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Abstract

Backround: Radiation therapy treatment of breast cancer, Hodgkin’s disease or childhood cancers expose the heart to high
local radiation doses, causing an increased risk of cardiovascular disease in the survivors decades after the treatment. The
mechanisms that underlie the radiation damage remain poorly understood so far. Previous data show that impairment of
mitochondrial oxidative metabolism is directly linked to the development of cardiovascular disease.

Methodology/Principal findings: In this study, the radiation-induced in vivo effects on cardiac mitochondrial proteome and
function were investigated. C57BL/6N mice were exposed to local irradiation of the heart with doses of 0.2 Gy or 2 Gy (X-
ray, 200 kV) at the age of eight weeks, the control mice were sham-irradiated. After four weeks the cardiac mitochondria
were isolated and tested for proteomic and functional alterations. Two complementary proteomics approaches using both
peptide and protein quantification strategies showed radiation-induced deregulation of 25 proteins in total. Three main
biological categories were affected: the oxidative phophorylation, the pyruvate metabolism, and the cytoskeletal structure.
The mitochondria exposed to high-dose irradiation showed functional impairment reflected as partial deactivation of
Complex I (32%) and Complex III (11%), decreased succinate-driven respiratory capacity (13%), increased level of reactive
oxygen species and enhanced oxidation of mitochondrial proteins. The changes in the pyruvate metabolism and structural
proteins were seen with both low and high radiation doses.

Conclusion/Significance: This is the first study showing the biological alterations in the murine heart mitochondria several
weeks after the exposure to low- and high-dose of ionizing radiation. Our results show that doses, equivalent to a single
dose in radiotherapy, cause long-lasting changes in mitochondrial oxidative metabolism and mitochondria-associated
cytoskeleton. This prompts us to propose that these first pathological changes lead to an increased risk of cardiovascular
disease after radiation exposure.
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Introduction

Adverse effects of ionizing radiation on the cardiovascular

system have the potential for a large impact on public health. High

doses of radiation applied to the heart during radiotherapy used in

breast cancer [1–4], Hodgkin’s disease [5] or childhood cancers

[6] increase cardiovascular incidence and mortality. Epidemio-

logical studies indicate that much lower irradiation doses [#1 gray

(Gy)] typical of occupational [7–12], medical [6,13] or environ-

mental exposures [14,15] also increase the risk of cardiovascular

disease (CVD) several decades after the exposure. However, this

remains controversial as some studies find no association between

low-dose ionizing radiation and an increased risk for CVD [16–

22].

The molecular mechanisms underlying the development of

radiation-induced heart disease are not well understood so far. It

has been suggested that persistent changes in oxidative metabolism

may mediate the responses to ionizing radiation, ultimately leading

to inflammation and cardiovascular disease [23,24]. Indeed, the

data from survivors of the atomic bombings show enhanced

persistent inflammation [25] and a radiation dose-dependent

increase of vasculatory reactive oxygen species (ROS), even after
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adjustment for gender, age, smoking status and body mass [26].

The presence of long-lived clastogenic factors in the blood of

individuals exposed to ionizing radiation has been shown in

several studies [27–29]. Clastogenic factors are associated with

oxidative stress and have the capacity to cause chromosomal

breakage if transferred to cell cultures originating from non-

irradiated individuals [27–29].

Mitochondria play a central role in oxidative metabolism, where

the final products of glycolysis and fatty acid metabolism, pyruvate

and acetyl CoA, are used in the Krebs cycle and by oxidative

phosphorylation to produce energy. As heart tissue has a high

energy demand, it is not surprising that mitochondria contribute

about 40% of the total cellular volume of cardiomyocytes [30].

Approximately 90% of energy is supplied by these organelles [31].

In numerous biochemical and functional studies of cardiomyo-

cytes, impairment of oxidative metabolism has been directly linked

to the development of cardiovascular disease [24,32–34]. Loss of

control over the reduction and oxidation processes within the

mitochondria may lead to disruption of metabolic homeostasis and

an increased production of ROS such as peroxide, superoxide and

hydroxyl radicals. Such an excess of ROS is capable of causing

damage to many cellular components including lipids, proteins,

and DNA [35,36]. Oxidative stress is also known to contribute to

vascular disease and endothelial cell dysfunction potentially

leading to further cardiovascular damage [37]. Conversely, lower

ROS concentrations stimulate cellular signaling and gene

expression modulating vascular function [38] and playing an

important role in cardioprotection [39,40].

Exposure of eukaryotic cells to radiation leads to the production

of ROS within minutes. Leach, et al. showed that, in the dose

range between 1 and 10 Gy, the amount of ROS produced per

cell was constant whereas the percentage of ROS producing cells

increased with the dose [41]. This induced increase in ROS

production was dependent on dysfunctional mitochondrial

electron transport and was observed in several cell types.

We have shown previously that a total body irradiation (3 Gy

gamma-ray) caused immediate (5 h, 24 h) increase in the level of

protein oxidation and lipid peroxidation in the cardiac tissue of

C57BL/6 mice [42]. Mitochondrial proteins represented the

protein class most sensitive to ionizing radiation. Whether an

immediate burst of ROS may lead to persistent alterations in cells

and tissues after days and weeks is unknown.

The goal of this study was to determine whether ionizing

radiation causes non-transient impairment of cardiac mitochon-

dria that could finally lead to cardiovascular disease. For this

purpose C57BL/6N mice were locally irradiated to the heart using

an acute dose of 0.2 Gy or 2 Gy X-ray; the control mice were

sham-irradiated. These doses were chosen while the higher dose

equivalent (2 Gy) is frequently used as a single dose in the

radiation therapy. Epidemiological data clearly show a relation

between this dose and increased risk for CVD [1–4]. However, it is

uncertain whether doses below 0.5 Gy have an impact on CVD

risk [16,17]. The radiation-induced effects on cardiac mitochon-

dria were investigated four weeks after irradiation to observe the

first persistent pathological changes.

