temperature threshold levels were reported at different
stages for crops viz., cotton [9–13], rice [14–19], sorghum [20,21], barley [12], maize [9,22,23],
and soybean [23]. Wheat is an imperative staple food, the cheapest energy source, provides
8–20% of protein, and 70–75% of calories in our average diet [24], but a high temperature
restricts the wheat crop to express its full genetic potential. Therefore, there is a dire need
to understand the wheat response against the high temperature and a suitable strategy to
improve its productivity.

2. Impact of High Temperature on Wheat

High temperature influences the wheat productivity in tropical, subtropical, arid
and semi-arid regions of the world. The optimum temperature for wheat growth and
development are given in Table 1. The high temperature in the tropical region is an
inevitable constraint for wheat during germination and early growth stages, whereas in the
Mediterranean region, the reproductive stage is highly sensitive [25]. A high temperature of
3–4 ◦C above the optimum temperature at grain filling reduces 10–50% of the wheat yield in
Asia with the current production technology and varieties [26]. High temperature declines
0.07% per ◦C grain yield depending on the wheat variety [27]. Each degree increase in the
temperature at the grain filling duration reduces 6% of wheat yield globally [28,29] and
3–17% in South Asia including India and Pakistan [30]. It accredited directly or indirectly
the disturbance in different cellular, physiological functions and metabolic pathways
associated with the grain yield in wheat (Figure 1).

Table 1. Optimal temperature requirements of wheat at different growth stages.

Stages Optimum Temperature (◦C) Minimum Temperature (◦C) Maximum Temperature (◦C)

Root growth 17.2 ± 0.87 3.5 ± 0.73 24 ± 1.21

Shoot growth 18.5 ± 1.90 4.5 ± 0.76 20.1 ± 0.64

Leaf initiation 20.5 ± 1.25 1.5 ± 0.52 23.5 ± 0.95

Terminal Spikelet 16 ± 2.3 2.5 ± 0.49 20 ± 1.6

Anthesis 23 ± 1.75 10 ± 1.12 26 ± 1.01

Grain Filling Duration 26 ± 1.53 13 ± 1.45 30 ± 2.13

[28,30–47].
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Figure 1. Schematic illustration of the high temperature impact on wheat associated with the grain yield.

2.1. Cellular Metabolism

The plasma membrane is a highly organized structure composed of lipids and proteins.
It regulates the enzymatic activity and transport of ions. High temperature alters the
microtubules organization, expansion, elongation, and cell differentiation [48]. It increases
the kinetic energy of hydrogen bonds between adjacent fatty acids, weakens the bonds,
and leads to membrane fluidity. This fluidity, unsaturation of fatty acids, and disruption of
different proteins trigger the electrolyte leakage [49,50]. High temperature causes 25–55%
electrolyte leakage at 45 ◦C for 1 h [51], while 21–40% leakage at 40 ◦C for 30 min [52].
Therefore, the cell damages its internal composition and sustainable physiological processes
(e.g., photosynthesis, respiration, and transpiration) associated with the synthesis and
translocation of carbohydrates into the grains.

2.2. Grain Filling Duration

High temperature enforces the plant to complete the growing degree days earlier,
which results in early maturity and shorter life cycle of plant, lesser biosynthetic products
accumulation, and ultimately poor grain development [32,53,54]. Vernalization (VRN1,
VRN2) and the photoperiodic (PPD-A1, PPD-D1) sensitive gene determines the develop-
mental phases at volatile temperature events and triggers earliness in wheat by limiting
various growth phases [55,56]. The longer grain filling duration determines the appropri-
ate grains development associated with the grain yield [57]. However, high temperature
reduces the duration to uptake the available nutrients and translocation of photosynthates.

2.3. Grain Formation and Development

Vital events at the reproductive stage such as flowering initiation, pollen germination,
pistil receptiveness, and embryo development determine the florets fertility [58,59]. The
embryo sac and embryo formation are sensitive to high temperature [60]. Microgametoge-
nesis and microsporogenesis are sensitive to high temperature, which hinder the gametes
development and cause spores abortion [61,62].

Wheat grain contains 60–70% starch content and gradually drops under high tempera-
ture [63,64]. High temperature inhibits the starch accumulation into grains ascribable to
the enzymes inactivity viz., granule bound starch, soluble starch, and sucrose synthase
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during the grain filling phase [65,66]. It also declines the starch content synthesis [67,68],
stem reserves carbohydrates translocation [69,70], alters the structure of aleurone layer,
and endosperm of seed [71,72], which ultimately influences grain development.

