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Abstract Brain function relies on communication among

neurons via highly specialized contacts, the synapses, and

synaptic dysfunction lies at the heart of age-, disease-, and

injury-induced defects of the nervous system. For these

reasons, the formation—and repair—of synaptic connec-

tions is a major focus of neuroscience research. In this

review, I summarize recent evidence that synapse devel-

opment is not a cell-autonomous process and that its

distinct phases depend on assistance from the so-called

glial cells. The results supporting this view concern

synapses in the central nervous system as well as neuro-

muscular junctions and originate from experimental

models ranging from cell cultures to living flies, worms,

and mice. Peeking at the future, I will highlight recent

technical advances that are likely to revolutionize our

views on synapse–glia interactions in the developing, adult

and diseased brain.
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Introduction

Establishing and maintaining connections is crucial

throughout life and often requires help from third parties.

Increasing evidence suggests that this also applies to neu-

rons: they seem to require support from glial cells to get

and stay in touch via synaptic contacts. These contacts, also

called chemical synapses, probably represent the most

highly specialized form of intercellular connections. They

allow for the intercellular transmission of electrical signals

with remarkable spatial and temporal precision in the

micrometer and millisecond range, respectively, and an

enormous bandwidth [1].

Synapse assembly requires a cascade of precisely timed

and coordinated processes in two different partners, very

much like what is needed during ordinary dating. In a first

seek-and-find phase, neuronal partners meet their match,

which depends on both attraction and good timing. In a

second construction phase, the pre- and postsynaptic part-

ners assemble the complex structures for transmitter-based

communication. During a third phase, connections are fine-

tuned to acquire their mature qualities. Finally, a fourth,

break-up phase results in the elimination of unfit liaisons.

Our understanding of the molecules and mechanisms that

induce and mediate these different phases has greatly

advanced in the last few years [2–14]. Here, I summarize

the experimental evidence for glial contributions to each of

the phases that has emerged since the last overviews were

published [15, 16].

Glial cells in touch with synapses

The generic term ‘‘glial cells’’ is often used in this review,

although in reality only subclasses of these cells are in

touch with synapses. The terms glial cells or neuroglia,

originally introduced by Rudolf Virchow to label ‘‘nerve

glue’’ [17, 18], describe non-neuronal cells in nervous

systems. In vertebrates, the four core types are astrocytes,

oligodendrocytes, microglial cells in the central nervous

system (CNS), and Schwann cells in the peripheral nervous
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system. In addition, there are ependymal cells and radial

glia comprising cerebellar Bergmann glia, retinal Müller

cells and hypothalamic tanycytes. Each of the glial cell

types serves distinct functions (see [19–21] for astrocytes;

[22–24] for microglia; [25] for oligodendrocytes; [26, 27]

for radial glia, Müller cells).

Of these glial cell types, only astrocytes and perisy-

naptic (or terminal) Schwann cells (PSCs) contact synaptic

connections in the CNS and peripheral nervous system,

respectively, with micrometer-sized processes. This spatial

arrangement was first described more than 30 years ago in

pioneering ultrastructural studies [28] and has now been

revealed in three dimensions (3D) in the cerebellum [29]

and the hippocampus, where the size of the synapses and

the extent of astrocytic contacts appear to correlate [30].

The intimate vicinity of synapses and astrocytes has led to

speculations about the functional implications and inspired

the concept of the ‘‘tripartite synapse’’, which regards glial

cells as integral elements of synaptic connections [31].

There is increasing experimental support for this hypoth-

esis. Recent studies show, for example, that glial cells

influence synaptic function from the level of individual

contacts [32] up to network activity that generates complex

behavior [33, 34]. Overviews on this steadily growing field

(Fig. 1) can be found in recent reviews [35–50].

Do glial cells help to find a partner? Glia as

match-maker

The first hurdle to form a contact is to meet a (potential)

partner. Glial cells facilitate this phase by providing

guidance and promoting growth [51–53]. Direct confir-

mation that Schwann cells induce and guide the axons of

motoneurons to muscle fibers was provided by an in vivo

study on transgenic mice, where a constitutively active

neuregulin receptor, ErbB2, was reversibly induced in

Schwann cells [54]. This manipulation triggered the for-

mation and growth of PSC processes and the concomitant

formation of nerve terminal sprouts along glial processes.