We used two complementary quantitative proteomic approach-

es, ICPL and 2D-DIGE; ICPL is peptide-based and 2D-DIGE

protein-based quantification of proteome changes. Using LC-ESI/

MS/MS identification of the deregulated proteins and bioinfor-

matics analysis we were able to elucidate a radiation-induced

mitochondrial impairment in vivo. Based on the proteomics data

we performed functional studies of isolated mitochondria from

mouse hearts on complex activity, respiration, ROS generation

and global proteome oxidative status. We show that intracellular

changes caused by initial radiation-induced oxidative stress persist

over a long period of time, with potential accumulative effects.

Materials and Methods

Local cardiac irradiation of mice
All animals were treated in compliance with the German animal

welfare law and the experiments were approved by the

institutional committee on animal experimentation and the

government of Upper Bavaria (Certificate of Landesdirektion

Dresden 24(D)-9168.11-1-2008-10).

Breeding stock C57BL/6N mice were originally purchased from

Charles River Laboratories, Germany GmbH. The animals were

bred and housed under specified pathogen-free conditions with

controlled conditions of temperature (21–24uC) and humidity (30–

50%). An automated light program regulated a 12/12-h light/

dark rhythm, with lights on from 06:00 a.m. to 06:00 p.m.

Mice were housed in size 3 MacrolonH cages, maximum of 10

mice per cage, on sawdust bedding (Lignocel 3/4 S, ssniff

Spezialdiäten GmbH, Germany). The animals had free access to

standard mouse diet (ssniffH R/M-H, ssniff Spezialdiäten GmbH,

Germany) and filtered city tap water.

For the local irradiation of the heart an YXLON MG325 X-ray

apparatus (Yxlon International X-ray GmbH, Germany) was

operated at 200 kV, with a tube current of 20 mA and a beam

filter of 0.6 cm Cu, resulting in a dose rate of ca. 0.8 Gy/min at

the focus-to-object-distance of 44.6 cm. Male animals at an age of

861 week were used for all experiments. The mice were

immobilized (without anesthesia) in specially designed jigs. Six

animals were irradiated simultaneously, with the 6 jigs arranged

circularly on a perspex plate. The dose homogeneity between the

individual heart irradiation fields was ,3%. The treatment fields

of 9.7614 mm2 were defined by windows in a collimator plate

consisting of 6 mm lead and 2 mm aluminium.

Before irradiation, the correct position of the hearts was verified

by digital radiographs, resulting in an additional total body dose of

4 mGy. Subsequently, single local heart doses of 0.2 Gy or 2 Gy

were applied. The control sham-irradiated group was treated

similarly as the exposed groups except that the irradiation source

was not turned on.

The total number of C57BL/6N mice used in this study was 51.

Isolation of cardiac mitochondria
After sacrificing mice by cervical dislocation, the hearts were

rapidly removed, rinsed and finally minced on ice in isolation

buffer [0.3 M sucrose (Fluka), 5 mM N-[Tris(hydroxymethyl)-

methyl]-2-aminoethanesulfonic acid, 0.2 mM EGTA, pH 7.2].

The minced tissue was gently homogenized in a roughened glass

homogenizer (FORTUNA, Poulten & Graf GmbH) with 4–5

strokes. Homogenates were centrifuged at 1400 g, 4uC for 10 min

and resulting supernatants were re-centrifuged at 9000 g, 4uC for

10 min to receive the mitochondrial pellet. It was washed once

with isolation buffer and centrifuged again at 9000 g, 4uC for

10 min. Protein concentration was determined by Bradford

Reagent (Sigma) with bovine serum albumin as standard. For all

measurements isolated mitochondria were kept on ice and used

within 3–4 hours.

To obtain a high-purity mitochondrial fraction for proteomic

analysis, differential centrifugation technique and discontinuous

Percoll density gradient were used [43,44]. Mitochondrial marker

VDAC was enriched in the mitochondrial fraction as compared to

the whole heart homogenate, while a protein marker of

endoplasmic reticulum BiP was barely detectable (Information

S1). In addition, the purity of mitochondrial preparations was
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determined by electron microscopy (Information S1). Intactness

and functionality of isolated mitochondria were further analyzed

by measuring the respiration capacity of each mitochondrial

sample. For proteomic analysis mitochondrial fractions were

precipitated by 2D clean up kit (Bio-Rad) to remove lipids,

nucleotides, and salts.

Proteomic analysis
ICPL Labeling and 1DE. The three biological replicates

were labeled with ICPL reagent (SERVA) as described previously

[45,46]. Triplicate aliquots of 100 mg of mitochondrial proteins

obtained from heart tissue of sham- or irradiated mice were

precipitated with the 2D clean-up kit (GE Healthcare) following

the manufacturer’s instructions. Protein quantification was done

from the pellet in triplicate using both Bradford method and 2D

Quant Kit (GE Healthcare) following the manufacturer’s

instructions. Both sham-irradiated and irradiated protein

samples were individually alkylated and acylated as follows. To

40 mL of each solution, 1 ml of 0.2 M TCEP (Tris-2-carboxyethyl

phosphine) was added, and the disulphide bonds were reduced for

30 min at 60uC. After cooling down, all free thiol groups of the

cysteines were alkylated with 1 ml of 0.4 M iodoacetamide for

30 min at room temperature in the dark. Excess iodoacetamide

was quenched by adding 1 ml of 0.5 M N-acetylcysteine. For

nicotinoylation, a ten-fold molar excess of all free amino groups of
12C- and 13C-nicotinoyloxysuccinimide (Nic-NHS) (ISOTEC,