2.4. Leaf Senescence

Leaf senescence is the reduction in green leaf area during the reproductive phase
due to the retardation in the chlorophyll content and carotenoids [73,74]. The chlorophyll
content and carotenoid have an indispensable role in harvesting sunlight for photosynthe-
sis [75]. High temperature disturbs the chloroplast integrity, leaf senescence, and ultimately
photosynthesis in wheat [76].

Leaf senescence during the grain filling duration degrades the leaf chlorophyll content.
Initially, chlorophyll-b is converted into chlorophyll-a during the chlorophyll cycle (Figure 2).
The chlorophyllase enzyme catalyzes chlorophyll-a into chlorophyllide-a or pheophytin
and subsequently into pheophorbide-a. Pheophorbide-a monooxygenase catalyzes the
pheophorbide-a and is converted to red chlorophyll catabolites ensuing fluorescent and
non-fluorescent chlorophyll catabolites [77,78]. A high temperature of 42 ◦C declines
the enzymes efficiency viz., 5-aminolevulinate dehydrogenase (45%), mg-protoporphyrin
IX methyltransferase (65%), protochlorophyllide oxidoreductase (70%), and increases
chlorophyllase (46%) in wheat [79].
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Chlorophyll deficiency reduces the absorbance of light energy and transfer to the
reaction centers (RCs) of PS-II and PS-I at high temperature in wheat [80,81]. Carotenoids
dissipate the excess light and protect the reaction centers against stress conditions [82].
Carotenoids viz., xanthophylls, and isoprene maintain the thylakoid membrane from leak-
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age [83]. However, thylakoid components are sensitive at a temperature above 40 ◦C and
inhibit the carotenoids biosynthesis pathways in the chloroplast [46,84], which interrupt
the photosynthesis stability and ultimately reduce the grain yield in wheat [25].

2.5. Protein Quality

The protein content, protein quality, and glutenin/gliadin determine the backing
quality of bakery products [85,86]. High temperature enhances the total protein content
but reduces the end use of protein quality [87,88], which is more or less dependent on
the grain protein concentration [89]. Protein fractions (albumin, globulin, gliadin, and
glutenin) are important components for the end use quality of wheat grain [90]. High
temperature at the grain filling duration decreases the albumin and globulin content [91],
whereas it increases the gliadin content at the expense of glutenin content in wheat [92].
Furthermore, high temperature increases the protein content but reduces the production of
glutenin, sedimentation index [71], and essential amino acids such as lysine, methionine,
and tryptophan content, which determines the viscoelastic properties of wheat loaf [45].

2.6. Physiological Process

Heat stress inhibits the photosynthesis, damaging photosynthetic apparatus, and
synthesis of ROS (reactive oxygen species) as discussed below.

2.6.1. Photosynthesis Response to High Temperature

A high temperature of 35/25 ◦C (day/night) at the grain filling duration inhibits the
leaf photosynthesis up to 50% in wheat (Figures 3 and 4). The net photosynthesis during
the wheat crop cycle is essential in controlling the crop biomass and grain yield under
a high temperature. The optimum temperature for net photosynthesis is 20–30 ◦C, but
a high temperature above 32 ◦C declines the photosynthetic rate rapidly in wheat [46].
The photosynthesis in wheat leaves is more sensitive than those, which are associated
with the synthesis and mobilization of stem reserves into developing grains during grain
filling. Photosynthesis is associated with the activity of photosynthetic apparatus, Rubisco
(Ribulose bisphosphate carboxylase/oxygenase) enzyme, and various green organs of the
plants such as chlorophyll content and carotenoids [76,93].
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Figure 3. Photosynthetic (µmol m−2 s−1) response at the seedling and reproductive stage of 180
wheat genotypes with the grain yield per plant (g). Photosynthetic rate was recorded on a clear
day between 10:00 a.m. to 12:00 p.m. with the help of infrared gas analyzer (IRGA ADC, LCA-4,
Hoddesdon, UK). Data collected under normal and heat stress conditions at the vegetative (Zadoks
scale 39) and reproductive stages (Zadoks scale 69) [94]. It represented that the photosynthesis is
directly associated with the grain yield at both stages. As the photosynthetic rate decreases, it reduces
the grain yield in wheat.
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Figure 4. Photosynthetic (µmol m−2 s−1) response of 180 wheat genotypes with the grain yield per
plant (g) at the seedling and reproductive stages. Data collected under normal and heat stress (4–5 ◦C
above normal) conditions [94].