Glial cells also guide and promote the growth of axons

and dendrites in the CNS. The most recent advances are

based on studies of transgenic mice, which allow for

selective labeling and gene ablation in glial cells. Ango

et al. [55] reported that axons of stellate, but not basket,

cells grow along processes of Bergmann glia and establish

their synaptic connections with Purkinje cells (PCs) at

intersections with glial fibers. Ablation of Chl1, a member

of the L1CAM family that is expressed by axons of stellate

cells and by Bergmann glia, perturbed arborization and

terminal formation of stellate cell axons, reduced their

synaptic contacts with PCs, and led to age-dependent

axonal degeneration [55]. A study on fluorescently labeled

PCs and Bergmann glia in cultured cerebellar slices from

postnatal mice showed that the dendritic tips of PCs grow

along processes of radial/Bergmann glia [56], thus

extending previous findings [57]. Glial promotion of den-

drite growth and branching has been observed in cultures

of neurons derived from human stem cells [58] and of

immuno-isolated retinal ganglion cells (RGCs) [59] and

PCs from postnatal rodents (Buard and Pfrieger, unpub-

lished observation).

Results from several recent studies help to explain how

glia influence neuronal growth. Further evidence for the

involvement of the L1CAM family comes from a study in

Drosophila, where the elimination of neuroglian (Nrg), a

L1-like adhesion molecule, caused ectopic axonal sprout-

ing and dendrite deformation in a specific sensory neuron

[60]; this phenotype was only rescued if neuroglian was re-

expressed in both neurons and associated glial cells. These

results indicate that glial cells prevent the formation of

ectopic sprouts and help establish the stereotypic mor-

phology of neurons. A genetic screen for abnormal synapse

distribution in mutant Caenorhabditis elegans revealed that

contact establishment between two specific types of inter-

neurons, AIY and RIA, requires the netrin receptor/UNC-

40 on axons of presynaptic AIY cells and its ligand netrin/

UNC-6 on the so-called cephalic sheath (CEPsh) glia [61].

The netrin-dependent function of CEPsh glia as guideposts

can explain at least in part why growth and branching of

axons and dendrites fail following the elimination of these

cells [62].

Signals on the surface of glial cells are an obvious

mechanism to promote and direct neuronal growth. The

involvement of intracellular calcium signaling is indicated

Fig. 1 Research on glia–synapse interactions. Number of publica-

tions in 5-year intervals normalized to paper counts in the last interval

(2005–2010) related to synapses (green), glial cells (red), and

synapses combined with glial cells (black). The numbers of different

publications were extracted from PubMed searches on the indicated

terms plus variations appearing in the titles or abstracts. Inset
Absolute numbers of publications for each keyword
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by a recent study on cocultures of hippocampal neurons

and astrocytes from embryonic rats [63]. Retrovirus-med-

iated overexpression of an enzyme that hydrolyzes inositol

triphosphate in astrocytes blocked calcium transients and

reduced the growth of dendrites and axons by 60–70%.

Wild-type and mutant forms of the enzyme differentially

affected spontaneous and evoked calcium oscillations,

while the growth-promoting activity of astrocytes required

spontaneous transients. The decreased neurite growth on

astrocytes with deficient calcium signaling was caused by

lower levels of the cell adhesion molecule N-cadherin,

which is well-known to promote neurite growth.

A new mechanism by which glial cells stimulate

neurite outgrowth has recently been discovered in olfac-

tory ensheathing glia [64]. This special type of glial cell

in the olfactory bulb guides and promotes the growth of

axons from olfactory receptor neurons, which are gener-

ated throughout life and integrate into the olfactory

circuit [65]. Olfactory ensheathing glia prepared from

embryonic mice released osteonectin/secreted protein

acidic rich in cysteine (Sparc). Sparc in turn enables

Schwann cells to promote neurite outgrowth from

explants of dorsal root ganglia from mouse embryos [64].