Miamisburg, USA), was added to the sham and exposed

samples, respectively, and the reaction was allowed to proceed

for 2 h at pH 8.3 at room temperature. 4 ml of 1.5 M

hydroxylamine was added to each sample to destroy the

remaining Nic-NHS reagents. Esters, which form during the

labeling procedure, were hydrolyzed by raising the pH to 11–12

for 20 min. Equal amounts of light and heavy labeled samples

were combined and separated by 12% SDS gel electrophoresis

[47] before staining with colloidal Coomassie [48]. The gel lanes

were cut in 2 slices and subjected to in-gel digestion. To validate

the accuracy of the ICPL labeling, 3 mg of protein test mixtures,

each containing different amounts of 3 proteins (BSA with a light

to heavy ratio 1:1; ovalbumin 4:1; carbonic anhydrase 1:2 were

mixed with the samples.2D-DIGE analysis

Mitochondria from sham-irradiated and irradiated murine

hearts were isolated from five independent biological samples

with two technical replicates in every group and labeled with

CyDyeTM DIGE Fluor minimal dyes (400 pmol/50 mg) (GE

Healthcare), according to the manufacturer’s recommendations.

Isoelectric focusing (IEF) was performed using immobilized pH

gradients (24 cm; pH 3–10 nonlinear range; GE Healthcare).

50 mg of protein in rehydration buffer (8 M urea, 2% CHAPS,

30 mM DTT, 0.5% ampholines, pH 4–7) was applied using cup

loading (GE Healthcare). IEF was carried out at 20uC, using

voltages and running times as follows: 12 h passive rehydration,

rapid 300 V for 3 h, gradients from 300 to 1000 V for 3 h, 1000

to 3500 V for 2 h, 3500 to 10000 V for 3 h and finally rapid 10

000 V up to a total of 75 kVh). The maximum current was

50 mA per gel strip. Gel strips were incubated in equilibration

solution (50 mM Tris/HCl, pH 8.8, 6 M urea, 2% (w/v) SDS,

1% (w/v) DTT) for 15 min, followed by 15 min incubation with

this solution with DTT substituted by 2.5% (w/v) iodoaceta-

mide). Equilibrated gel strips were placed on top of a 12%

acrylamide gel and overlaid with 0.5% agarose solution. SDS-

PAGE was carried out using the Ettan DALTtwelve system (GE

Healthcare), and performed at 1 W/gel for 1 h, followed by

15 W/gel for 5 h.

Image analysis. Gels were scanned at a resolution of

100 mm on a Typhoon 9400 (GE Healthcare). Cy2-, Cy3- and

Cy5-Dye images of each gel were acquired at excitation/emission

values of 488/520, 523/580 and 633/670nm, respectively. After

image acquisition, the gels were fixed overnight in 30% ethanol

and 10% acetic acid, and stored at 4uC. For mass spectrometry-

based identification the gels were post-stained with silver according

to Chevallet, et al. [49]. Scanned images were cropped using the

ImageQuant software version 5.2 (GE Healthcare). The DeCyder

version 6.5 software (GE Healthcare) was used for image analysis.

The Differential In-gel Analysis (DIA) module was used for

automatic spot detection. Abundance measurements for each

individual gel were obtained by comparing the normalized volume

ratio of each spot from a Cy3- or Cy5-labeled sample to the

corresponding Cy2-signal from the pooled-sample internal

standard. The DIA datasets from each individual gel were

collectively analyzed using the Biological Variation Analysis

(BVA) module, which allows inter-gel matching and the

calculation of the average abundance for each protein spot

among the five gels of each group. Statistical significance was

assessed for each change in abundance using Student’s t-test. Five

biological with two technical replicates of each were used for

statistical analysis. We considered spots as differentially regulated if

statistical significance at the 95% confidence level was achieved

and if the standardized average spot volume ratio exceeded 1.30-

fold. Calculation of experimental MW and pI for each differential

protein spot was done with the help of the given pH range of the

IPG-strips and with externally applied molecular weight marker

proteins. False Discovery Rate (FDR) correction was applied in the

statistics. Proteins with statistically significant differential

expression (Student’s t-test p,0.05 and fold difference .1.30 or

,0.770) were manually picked from 2D-DIGE gels post-stained

with silver.

In-gel Digestion. 1D stained gel slices or 2D spots were

excised from polyacrylamide gels and subjected to in-gel digestion

before MS analysis. The silver stained 2D gel spots were

transferred to protein low bind tubes, and destained with

15 mM K3Fe(CN)6 and 50 mM Na2S2O3. The gel pieces were

washed once with 500 ml water and twice with 200 mM

NH4HCO3 for 15 min. The liquid was removed and the

proteins were reduced and alkylated, except for 2D gel spots.

The gel pieces were washed with water and shrunk with 25 ml

acetonitrile (ACN) for 5 min. Subsequently, the gel pieces were

dried and the samples were rehydrated with 10 ml of trypsin

(Promega, 10 mng/ml in 50 mM NH4HCO3). After 10 min the gel

pieces were covered with 10 to 30 ml (until the spots were

completely covered with liquid) of 50 mM NH4HCO3 and

digested O/N at 37uC. The resulting peptide mixture was

extracted twice with 50 ml of 50% ACN, 2.5% TFA by

sonication for 10 min. The supernatants were collected in a

fresh protein low bind tube, frozen in liquid nitrogen and reduced

to a volume of 10 to 20 ml in a speedvac.