2.6.2. Photosynthetic Apparatus

High temperature disturbs the photosystem-II (PS-II) and photosystem-I (PS-I) me-
diated electron transport chain (ETC). A high temperature of 35–40 ◦C at the grain filling
phase directly damages the photosynthetic apparatus including the PS-II and PS-I mediated
electron transport chain [46]. PS-II is a complex subunit of chlorophylls and proteins and is
more sensitive than PS-I [73,95]. It harvests the light energy to oxidize the water molecule
and transfer electrons to plastoquinone (PQ) ensuing the cytochrome b6f complex, but a
high temperature declines the efficiency of PQ and Cytochrome b6f [96].

The light harvesting complex-II (LHC-II) is an assortment of proteins associated with
the PS-II core complex. It harvests the sunlight energy and transfers it to the PS-II core
complex to form multi-complex proteins [97]. High basal florescence separates the LHC-
II from the PS-II core complex and alters the energy distribution to PS-I [98]. A high
temperature of 32–38 ◦C also synthesizes the zeaxanthin, which destabilizes the thylakoid
membrane composition and photosynthetic apparatus [48].

2.6.3. Rubisco Activity

Rubisco is an essential light activated enzyme, which possesses the binding sites for
CO2 and Rubisco activase for the regulation of the Calvin cycle, but its efficiency gradually
declines under a high temperature of 25–40 ◦C in wheat [99]. Sugar phosphate inhibitors
viz., XuBP (D-xylulose-1, 5-bisphosphate), RuBP (Ribulose-1, 5-bisphosphate), CA1P
(2-Carboxy-D-arabinitol 1-phosphate), and CTBP (2-Carboxytetritol-1, 4-bisphosphate)
impaired with the active site, which modulate the Rubisco activity for photosynthe-
sis [100,101]. Rubisco activase removes these inhibitors from the active site and facilitates
the carboxylation reaction modulated by the Rubisco enzyme [102]. It also protects the
nascent proteins from aggregation but it is heat labile. Therefore, a high temperature of
>32 ◦C alters the composition for the accessibility of carbamylation [103,104].

High temperature declines the solubility of CO2 and enhances the O2 level from the
compensation point due to the reduction in evapotranspiration [105–107] and specificity
of the Rubisco enzyme activity, which is poor in discriminating O2 and CO2 [108,109]
(Figure 5). These factors stimulate the photorespiration and consume ATPs, release the
fixed CO2, and produce the photorespiratory metabolite (glyoxylate), which consume
NADH2 [110,111] and ultimately reduce the yield up to 20% in wheat [112].
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Figure 5. Rubisco enzyme activity pathway alteration at a high temperature. Rubisco has a characteristic of both oxygenation
and carboxylation activities. High temperature increases the synthesis of oxygen through photosynthesis, which enhanced
the solubility of oxygen than carbon dioxide. Therefore, it promotes the oxygenase activity of Rubisco and stimulates
photorespiration, which compartmentalized in chloroplast, peroxisomes, and mitochondria.

2.6.4. Reactive Oxygen Species

Reactive oxygen species (ROS) are synthesized during the malfunction of PS-II and
the Calvin cycle of photosynthesis [113] causing lipid per-oxidation and cell membrane
damage in wheat [114,115]. ROS such as super oxides (O-2), hydroxyl radical (OH-), and
hydrogen peroxide (H2O2) commonly synthesize at high temperatures. The manganese
superoxide dismutase (Mn-SOD) catalysis in mitochondria produces hydrogen peroxides,
whereas the auto-oxidation of ubisemiquinone complex-I and complex-III generates super
oxides radicals ensuing the oxidative stress in the cell, as well as DNA damage, protein
modification, and membrane instability [48,116].

Super oxides synthesize by the reduction of one electron, whereas further electrons
reduction generates peroxide, which is neutralized by two protons of hydrogen atom and
form H2O2, as shown in Figure 6. Hydrogen peroxide is produced by incomplete water
molecules oxidation, which is reduced by the manganese to form the hydroxyl radical [117].
The hydrogen peroxide concentration gradually increases from vegetative to milky dough
stage at a high temperature and negatively influences the photosynthesis [118].
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3. Tolerance Mechanism against High Temperature

The plant’s tolerance to high temperature facilitates adaptation in adverse conditions
through maintaining their physiology and ameliorate grain yield.