This effect required transforming growth factor beta

(Tgfb) and was promoted by laminin [64]. These data

show that neurite outgrowth requires the cooperative

actions of multiple signals, whose cellular sources and

targets remain to be clarified.

Why should glia influence synapse development?

It’s the timing, stupid!

The idea that synaptogenesis is controlled by glial cells

derives from a temporal correlation between synapse for-

mation and astrocyte development in the rodent CNS [66],

where the large majority of synaptic connections are gen-

erated during a protracted phase that spans from the first to

the third postnatal week. Curiously, this happens after the

formation of astrocytes [67], suggesting that bulk syna-

ptogenesis requires glia. Fluorescent labeling of individual

astrocytes by dye injection plus immunohistochemical

staining revealed drastic morphological changes in astro-

cytes at the time of postnatal synapse development, which

supports speculations about their role in synaptogenesis

[68]. It should be noted that the temporal coincidence of

synapse development and astrocyte differentiation applies

mainly to glutamatergic connections. c-Aminobutyric acid

(GABA)-ergic neurons establish a functional network in

the embryonic brain well before astrocytes are generated

[13, 69], indicating glia-independent formation of GAB-

Aergic contacts.

Can neurons form contacts autonomously?

Models matter!

The requirement of glial cells for synaptogenesis has

been studied mainly in culture preparations: glia-free

cultures allow to address a key question, namely whether

neurons can form synapses without glia. Such cultures

can be obtained by three methods: (1) neuronal cultures

can be prepared from rodent brains on embryonic day

15–17, before glial cells are generated; (2) neurons can

be prepared from postnatal brains after active separation

from glia by immunoisolation [70–72] or by fluores-

cence-activated cell sorting [73–75]; (3) neurons can be

generated from stem cells by promoting their neuronal

differentiation [58, 76, 77]. These methods reach purities

of up to 99.5% and thereby establish virtually glia-free

conditions. Studies on such preparations have revealed

that there is no absolute requirement for glia: some

neurons can make connections (Fig. 2a), whereas others

cannot (Fig. 2b). RGCs, motoneurons, and PCs immu-

noisolated from postnatal rodents formed only very few

synapses under glia-free conditions [71, 78, 79] (Buard

and Pfrieger, unpublished observation). Synapses among

these neurons may be regarded as artificial, as they form

their connections in vivo with partners that were not

present in the cultures. However, few synapses were also

observed in glia-free cultures of subplate neurons from

embryonic rats or mice, which normally form synapses

among each other [80]. On the other hand, strong

glutamatergic and GABAergic synaptic activity was

found in serum- and glia-free cultures of neurons from

superior cervical ganglia of newborn rats [81], from

spinal cords of embryonic mice [82], and from hippo-

campi and cerebella of postnatal mice [72]. In some of

these preparations, a glial influence due to presence a few

glial cells cannot be excluded. Nonetheless, the data

suggest that the requirement for glia varies with the

neuronal cell type: long-projecting neurons may need glia

to form or receive synapses, whereas locally connecting

cells may not.

Interestingly, the results from two studies on distinct

culture preparations suggest that the competence of

neurons to form and to receive synapses develop inde-

pendently, although the reports disagree on the sequence

of events. RGCs immunoisolated from embryonic rats

could form, but not receive synapses, and the latter

ability required contact with astrocytes [83]. A reversed

sequence was observed in neurons that were generated

by genetic re-programming of glial fibrillary acid pro-

tein-positive cells from the cerebellar cortex of postnatal

mice. These neurons were able to receive glutamatergic

inputs but were unable to form presynaptic contacts [77].

Glial influence on synaptogenesis 2039



The discrepancy may be due to the different neuronal

cell types or culture preparations.