LC/MS/MS Analysis. The digested peptides were

separated by reversed phase chromatography (PepMap,

15 cm675 mm ID, 3 mm/100Å pore size, LC Packings)

operated on a nano-HPLC (Ultimate 3000, Dionex) with a

nonlinear 170 min gradient using 2% acetonitrile in 0.1%

formic acid in water (A) and 0.1% formic acid in 98%

acetonitrile (B) as eluted with a flow rate of 250 nl/min. The

gradient settings were subsequently: 0–140 min: 2–30% B, 140–

150 min: 31–99% B, 151–160 min: Stay at 99% B and

equilibrate for 10 min at starting conditions. The nano-LC

was connected to a linear quadrupole ion trap-Orbitrap (LTQ

Orbitrap XL) mass spectrometer (Thermo Fisher, Bremen,

Radiation Impairs Mitochondrial Complexes

PLoS ONE | www.plosone.org 3 December 2011 | Volume 6 | Issue 12 | e27811



Germany) equipped with a nano-ESI source. The mass

spectrometer was operated in the data-dependent mode to

automatically switch between Orbitrap-MS and LTQ-MS/MS

acquisition. Survey full scan MS spectra (from m/z 300 to 1500)

were acquired in the Orbitrap with resolution R = 60,000 at m/z

400 (after accumulation to a target of 1,000,000 charges in the

LTQ). The method used allowed sequential isolation of up to

ten most intense ions depending on signal intensity, for

fragmentation on the linear ion trap using collision-induced

dissociation at a target value of 100,000 ions with a normalized

collision energy of 35% and an activation time of 30 ms.

Minimum signal intensity required was 200, isolation width

2 amu and default charge state 2. Precursor masses were selected

in a data-dependent manner. High resolution MS scans in the

Orbitrap and MS/MS scans in the linear ion trap were

performed in parallel. Target peptides already selected for

MS/MS were dynamically excluded for 30 seconds. General

mass spectrometry conditions were: electrospray voltage, 1.25–

1.4 kV; no sheath and auxiliary gas flow. An activation Q-value

of 0.25 and activation time of 30 ms were also applied for MS/

MS. The acquired MS/MS spectra were searched against the

UniRef100 database (date: 20100729, number of residues:

3761183040, number of sequences: 10711464); the number of

sequences for taxonomy Mus musculus (house mouse) is 84975.

We used a version of MASCOT (Matrix Science, version 2.3.02)

with the following parameters: MS/MS spectra were searched

with a precursor mass tolerance of 10 ppm and a fragment

tolerance of 0.8 Da. MASCOT scores are probability-based

MOWSE score: –10xLog(P), where P is the probability that the

observed match is a random event. Scores .34 indicate identity

or extensive homology; p ,0.05. MASCOT peptide scores are

shown in the Information S2. One missed cleavage was allowed.

Carbamidomethylation was set as fixed modification. Oxidized

methionine and the heavy and light ICPL labels of lysines as

well as heavy and light ICPL labels of the protein N-terminus

were set as variable modifications.

Scaffold (version Scaffold_3_00_07, Proteome Software Inc.,

Portland, OR) was used to validate MS/MS-based peptide and

protein identifications. Peptide identifications were accepted if

they could be established at greater than 80.0% probability as

specified by the Peptide Prophet algorithm [50]. Protein

identifications were accepted if they showed greater than 95.0%

probability and contained at least 2 identified peptides. Protein

probabilities were assigned by the Protein Prophet algorithm [51].

Proteins that contained similar peptides and could not be

differentiated based on MS/MS analysis alone were grouped to

satisfy the principles of parsimony. All proteins showing the

following criteria calculated by Proteome Discoverer (Thermo

Scientific) and Perseus software tool [52]: significance p ,0.05;

fold-change.1.3 or ,0.770; variability ,15% and were quanti-

fied by two unique peptides were considered as deregulated.

Detailed experimental settings are described in Information S2

(Sheet Experimental settings).

MALDI TOF/TOF protein identifications. 0.5 ml of sample

was spotted onto a stainless steel MALDI target plate by the dried

droplet method. The matrix used was 3.75 mg/ml a-cyano-4-

hydroxycinnamic acid in 60% ACN, 0.1% TFA.

Mass spectra were acquired using a 4700 Proteomics Analyzer

(MALDI-TOF-TOF) (Applied Biosystems). Measurements were

performed with a 355 nm Nb:YAG laser in positive reflector mode

with a 20 kV acceleration voltage. The mass range (m/z 900–

4000) was externally calibrated using the peptide calibration

standard III (Applied Biosystems). For each MS and MS/MS

spectrum 3000 laser shots were accumulated. Spectra acquisition

and processing was done in automatic mode with 4000 Series

Explorer software (version 3.6, Applied Biosystems).

The GPS Explorer TM Software (version 3.6, Applied

Biosystems) was used for spectra analyses. The database search

was performed with MASCOT (Version: 2.2.06) using the mouse

UniRef100 20090718 (selected for Mus musculus, 78401 entries)

and Swiss-Prot database (Swiss-Prot version from 20090212). One

missed trypsin cleavage was selected. Carbamidomethylation was

set as the fixed modification and oxidized methionine as the

variable modification. Precursor tolerance was set to 75 ppm and

MS/MS fragment tolerance to 0.3 Dalton. The shown MASCOT

protein scores are a summary of scores for each MS/MS spectra

and an additional score for the peptide mass fingerprint. The

significance level (p-value ,0.05) for a protein score is usually

higher than a MASCOT score of 50–60 (for an analysis of this

dataset against Swiss-Prot this corresponds to a MASCOT score

.56).

Analysis of the signaling network of deregulated

proteins. The analyses of protein-protein interaction and

signaling networks were performed by the software tool

INGENUITY Pathway Analysis (IPA) (INGENUITY System,

http://www.INGENUITY.com). IPA is a knowledge database

generated from peer-reviewed scientific publications that enables

discovery of highly represented functions and pathways (p ,0.001)

from large, quantitative data sets [53,54]. The analysis provides

the information of relationships, biological mechanisms, functions,

and pathways of relevance associated with the identified proteins.

The protein accession numbers including the relative expression

values (fold change) of each protein were uploaded for the core

analysis.