3.1. Phytohormones and Bioregulators

Phytohormones inevitably associated with the antioxidant enzymes activity and
growth regulation under heat stress conditions [119]. Phytohormones viz., proline, glycine
betaine, salicylic acid, abscisic acid, and ethylene maintain the physiology at a high tem-
perature through soluble salts accumulation in the cell and reducing H2O2 production in
wheat, as displayed in Figure 7.
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A high temperature of 30–35 ◦C discolorizes the chlorophyll, beta-carotene, and dam-
ages the photochemical activity. Glycine betaine accumulates in the chloroplast of leaves
and stabilizes PS-II, reaction centers in the thylakoid membrane [120,121], Rubisco enzyme,
and inhibits the ROS production [122]. It adjusts the osmotic pressure, ameliorate antioxi-
dant enzymes activity, and photosynthesis under high temperature in wheat [123]. Salicylic
acid acts as a phenolic hormone in plants and is responsible for osmoregulation, scavenges
ROS, and maintains the photosynthesis in wheat [124]. It also triggers the osmolytes
synthesis viz., glycine betaine, proline, and sugars under heat stress conditions [125–127].

Proline accumulation is determined by the proline dehydrogenase activity and ∆1-
pyrroline-5-carboxylate synthetase/reductase (P5CS) [128]. High temperature increases
the P5CS and decreases proline dehydrogenase in tolerant wheat seedlings. Proline de-
hydrogenase catalyzes the proline degeneration in mitochondria. However, glutamate
acts as a precursor in the presence of P5CS1 for the proline synthesis and accumulates in
plant under heat stress conditions [129,130]. The proline content is directly linked to a high
temperature of 35–40 ◦C and ameliorates the defense mechanism in wheat seedlings [131].
A high temperature of 35 ◦C than 25 ◦C accumulates a higher proline content (up to 200%)
and improves the photosynthetic efficiency and yield [132].

Bioregulators upregulate the antioxidant defense mechanism and maintains the PS-
II under high temperature. Foliar application during the grain filling period and seed
priming with a 6.6 mM solution of thiourea intensifies the antioxidant enzyme activity,
chlorophyll content, total soluble protein, amino acid, and grain weight in wheat [133].
Foliar application of 50 ppm dithiothreitol also ameliorates the adverse effect of high
temperature in wheat [134].

3.2. Stay Green

Stay green represents the chlorophyll retention and longevity of photosynthetic ap-
paratus for the adaptation of wheat under high temperature [135–137]. Stay green associ-
ated with the stabilized photosynthetic apparatus of chloroplast viz., scavenges of ROS,
and maintaining the photosynthetic apparatus indicates the slow degeneration of tissues
in wheat.

The stay green trait has the potential to protect photosystem-II in the chloroplast and
inhibits the ROS synthesis in wheat [138,139]. It maintains the green pigment at a high
temperature of >30 ◦C during the grain filling phase. The short grain filling duration and
high canopy temperature are associated with non-stay green genotypes in wheat [140].
Stay green is positively associated with the normal grain filling phase, membrane stability,
photosynthesis, stem reserve carbohydrates, and grain development [141,142].

Chlorophyll biosynthesis enzymes determine the senescence in wheat, which in-
fluences the assimilation and translocation of photosynthates into grains during grain
filling [37,143]. For example, the SGR mutant of Arabidopsis and rice exhibit the stay green
phenotype due to the suppression of Mg dechelatase enzyme, which is responsible for
chlorophyll degradation [144]. SGR mutants have also been reported in other species viz.,
pea, tomato, and pepper [142]. The NYC gene suppression also delays the senescence
of crops that catalyzed the chlorophyll breakdown for the conversion of chlorophyll-b
into chlorophyll-a [145]. The PPH genes mutant removes the phytol from phaeophytin
in Arabidopsis and results in stay green [146]. Genes NYC, PPH, and SGR have a poten-
tial role for stay green in arbidopsis and rice that must be explored in wheat to improve
thermotolerance.

3.3. Antioxidant Enzymes

Antioxidant enzymes protect the plant from ROS, convert the free radicals of oxygen
and hydroxyl into H2O2 followed by the water molecule. These enzymes scavenge the ROS,
balance the production/elimination of ROS from oxidative stress, maintain the growth,
development, metabolism, and overall productivity [147]. Antioxidant enzymes viz., POD
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(peroxidase), SOD (superoxide dismutase), CAT (catalase), and GR (glutathione reductase)
usually generate under a high temperature of 35/28 ◦C day/night in wheat [147–149].