The most important question, namely, whether syna-

ptogenesis requires glial cells in living animals, can only

be addressed in invertebrate and vertebrate species, but

not in mammals. Genetic ablation of astrocytes in devel-

oping and adult mice causes massive damage to neurons

[84, 85], which precludes conclusions on their relevance

for synaptogenesis. In C. elegans, whose cells are fully

inventoried, four of its 50 glia-like cells, the so-called

CEPsh glia, are in contact with dendrites of sensory

neurons and with synaptic connections in the nerve ring

[40]. Their ablation by optical and genetic methods does

not impair the survival of associated sensory neurons,

but it does perturb their morphology [62] and

impair chemotactic behavior [86]. However, it remains

unclear whether synapse formation is affected. Selective

ablation of PSCs in developing and adult frogs has been

accomplished by a PSC-specific antibody combined with

complement-mediated cell lysis. These experiments

revealed that PSCs are required for the formation and

growth of neuromuscular junctions (NMJs) in developing

frogs in vivo [87].

Do glial cells promote the formation of synaptic

contacts? Yes, but be aware!

Whether or not glial cells are required for the establishment

of synaptic contacts, there is evidence that they increase

their formation based on electron microscopic and immu-

nocytochemical studies of different primary culture

preparations (Fig. 2c). These include cocultures of frog

spinal cord neurons and myocytes [88, 89], cultured rat and

mouse RGCs [72, 78, 79, 90], PCs (Buard and Pfrieger,

unpublished observation), motoneurons [71, 89], neurons

derived from human embryonic stem cells [58], as well as

cortical [80, 91] and hippocampal neurons [92, 93] from

embryonic rats, where glia also increased the frequency of

action potential-independent (miniature) postsynaptic cur-

rents [80, 91, 94]. All of the cited studies have focused on

excitatory synapses. Astrocytes also enhanced the number

of inhibitory connections among cultured hippocampal

neurons from embryonic rats, an effect that required brain-

derived neurotrophic factor signaling in neurons [95]. On

the other hand, Steinmetz and colleagues [72] did not

observe glial effects on inhibitory synapses in hippocampal

neurons immunoisolated from postnatal mice. The

diverging results may be due to age- and preparation-

dependent differences.

A caveat in these studies is that the observed increase in

synapse numbers may be secondary to glial promotion of

neuronal survival and/or growth. Glia-induced dendrito-

genesis, which facilitates synapse formation, was detected

in stem cell-derived neurons [58] and in RGCs [59]. A glia-

induced increase in the number of surviving neurons can

explain the enhanced level of synaptic activity [93],

whereas other studies have excluded this possibility [71,

72, 80, 90, 95].

Remarkably, glial cells can also have the opposite effect

and impede synapse formation, for example by preventing

physical contact between neurons. In vivo studies showed

that decreased glial ensheathment of cerebellar PCs

enhances the number of synaptic inputs [96, 97]. Alterna-

tively, astrocytes may suppress synaptogenesis by secreted

signals: fibroblast growth factor 2, which is produced by

astrocytes, lowers the number of synapses in cultured

mesencephalic neurons from neonatal rats [98], but the

mechanism remains unclear.

Fig. 2 Influences of glia on synapse development. Diagram illustrat-

ing the different effects of glia (green) on the development of synaptic

connections between pre- (yellow) and postsynaptic (grey) partner

neurons. Some neurons form synapses in the absence of glial cells (a),

whereas others do not (b). Glia-derived factors promote synapse

formation in the latter and enhance the pre- and postsynaptic efficacy

of connections (c). In addition, they contribute to the stabilization or

destruction of synaptic connections (d). Molecules implicated in glia-

synapse interactions during development are indicated
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Do glial cells promote synapse maturation? Glia foster

fitness

There is evidence that glial cells promote the maturation

of synapses, when the connections attain their character-

istic transmission properties (Fig. 2c). In single-cell

microcultures of neurons from rat superior cervical gan-

glia, Schwann cells were dispensable for the formation of

cholinergic connections, but they did enhance the fre-

quency of action potential-independent release and paired-

pulse depression [81]. Both changes indicate a glial

enhancement of release efficacy, which has also been

observed in cultured RGCs [59, 78, 99]. Glial signals also

enhanced the size of miniature excitatory postsynaptic

currents in primary cultures of immunoisolated hippo-

campal neurons [72], cortical subplate neurons [80],

RGCs [72, 78, 79], and spinal cord motoneurons [71].