The Fischer’s exact test was used to calculate a p-value

determining the probability that each biological function or

disease assigned to that network is due to a random event. The

score for each network is a numerical value to approximate the

degree of relevance and size of a network to the molecules in the

given dataset.

Immunoblotting analysis
For the validation of protein expression changes by immuno-

blotting [55], 20 mg of mitochondrial extract was separated on 8%

and 12% SDS polyacrylamide gels according to Laemmli [56].

Proteins were transferred to nitrocellulose membranes (GE

Healthcare) using a semidry blotting system at 100 mA for

90 min. Membranes were saturated for one hour with 5% advance

blocking reagent (GE Healthcare) in TBS (50 mM Tris.HCl,

pH 7.6 and 150 mM NaCl) containing 0.1% Tween 20 (TBS/T).

Blots were then incubated overnight at 4uC with antibodies against

either cytochrome c1 (Abnova), pyruvate dehydrogenase E1a with

a-tubulin as the loading control (all from Sigma-Aldrich). To

compare the amounts of mitochondrial respiratory complexes in

sham vs. irradiated mitochondria we used a premixed cocktail

including one antibody against each complex: CI subunit

NDUFB8, CII-30kDa, CIII-Core protein 2, CIV subunit I and

CV alpha subunit (MitoSciences, USA). After washing three times

in TBS/T, blots were incubated for one hour at room temperature

with horseradish peroxidise-conjugated anti-mouse or anti-goat

secondary antibody (Santa Cruz Biotechnology) in blocking buffer

(TBS/T with 5% w/v advance blocking reagent). Immunodetec-

tion was performed with ECL advance Western blotting detection

kit (GE Healthcare). The protein bands were quantified using

ImageQuant 5.2 software (GE Healthcare) by integration of all

pixel values in the band area after background correction, and

normalized to the a-tubulin expression.

Radiation Impairs Mitochondrial Complexes

PLoS ONE | www.plosone.org 4 December 2011 | Volume 6 | Issue 12 | e27811



Complex I, Complex III, pyruvate dehydrogenase and
aconitase activities

Complex I and pyruvate dehydrogenase activity was quantified

using the dipstick assay kit according to the manufacturer’s

recommendations (Mitoscience). The enzymes were immunocap-

tured in an active form on a dipstick using anti-Complex I and

anti-pyruvate dehydrogenase monoclonal antibodies. Then dip-

stick was immersed in Complex I activity buffer, containing

NADH as a substrate and nitrotetrazolium (NTB) as the electron

acceptor. Immocaptured Complex I reduced NBT to form blue-

purple precipitate at the Complex I antibody line. Pyruvate

dehydrogenase activity was visualized as reduction of NBT in the

presence of excess diaphorase. The signal intensity, corresponding

to the enzyme activity, was analyzed using Image Quant 5.2

software (GE Healthcare).

Complex III (ubiquinol-cytochrome c reductase) activity was

determined by measuring the reduction of cytochrome c at 550 nm

as described by Kiebish, et al. [57]. Briefly, the Complex III assay

was performed in buffer containing 25 mM potassium phosphate,

pH 7.4, 1 mM EDTA, 1 mM KCN, 0.6 mM dodecyl maltoside,

and 32 mM oxidized cytochome c, using 2 mg of crude

mitochondria. The reaction was initiated with 35 mM decylubi-

quinol and the enzyme activity was quantified by following the

reaction for 1 min both in the presence and absence of 2 mM

antimycin (inhibitor). Decylubiquinol was freshly made by

dissolving 10 mg of decylubiquinone in 2 ml acidified ethanol

(pH 2) and using sodium dithionite as a reducing agent.

Decylubiquinol was further purified by cyclohexane [58]. Four

biological replicates were used for statistical analysis.

Aconitase activity was measured according to manufacturer

recommendations (Cayman, USA). Reaction was initiated with

isocitrate with and without inhibitor (oxalomalate) and monitored

by measuring the formation of NADPH at 340 nm for 10 minutes.

Analysis of free radical content
Mitochondria at a protein concentration of 7.5 mg/ml in isolation

buffer were incubated with 2 mM 29,79-dichlorodihydrofluorescein

diacetate (H2DCFDA) (Invitrogen) for 10 min on ice with

subsequent centrifugation at 9000 g for 10 min at 4uC. After a

washing step the pellet of labelled mitochondria was resuspended in

swelling buffer (SwB) containing 0.2 M sucrose, 10 mM MOPS-

Tris, 5 mM succinate, 1 mM Pi , 10 mM EGTA, and 2 mM

rotenone and 10 ml aliquots (75 mg mitochondrial sample per well)

were added to SwB in a black flat bottom 96 well plate. Directly

before measuring the fluorescence 50 ml stimuli were added to give a

final volume of 200 ml per well. Measurements of fluorescence were

performed (BioTekH Instruments Inc.) with an excitation wave-

length 485/20 nm and an emission wavelength of 528/20 nm at

room temperature for 60 min. In the presence of 5 mM succinate,

50 mM mercury (II)acetate or 100 mM tert-butyl hydroperoxide

were added to stimulate the production of ROS. All measurements

were done in duplicates. To compare the production of free radicals

produced by mitochondria isolated from irradiated and sham-

irradiated hearts the area under the curve (AUC) was calculated

using the software GraphPad Prism 4 (GraphPad Software, Inc.) for

at least 5 biological replicates. Statistical comparisons were made

using the nonparametric Mann-Whitney test. Results were

considered significant at p ,0.05.