The SOD enzyme converts the O−2 to H2O2, which is a less toxic form than the free
radicals [150,151]. CAT and POD convert H2O2 into H2O, but the CAT activity is higher
than other antioxidant enzymes in wheat [152,153]. CAT reduces several millions of H2O2
molecules into H2O and oxygen per minute [154,155]. GR protects the plant from oxidative
stress by reducing oxidized glutathione [156,157]. Glutathione peroxidase (GPx) efficiency
depends on high γ-glutamyl cysteine synthetase and glutathione synthetase activity for
the reduction of H2O2 into H2O [158].

3.4. Heat Shock Proteins

Wheat plant produces heat shock proteins (HSPs) at 32–34 ◦C and provides pro-
tection against high temperature [159,160]. High temperature disturbs the membrane
proteins in plants but upregulates the translation of heat shock genes, which encodes
for HSPs [132,161,162]. These HSPs protect the cell from adverse effects of heat stress by
maintaining photosynthesis, upregulation of other proteins, and cell metabolism [163].
There are different families of ATP dependent HSPs viz., HSP60, HSP70, HSP90, and
HSP100 except small HSPs based on molecular weight.

The small HSP (smHSP) in wheat genome assembles with other homo-oligomers
and facilitates binding in ATP independent manners. It assembles with HSP90 to prevent
unfolding and refolding of proteins under high temperature [159,160]. HSP60 expresses
constitutively in chloroplast and mitochondria [164,165]. The Rubisco large subunit binding
protein (chHSP60) is a cofactor of HSP60, which regulates the Rubisco enzyme folding at
high temperature [166].

HSP70 is a highly conserved protein, which recognizes only a short sequence of
the polypeptide chain, temporal and inhibits aggregation of non-native protein at high
temperature [167]. HSP110 is a sub family of HSP70 and inhibits the aggregation with
a greater capability than HSP70 [168]. HSP90 regulates transcription, cellular signaling,
and managing protein folding through assembling molecular proteins including HSP40
and HSP70 [118,168,169], whereas HSP100 interacts with different smHSPs and HSP70 to
prevent the aggregation of protein [170].

4. Tolerance Strategies against High Temperature

Strategies against heat stress viz., crop management, conventional, non-conventional,
and molecular approaches ameliorate the thermotolerance in wheat. These strategies are
further elaborated below.

4.1. Crop Management

Agronomic practices including seed priming, organic mulches, inorganic fertilizers,
and timely sowing with recommended management practices mitigate the heat stress in
wheat. Wheat seed priming in the aerated solution of CaCl2 (1.2%) for 12 h improves the
germination, growth, leaf area index, chlorophyll content, assimilation rate, and grain
yield [171–173]. Mulching with rice husk conserves water, improves water use efficiency,
maintains the water status in soil, and slows down the release of nitrogen for plant up-
take [174,175].

The application of inorganic fertilizers viz., nitrogen, and potassium maintain the
chlorophyll content, osmoregulation, cytokinin biosynthesis, protein stability, redox home-
ostasis, and photosynthesis at high temperature [25,176]. Zinc improves the superoxide
dismutase activity, membrane integrity, chlorophyll content, chlorophyll florescence, and
kernel growth at high temperature [27,177]. The silicon application at 10 mg/kg of soil at
heading improves the osmotic potential (26%), photosynthetic rate (21%), catalase activity
(38%), superoxide dismutase activity (35%), stomatal conductance (20%), and transpiration
rate (32%) in wheat under high temperature [178,179].
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Sowing time is a counteract strategy against high temperature. Delayed planting
compels the plants to complete their growing degree days earlier, but they have to face high
temperature during the anthesis and grain filling phase [53,180]. Wheat planted in normal
sowing dates utilizes a longer duration to capture the available reserves/carbohydrates
and improve the grain development [70,181,182].

4.2. Conventional Approaches for Thermotolerance

Thermotolerance is an inherited component stabilizing economic yield against heat
stress. Tolerance to high temperature is characterized as the least effect on growth, develop-
ment, and productivity. Screening of wheat genotypes is difficult in a spatial environment
under natural heat stress conditions. This is due to the consistent selection criteria that
have not been developed to screen diverse germplasm. The selection criteria based on
traits directly associated with the grain yield facilitates better improvement in the genetic
material for thermotolerance (Table 2).