This latter effect points to an enhancement of postsyn-

aptic glutamate sensitivity, although presynaptic causes,

such as an increased vesicular glutamate content, cannot

be excluded. Notably, in dissociated and organotypic

cultures of hippocampal neurons, glia-derived tumor

necrosis factor alpha regulates activity-dependent changes

in postsynaptic receptor density [100].

Transcript profiling of cultured RGCs by oligonucleo-

tide microarrays revealed that glial signals enhance mRNA

levels of glutamate receptor subunits and of components

that regulate their clustering and stability [101]. Similar

changes were observed in a microarray analysis of cortical

subplate neurons [80]. Further evidence that glial signals

promote postsynaptic maturation comes from studies on

NMJs. Neuregulin 2 is produced by PSCs covering NMJs

of adult rats and stimulates the transcription of acetylcho-

line receptors (AChR) by activating the ErbB4 receptor in a

muscle cell line [102, 103]. Whether NMJ formation per se

depends on the subsynaptic transcription of AChRs is

unclear [104]. In Drosophila, elimination of a cysteine/

glutamate transporter, which is expressed in NMJ-associ-

ated glial cells, reduces the extracellular glutamate level

by half and increases the number of glutamate receptors

in NMJs by two- to threefold [105], indicating that glia-

controlled glutamate levels regulate the postsynaptic sen-

sitivity of NMJs.

Glia-synapse communication: mind the signals!

A key to understand how glial cells influence synapse

development is to identify the molecular basis of this

process. Within the last years, there has been some pro-

gress in this area, namely the identification of synaptogenic

components from glia.

Previous studies showed that Schwann cells promote the

formation of NMJs in vitro [88]. A candidate approach

recently identified Tgfb1 as one of the factors involved in

this process [89]. The authors further reported that Tgfb1

mediates the previously reported increase in neuronal agrin

levels [88] which, in turn, control AChR expression and

clustering. These results substantiate the glial control of

AChR levels in myotubes. However, Tgfb1 did not mimic

the potentiation of spontaneous transmitter release from

motoneuron terminals that was observed after acute

application of Schwann cell-conditioned medium [106].

In the CNS, a few secreted glial factors that promote

synapse formation have been uncovered. Thrombospondin

was identified as an astrocyte-derived matrix component

that promotes the formation of ultrastructurally normal, but

postsynaptically silent synapses in cultured RGCs. Trans-

genic mice lacking thrombospondins showed a reduced

density of immunohistochemically identified synapses in

the cortex [99]. Another glial factor that contributes to this

process is cholesterol [107]. Cholesterol promotes several

aspects of synaptogenesis in RGCs. It enhances the efficacy

of presynaptic transmitter release, enables dendrite differ-

entiation and promotes the redistribution of glutamate

receptors. Externally supplied cholesterol also sustained

continuous synapse development and the stability of

evoked release [59]. Neurons may require external cho-

lesterol as building material for dendrites and synapses

because they cannot produce sufficient amounts on their

own [108]. Cholesterol can also influence signaling path-

ways—albeit indirectly. Our data suggest that cholesterol

treatment modifies the membrane structure of cultured

RGCs (Thiebaut et al., unpublished observation), which

may affect the properties of membrane-resident signaling

components. A synaptogenic effect of neurosteroids, which

are produced from cholesterol, was excluded in the case of

RGCs [59]. However, in primary cultures of cortical neu-

rons, estradiol mimics the glia-induced increase in synapse

number and function [91]. Moreover, estradiol controls the

density of synapses and the level of synaptophysin in

hippocampal slice cultures [109], although the cellular

source of the steroid remains unknown. Progesterone

enhances synapse formation in cultured hippocampal neu-

rons. This effect required the presence of astrocytes and

was possibly mediated by an increase in the glial produc-

tion of agrin [92]. Cholesterol, estrogen, and creatine

enhance the number and activity of synapses in cultured

hippocampal neurons [110], but it remains unclear which

factor induced the effect. Contact-dependent signals may

also promote synapse development. In hippocampal micro-

island cultures, local contact with an astrocyte increases the

number of synapses across the entire neuron, and integrins

and protein kinase C are involved in this process [111]. As

Glial influence on synaptogenesis 2041



described above, RGCs from E17 rats can only receive

synaptic inputs when in contact to astrocytes, and this

effect may involve changes in the subcellular distribution

of neurexins [83]. In both cases, however, the astrocytic

signals that initiate these changes remain unknown.