Saturation DIGE labeling of oxidized mitochondrial
proteins

Saturation DIGE labeling was carried out according to

manufacturer’s protocol, except that reduction step tris(2-carbox-

yethyl)phosphine prior labeling was omitted in order to keep the

cysteins in their oxidized state [59]. Since this reagent label

specifically free thiol groups, this analysis will address exclusively

the oxidation status of cysteine residues in the proteins. Briefly,

protein pellets were first resuspended in 8 M urea, 4% CHAPS

and 30mM Tris at pH 8.0. After pH adjustment, five mg of protein

was labeled with 5 nM Cye5 (2 Gy) and Cye3 (control) dyes 1 h at

37uC. As additional control, the same samples were labeled using

Cye 3 dye in order to avoid changes due to the different channels

of scanning, and loaded into different wells on 1D gels. Prior

labeling samples were overlayed with nitrogen. Throughout the

procedure samples were kept with the minimum of light exposure.

The reaction was quenched by adding the same volume of 8 M

urea, 4% CHAPS and 2% DTT. After 1D SDS PAGE, the gels

were scanned using Typhoon scanner and bands quantified after

background subtraction and normalized to post-stained silver gels

using Image Quant software.

Mitochondrial respiration
Mitochondrial respiration was measured at 30uC using a

Hansatech oxygen electrode (Hansatech Instruments) in 500 ml

respiratory media containing 0.14 M mannitol, 0.05 M sucrose,

10 mM phosphate buffer (pH 7.4), 5 mM MgCl2, 2 mM Tris/

HCl (pH 7.4), 0.25 mM EDTA (pH 7.8) as described previously

[60]. Respiration was measured using a range of substrates that

enter metabolic pathways at different locations. For palmitoyl

carnitine /malate respiration measurements substrates were added

to final concentrations of 40 mM and 5 mM, respectively [61].

Complex I was blocked by adding 12 mM rotenone and

respiration was initiated by adding 10 mM succinate. Subsequent-

ly, 1 mM ADP and later 56 mM oligomycin were added. The

quality of isolated mitochondrial preparations was assessed by

calculation of respiratory control ratios RCRS (rate of ADP-

dependent respiration – rate of rotenone-dependent respiration /

rate of succinate-dependent respiration – rate of rotenone-

dependent respiration) to ensure that only highly coupled

mitochondrial samples were used [61,62]. Respiration was

measured using 3 technical replicates from at least 5 biological

samples. Respiratory rates after addition of the substrates were

used for the comparison of mitochondria isolated from sham-

irradiated and irradiated C57BL/6N mice.

Electron microscopy
Freshly isolated cardiac mitochondria (100–200 mg) were

immediately pelleted by centrifugation at 4uC (10 min at

9000 g), fixed in 2.5% glutaraldehyde in 0.1 M sodium cacodylate

buffer (pH 7.4), postfixed with 1% osmium tetroxide, dehydrated

with ethanol, and embedded in Epon. Ultrathin sections were

negatively stained with uranyl acetate and lead citrate and then

analyzed on a Zeiss EM 10 CR electron microscope.

Results

Mitochondrial proteomics revealed radiation-induced
deregulation of 25 proteins

Effects of localized irradiation (2 Gy and 0.2 Gy) of the heart

were analyzed using two proteomic approaches: ICPL and 2D-

DIGE. Using the ICPL method, the number of identified,

quantified and deregulated proteins was 635, 303 and 15, and

778, 421 and 5 with doses of 2 Gy and 0.2 Gy, respectively. Using

the 2D-DIGE method, an average of 930 spots was detected of

which seven proteins in total showed significant deregulation

(0.2 Gy and 2.0 Gy). Taken together, the ICPL method was more

sensitive as seen with the number of deregulated proteins whereas
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only 2D-DIGE was able to detect protein isoforms, fragments and

modified proteins.

ICPL
ICPL was performed in biological triplicates using duplex

labeling, followed by 1D gel separation and subsequent LC-MS/

MS analysis. As shown in the Information S1, the protein

standards premixed with the samples showed expected abundance

ratios (carbonic anhydrase II, 2.08; ovalbumin, 0.244; serum

albumin 0.93; Information S1) with relative error well below 10%,

demonstrating the accuracy of the analytical method. Irradiation

of the heart with the 2 Gy dose induced changes in 15

mitochondrial proteins. Six proteins were significantly up-

regulated (.1.3-fold) (p #0.050) [52], and nine were down-

regulated (,0.770-fold) (Table 1).Lower dose (0.2 Gy) induced

significant changes in five proteins (three up- and two down-

regulated; Table 2). Deregulated proteins were quantified in

Proteome Discoverer software using at least two unique peptides.

Cytochrome c oxidase polypeptide 7A1 was quantified by one

unique peptide and was manually validated.

2D-DIGE
The image analysis of 2 Gy- vs. sham-irradiated mitochondria

revealed five protein spots significantly increased/decreased in

amount by 1.5-/0.667-fold (t-test; p,0.001; n = 5). By lowering

the threshold to 1.3-/0.770-fold, four additional spots appeared to

be significantly deregulated after irradiation (p,0.001; Figure 1,

Information S1). The lower dose (0.2 Gy) induced a significant

decrease in the amount of protein spot (number 2) with a similar

down-regulation as after the high dose exposure (0.581/0.2 Gy vs.

0.613/2 Gy), indicating a dose-independent response. In contrast,

spots 3 and 4 were down-regulated with both doses but to a lesser

degree with the low dose than with the high dose, indicating a

dose-dependent response.

Four spots representing abundant proteins (spots 3, 4, 7, 8;

Figure 1) were successfully identified using the MALDI TOF/

TOF technique. Low abundance spots were identified by LC-MS/

MS using the Orbitrap XL. Peptides corresponding to deregulated

proteins detected by 2D-DIGE approach and identified by LC-

MS/MS (Orbitrap XL) or MALDI-TOF/TOF are shown in

Information S2. Table 3 shows the protein identifications

according to their highest homologies with fragment pattern

reported for known proteins for Mus musculus. Categorized by the

biological function the identified proteins belong to the electron

transport chain (ETC) (cytochrome c1 as two distinct spots on the

gel), glycolysis [pyruvate dehydrogenase subunit E1 a (PDH E1a),

lipid metabolism (succinyl-CoA:3-ketoacid-coenzyme A transfer-

ase 1; long-chain-fatty-acid–CoA ligase; succinyl-CoA:3-ketoacid-

coenzyme A transferase 1) or cellular structure (vimentin, desmin).