Breeding has made considerable advances in the genetic basis, diversity, and de-
velopment of thermotolerant varieties. However, utilization and explorations of novel
genetic diversity facilitates the genetic improvement for thermotolerance in the breeding
program. However, the genetic gain is limited due to the narrow genetic basis [183,184].
Therefore, utilizing landraces and wild relatives increases the genetic variation in wheat
for developing thermotolerance. Breeding for thermotolerance utilizing land races and
wild relatives viz., Aegilops speltoides, Aegilops tauschii, Triticum turgidum, and Triticum
durum have the ability to maintain chlorophyll content, canopy temperature depression,
membrane stability, and photosynthesis under stress conditions [74,185–187].

Table 2. Major desirable selection criteria for the screening heat tolerance in wheat.

Traits References

Cell membrane stability [50,51,188,189]
Proline content [131,190–192]

Heat susceptibility index for grain yield [25,193–196]
Chlorophyll content [76,131,188,189,197,198]

Photosynthesis [48,106,107,117,199]
Stay green [70,137,140,142,143,200]

Grain filling duration [70,181,201]
Grains formation [59,67,202–204]

Grain development [67,71,203–205]
Early heading [46,64,204,206,207]

Canopy temperature depression [30,140,201,208–212]

4.3. Non-Conventional Approaches

Plants development utilizing genetic engineering or the indirect selection of traits
through molecular markers or omics technology facilitates the improvement against heat
stress in wheat.

4.3.1. Biotechnological Approach and Heat Shock Factors

Genetic engineering is the development of cultivar through incorporating the individ-
ual gene [213]. Advances in biotechnology enable the faster genetic gain than conventional
breeding methods. Several genes encoding heat shock factors have been identified in
wheat, but novel genes identification for thermotolerance remains a challenge (Table 3).
The identification of novel genes and their altered expression under high temperature in
wheat crop provides the molecular basis for improving thermotolerance.
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Table 3. List of genes encoding transcription factors related to thermotolerance.

TFs/Genes Source Function Reference

Hsf6A/wheat HVA1s promoter of barley Regulation of heat shock protein genes and
improve thermotolerance [214]

EF-Tu Ubiquitin 1 promoter of maize
Overexpression reduces the thermal

aggregation of leaf proteins, photosynthetic
membrane, and increases CO2 fixation

[215]

HvSUT1 Hordein B1 promoter of barley Increase sucrose transport into grains [216]

TaFER-5B Ubiquitin 1 of maize Reduces oxidative stress by scavenging ROS
and improves leaf iron content [217]

TaGASR1 Wheat variety TM107 Reduces ROS and hormonal signal
transduction pathway [218]

TaHsfC2a Monocot-specific HsfC2 subclass Thermotolerance development via the
ABA-mediated regulatory pathway [219]

TaHSP23.9 Chinese wheat based on proteomic analysis
Upregulation under heat stress facilitates in
seed development during the grain filling

phase
[220]

TaFBA1 F-box gene from wheat Upregulation improves photosynthesis and the
antioxidant enzyme activity [221]

TaHsfA2-1 Wheat Overexpression of heat shock proteins and
chlorophyll content [222]

SGR Arbidopsis and rice Binding of light harvesting complex during
photosystem-II [142,144]

NYC Arbidopsis and rice Responsible for the activity of chlorophyll
reductase to convert chl-b into chl-a [142,145]

PPH Arbidopsis and rice Responsible for the activity pheophytinase for
dephytylation to phaeophytin [142,146]

Quantitative Trait Loci (QTL)

Heat tolerance is under polygenic control and the QTL analysis enlightens the genetic
basis of thermotolerance in wheat. It facilitates the indirect selection of traits rather than the
selection based on phenotypic traits. Many QTLs have been identified for physio-morphic
traits in wheat, but few were identified against heat stress (Table 4), which facilitates in
gene pyramiding and marker assisted selection in wheat breeding programs for developing
thermotolerance.

Table 4. Major quantitative trait loci (QTL) identified for traits against heat stress.