The identification of glial signals that influence syna-

ptogenesis by biochemical purification and candidate

guesswork is laborious and not always crowned by success.

Fortunately, new techniques have emerged within the last

years that complement these traditional approaches. For

example, transcriptional profiling of neurons cultured with

or without glial factors can provide a global view on the

influence of glia on neurons and uncover unexpected

pathways. Three recent reports have proven the validity of

this approach [80, 101, 112]. Two studies on cultured

RGCs revealed a glia-induced upregulation of components

that had not yet been discussed in a neuronal context. This

included a complement factor that contributes to synapse

elimination (see below) [112] and matrix gla protein

(Mgp), a component of the extracellular matrix, which

regulates calcification in the body [101]. Interestingly, a

recent study showed that Mgp modifies neuronal signaling

by bone morphogenetic proteins, which belong to the Tgf

family [113].

Should it stay or should it go? Glia live and let die!

Like many partnerships, synaptic connections have a lim-

ited life-time. Their turnover is particularly high during

development, when neurons form promiscuous connec-

tions, and dump them subsequently. In adult mice,

synapses appear to be more stable and last for many

months, as shown by in vivo two-photon imaging of fluo-

rescently labeled neurons [114]. On the other hand, synapse

loss may spearhead the cascade of pathological changes in

neurodegenerative diseases [115, 116].

There is now evidence that glial cells enhance the

stability of synaptic connections (Fig. 2d): simultaneous

time-lapse imaging of fluorescently labeled astrocytes and

dendritic spines in organotypic hippocampal cultures

revealed that contact to astrocytes enhances the life-time of

dendritic protrusions and promotes their conversion to

spines. This effect was possibly mediated by ephrin-A3/

EphA4 signaling [117]. Ablation of PSCs in adult frogs in

vivo caused the loss of NMJs [87], indicating that their

maintenance depends on the glial sheath. There are also

indications for the opposite, namely, that glial cells pro-

mote the death of synapses. A striking mechanism was

uncovered by a study on immunoisolated RGCs [112].

Coculture with glial cells strongly enhanced the neuronal

level of C1q, a component of the complement cascade,

which was present at synapses. Mice lacking C1q showed

defects in the eye-specific segregation of synaptic inputs to

the lateral geniculate nucleus [112]. These observations

suggest that astrocytes command the onset and extent of

synapse execution by as yet unknown signals.

Synapse destruction can involve the removal of axonal

branches that form obsolete connections. In the peripheral

nervous system, motoneurons form supernumerary NMJs,

most of which are destroyed postnatally [118]. Repeated

imaging of NMJs in living transgenic mice combined with

electron microscopy revealed that axon remnants, the so-

called axosomes, end up in PSCs [119]. Moreover, the

elimination of unwanted NMJs and climbing fiber inputs to

cerebellar PCs was accompanied by enhanced lysosomal

activity in glial cells [120]. Whether glial cells play an

active or passive role in this process remains unclear.

Direct evidence for an active glial contribution to

axon—and thereby synapse—removal comes from studies

on the olfactory system of flies, which undergoes sub-

stantial remodeling during metamorphosis [121]. Selective

labeling of neurons and glial cells in the mushroom body

and genetic disturbance of glial membrane function

revealed an active role of glial cells in the pruning of axons

[122–124].

What’s in store for astrocyte–synapse interactions?

Don’t miss the buzz!

The research progress documented in this review is to a

great part driven by technical advances, which will con-

tinue to propel the field. Three ‘‘techno-tracks’’ seem to be

of particular importance.