Proteins found to be significantly down-regulated represented

metabolic pathways (cytochrome c1, PDH subunit E1a, succinyl-

CoA:3-ketoacid-coenzyme A transferase 1, long-chain-fatty-acid–

Table 1. Differentially regulated proteins after 2.0 Gy irradiation using ICPL approach.

Accession
UniProt

IPA
Gene
name

MW
[kDa] calc. pI Protein name

SCoverage/
%

S#
Peptides

SQuantified
peptides in
replicates

Fold change
(Heavy/Light)

Fold change
Variability [%]

P63268 ACTG2 41.8 5.48 Actin, gamma-enteric smooth muscle 31.65 6 2;2;1 2.476 6.8

Q6P8P3 MYH6 223.4 5.73 Myosin-6 45.25 59 38;46;3 1.626 5.9

Q6P8J7 CKMT2 47.4 8.40 Creatine kinase, sarcomeric mitochondrial 63.96 18 47;52;35 1.585 2.7

P48962 SLC25A4 32.9 9.72 ADP/ATP translocase 1 52.68 9 22;24;12 1.472 5.6

Q9CR62 SLC25A11 34.1 9.94 Mitochondrial 2-oxoglutarate/
malate carrier protein

35.35 10 7;10;4 1.441 0.8

Q9Z2Z6 SLC25A20 33.0 9.11 Mitochondrial carnitine/acylcarnitine
carrier protein

11.63 2 1;1;1 1.362 5.0

Q91WS0 CISD1 12.1 9.06 CDGSH iron sulfur domain-
containing protein 1

60.19 2 2;2;1 0.499 4.0

Q9DCC8 TOMM20 16.3 8.60 Mitochondrial import receptor subunit
TOM20 homolog

6.90 2 2;3;2 0.558 5.5

Q8R1I1 UQCR10 13.01 8.86 Cytochrome b-c1 complex subunit 9 57.81 2 1;1;1 0.600 2.2

P47738 ALDH2 56.5 7.62 Aldehyde dehydrogenase, mitochondrial 26.40 7 3;5;1 0.611 8.0

O35143 ATPIF1 12.2 9.64 ATPase inhibitor, mitochondrial 34.91 3 2;5;2 0.632 2.2

Q9WUM5 SUCLG1 35.0 9.39 Succinyl-CoA ligase [GDP-forming]
subunit alpha, mitochondrial

10.51 2 4;3;3 0.661 2.0

Q8BK30 NDUFV3 50.5 8.97 NADH dehydrogenase [ubiquinone]
flavoprotein 3, mitochondrial

20.09 4 2;2;- 0.668 7.7

Q62425 NDUFA4 9.3 9.52 NADH dehydrogenase [ubiquinone]
1 alpha subcomplex subunit 4

57.32 2 -;2;2 0.722 9.3

P56392 COX7A1 9.0 9.79 Cytochrome c oxidase polypeptide
7A1, mitochondrial

36.25 1 2;3;3 0.755 1.6

Mitochondrial proteins from 2 Gy-irradiated and sham-irradiated hearts were labeled with the heavy and light isotopes, respectively. The proteins demonstrated in the
table were identified by two or more unique peptides. Theoretical isoelectric points (pI) and molecular weights (Mw) are derived from the amino acid sequences in
Swiss-Prot. All proteins showing significant (p ,0.05; Perseus Statistics program) upregulation (.1.3-fold) or downregulation (,0.770-fold) were considered as
deregulated. Replicate protein ratios were averaged to take account for biological variability. Spread of the ratios for one protein over biological replicates is given as
%CV (Fold change Variability).
doi:10.1371/journal.pone.0027811.t001
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CoA ligase). The structural proteins vimentin and desmin that

support mitochondrial morphology and organization, and a

protein of unknown function (ES1 homolog) were significantly

up-regulated after the high-dose radiation exposure.

Taking into account that some proteins were identified as

deregulated with both methods or from several 2D-DIGE spots,

the total number of differentially regulated proteins after high or

low radiation exposure was 25.

In silico pathway analysis of deregulated proteins
ascertained the mitochondrial Complex III as a radiation
target

To further analyze the networks connecting the deregulated

proteins, all deregulated proteins (Tables 1, 2 and 3) were

imported into the Ingenuity Pathway Analysis (Ingenuity System,

http://www.ingenuity.com); the top scoring protein interaction

network representing merged pathways of lipid metabolism, small

molecule biochemistry, and cellular death is shown in Figure 2.

The complex III proteins formed a clearly defined cluster of

functionally related proteins. The Ingenuity Pathway Analysis

(IPA) report is shown in the Information S2 (IPA Report). The

biological network including the most deregulated proteins was

highly significant with a score of 34. The score represents the

logarithm of the probability that the network would be found by

chance; score $2 is considered significant. This network consisted

of biological categories lipid Metabolism, small molecule bio-

chemistry, and cell death. The most relevant functions extracted

from this network were related to metabolic disease (4 focus

proteins), cardiovascular disease (5) and genetic disorder (10).

High-dose radiation decreased the activity of respiratory
complexes I and III

Cytochrome c1 is a subunit of cytochrome b-c1 complex

(Complex III) in the ETC transferring electrons to cytochrome c in

Complex IV. Immunoblot analysis confirmed the proteomics data

showing downregulation of cytochrome c1 by 34% (p#0.05;

Figure 3; Information S1). The reduced levels of cytochrome c1

were accompanied with a significant decrease in Complex III

activity by 12% in 2 Gy-irradiated hearts compared to sham-

irradiated hearts (p#0.05; Figure 4).