Traits Chromosome References

Chlorophyll content 2A, 3A, 6A, 7A, 2B, 5B, 2D [223,224]
Chlorophyll florescence 1A, 2A, 3A, 3B, 2D, 1D [224,225]

Plasma membrane damage 7A, 2B [223]
Thylakoid membrane damage 6A, 7A, 1D [223]

Canopy temperature 7A, 1B, 2B, 3B [226]
Grain weight 1A, 2A, 4A, 1B, 2B, 3B, 4B, 6B, 6D [226–228]

Grains formation 1A, 4A, 2B, 3B, 5B [228,229]
Chlorophyll florescence 1A, 4A, 1B, 2B, 7D [230]

Senescence 2A, 3A, 6A, 7A, 3B, 6B [231,232]
Stay green 1A, 3B, 7D [233,234]

4.3.2. Omics Technology

Omics techniques facilitate the development of thermotolerance in wheat through the
identification of transcriptional, translational, and post translational mechanisms (Figure 8).
Transcriptomics represent the alteration in transcriptome factors under different environ-
mental conditions through the DNA microarray technology [235,236]. It has already been
used to study the glumes [237], grain development [238], and quality traits [239] for the
identification of candidate gene expression under heat stress conditions. MicroRNAs
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(miRNAs) are non-coding small RNA that serve as the regulation of post-transcriptional
gene expression in plants. Micromics assist in the candidate miRNA identification and
their role in transcriptome homeostasis, developmental, and cellular tolerance of plants
under high temperature [197].

Proteomics is the analysis of candidate proteins, the expression when they translated
from mRNA to functional proteins, and a further characterization of their role in the
heat tolerance mechanism [240]. Proteomic analysis revealed heat shock proteins, protein
synthesis, detoxification, photosynthesis, and protein quality under heat stress condi-
tions [115,241–245]. Hence, the omics technology provides us with a novel opportunity for
the identification of genes, their expression, and pathways linked to these genes. However,
the further genetic network and their component identification will be a challenge to adapt
plants in a high temperature environment.
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5. Conclusions and Future Prospects

Temperature is gradually increasing and affecting crop productivity. The impact of
high temperature on wheat crop has been extensively studied, but understanding the
mechanism of thermotolerance remains elusive. High temperature disrupts membrane sta-
bility, declines grain filling duration, grain formation, and starch accumulation into grains.
Inhibition in the physiological process has been observed due to the high temperature
stress. It disturbs the photosynthetic apparatus and generates the reactive oxygen species
leading towards oxidative stress. The strategy against high temperature requires systemat-
ically understanding the physiological, metabolic, and development process associated
with thermotolerance. The tolerance mechanism including more accumulation of proline,
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glycine betaine, antioxidant enzyme activity, heat shock protein, and stay green could be a
useful indicator for thermotolerance.

Crop management stabilizes the physiological process and metabolic pathways through
mulches, extra irrigation, inorganic fertilizers, early sowing, exogenous application of mi-
cronutrient, osmoprotectants, and bioregulators. Integrating crop management practices
with molecular genetics tools can ameliorate the adverse effects of high temperature, but
need to further explore the strategies associated with high yield under heat stress [246–258].
The tolerance development can be achieved through a selection based on thermotolerant
traits from existing germplasm and breeding utilizing land races and their wild rela-
tives. The suitable selection criteria based on thermotolerant traits requires developing
germplasm against heat stress. Recently, the canopy temperature depression at the repro-
ductive stage, grain filling duration, heat susceptibility index for grain yield, and stay
green have been established for screening germplasm against heat stress conditions. Stay
green with other useful traits provide the solution of the burning problem due to the high
temperature in wheat. Therefore, the contribution of the synthesis of chlorophyll turnover
equation in photosynthesizing leaves for the stay green trait expression has a good future
against high temperature stress.

The marker assisted breeding programs must be pooled with the transgenic approach
for thermotolerance QTLs and genes. Understanding the QTLs and omics techniques
pave the way to develop thermotolerance in wheat, but a further understanding of the
genes network and their regulation of expression related to high temperature would
be a challenge. There is a need to understand the molecular and biochemical basis of
thermotolerance from the upcoming changing climate for crop improvement. Functional
genomics also proved to be supportive against high temperature, but the alteration in
transcriptomes and proteomes needs to be further investigated against high temperature.
Noteworthy, molecular and genetic approaches facilitate crop adaptability coupled with
the economic yield under high temperature, but the expression of yield potential requires
the estimation of yield at the crop level. Therefore, the application of incorporating a
future scenario into crop models provides model-based recommendations to improve
thermotolerance in wheat.
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