First, advanced genetic and proteomic approaches will

divulge the molecular setup of astrocytes. An important

first step has been the transcriptional profiling of cultured

and acutely isolated astrocytes [125–128], retinal Müller

cells [129], and Schwann cells [130] of developing and

adult rodents. Moreover, the proteome and secretome of

cultured astrocytes have been inventoried [64, 131–133].

Evidently, the molecular signature of isolated or cultured

cells may not reflect the situation in vivo. This caveat can

be overcome by exciting new approaches to transcriptional

profiling in vivo, based on new molecular baits for tran-

scription complexes [134] and on the bioinformatic

analysis of coexpression [135]. Together, these techniques

should provide a comprehensive molecular definition of

astrocytes, which—up to now—has been based on very

few markers. Ultimately, such new approaches may lead to

a molecular classification of astrocytes that is of a similar

complexity as that for neurons.

Second, glial cells and their interactions with synapses

can now be visualized in a much more refined and dynamic

manner than ever before thanks to technical advances in
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cell labeling and microscopy. First, astrocytes can be

visualized in vivo or in situ by fluorescent molecules. Dyes

can be applied by micro-iontophoretic injection in lightly

fixed tissue [136] or by topical application to the brain

surface of living animals [137]. These methods, in com-

bination with confocal or two-photon microscopy, have

brought unprecedented insight in the morphology and

spatial arrangement of astrocytes under normal and path-

ological conditions [136, 138] and have allowed, for

example, to separate astrocytic from neuronal calcium

signals [137]. An alternative method that circumvents dye-

related problems is based on the glia-specific expression of

fluorescent proteins in transgenic animals. Time-lapse

imaging of fluorescently labeled neurons and astrocytes in

intact preparations has revealed a high motility of glial

filopodia [139, 140] and their dynamic interactions with

dendritic spines [97, 117, 141, 142]. Astrocytes interact

with synapses via extremely delicate processes in the

micrometer range, whose visualization evades conven-

tional light microscopy. These key structural domains and

their dynamics can be reconstructed by serial section

electron microscopy [143] and advanced 3D computer

electron tomography [144]. More insight at the ultrastruc-

tural level will probably come from new light [145] and

electron microscopy techniques [146, 147].

Third, new animal models allow to test the functional

relevance of glial cells for synapse development and

function in vivo. Several transgenic mouse lines enable

astroglia-specific somatic mutagenesis based on the Cre/

loxP system and different astrocyte-specific promoters

contained in short transgenesis vectors (hGfap: [148, 149]),

bacterial artificial chromosomes (see [150] for Glast and

Cx30; [151] for Gfap; [129] for Pdgfra; [152] for Blbp) or

genomic DNA ([153] for Glast). Moreover, transgenic

mice have been generated to overexpress specific proteins

in astrocytes [152, 154] and to reversibly target Schwann

cells [54] and astrocytes [155, 156] by the Tet-on/-off

system. Alternatively, virus-based transfection of astro-

cytes in vivo is now possible by a lentiviral construct that

achieves preferential targeting of astrocytes [157].

Finally, visualization of glial cells can be combined with

functional manipulation in genetically modified worms and

flies, where the characterization of glial cells and their

interactions with synapses are progressing quickly [40,

158]. These invertebrate models will certainly continue to

provide important insights in glia-synapse interactions and

to inspire further research on the situation in vertebrates.

Summary and outlook

Three lessons can be learnt from this review. First, the plot

thickens: neurons require help from their glial friends to

find their match, to form strong, enduring connections, and

to eliminate obsolete liaisons. Second, the chances to

understand these interactions are increasing thanks to

relentless technical advances in areas such as molecular

characterization, visualization, and functional interference

in glial cells. Finally, a sine qua non for further progress

remains the identification of signaling pathways, as this is

vital to determine the relevance of glia for the development

and maintenance of synaptic connections and to explore

their potential to repair brain damage. Whatever is in store,

the times are exciting for those interested in glia–synapse

interactions.
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