In accordance with the ICPL data we found the Complex I

activity to be significantly downregulated by 32% (p,0.05;

Figure 5).

To further analyze the complexes of ETC, we used a premixed

cocktail including antibodies against proteins important for the

assembly of each complex as explained in Experimental

Procedures. In this manner the relative levels of all 5 OXPHOS

complexes could be measured (Figure 6; Information S1). We were

able to detect the CI subunit NDUFB8, CII-30 kDa, CIII-Core

protein 2, and CV alpha subunit. CIV subunit I was not detected,

irrespectively whether the samples were heated or not prior to the

immunoblotting analysis. The level of Complex I was significantly

downregulated (29%; p#0.05). There were no significant

differences in protein levels of complexes II, III and V between

2 Gy- and mitochondria from-sham irradiated mice.

Succinate-driven respiration was impaired in 2 Gy-
irradiated mitochondria

Mitochondrial respiration was measured using either succinate

or palmitoylcarnitine as the substrate to analyze the intactness of

mitochondria and to determine the efficiency of oxygen consump-

tion. Succinate is a direct substrate of the respiratory chain,

feeding directly into complex II, and is therefore used to determineT
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the functionality of the ETC. Succinate–stimulated respiration

(state 2 respiration) decreased significantly by 13% in mitochon-

dria from mouse hearts irradiated at 2 Gy (Figure 7). Palmitoyl-

driven respiration showed a similar trend in cardiac mitochondria

isolated from mice irradiated with 2 Gy (12% decrease) but this

result did not reach significance (Information S1). No significant

Figure 1. Two-dimensional separation of proteins from mouse heart mitochondria using DIGE approach. A. Indicated spots show
significant increase or decrease in expression (t-test, p#0.05) after image analysis in DeCyder software (GE Healthcare). Five independent biological
and two technical replicates of each were used for the statistical analysis. B. The three-dimensional structure of spots (left sham, right 2 Gy) with
numbers 1, 2, 3, 4, 5, 6, 7, 9 are shown.
doi:10.1371/journal.pone.0027811.g001
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alteration was found in the succinate-driven respiration after

irradiation with 0.2 Gy (Information S1). No significant change

was observed in the ADP-dependent respiration (Information S1).

The level of ROS was enhanced in high-dose irradiated
mitochondria

To analyze the ROS production, mitochondria were labeled

using dichlorofluorescein (DCF). In the presence of 5 mM

succinate, a substrate for succinate dehydrogenase (Complex II),

a non-significant increase in ROS formation in 2 Gy-irradiated vs.

sham-irradiated mitochondria was observed (Figure 8A). We

tested the ROS production in the presence of additional stress

factors such as mercury and tert-butyl-OOH that are known to

impair the process of oxidative phosphorylation, cause a decline in

both transmembrane potential and intracellular pH, and induce

the production of ROS [63,64]. Figure 8 (B, C) shows ROS

formation after incubation of mitochondria with DCF in the

presence of 50 mM mercury and 100 mM tert-butyl-OOH,

respectively. Both mercury and tert-butyl-OOH induced a

significant increase in ROS production in 2 Gy-irradiated vs.

sham-irradiated mitochondria.

To identify in vivo targets of the increased mitochondrial ROS,

the general oxidative status of the sham- vs. 2 Gy- irradiated

mitochondrial proteomes was analyzed by saturation DIGE

labeling (Figure 9A) that targets specifically the thiol groups of

cysteine residues in the protein. We found several bands, the

intensity of which was significantly decreased in the irradiated

mitochondria, indicating an increased oxidation of mitochondrial

proteins. The amount of the oxidized proteins was normalized to

the total amount of proteins measured by post-stained silver gels

(Figure 9B). Two bands were found to be significantly more

oxidized after the normalization (Figure 9C).

In addition, we tested the activity of aconitase, an enzyme

known to be vulnerable to oxidative stress. Aconitase activity

showed decreasing tendency in irradiated samples but it did not

reached significance (p#0.15; Information S1).

Radiation induced the activity of pyruvate
dehydrogenase E1aby dephosphorylation

2D-DIGE approach showed a dose-independent downregula-

tion of PDH E1a. Immunoblotting analysis confirmed the 2D-

DIGE data showing that protein level was significantly decreased

by 33% (p#0.05; Figure 10A). LC/MS/MS identification of the

downregulated 2D-DIGE spot identified the serine-containing

peptides as phosphorylated (Information S2). Also the immunoblot

showed two isoforms, only the upper band being downregulated

(Figure 10B). As the dephosphorylated form of PDH is known to

be active, we measured the enzyme activity; it was significantly

upregulated by 18% (Figure 10C). Using ICPL technology we

found no significant deregulation of this protein.

Mitochondrial morphology was not altered by irradiation
Electron microscopic examination of mitochondria isolated

from both sham- and 2 Gy irradiated hearts revealed a high

degree of mitochondrial intactness and integrity of mitochondrial

cristae (Information S1). The mitochondria of irradiated hearts

showed a trend to a smaller size but this did not reach significance.

Discussion

Epidemiological data indicate an association between increased

risk of cardiovascular disease and enhanced oxidative stress in

populations exposed to ionizing radiation (7–15). A sound

functioning of the heart is strongly dependent on the energyT
a

b
le

3
.

D
if

fe
re

n
ti

al
ly

re
g

u
la

te
d

p
ro

te
in

s
af

te
r

2
.0

G
y

an
d

0
.2

G
y

ir
ra

d
ia

ti
o

n
u

si
n

g
2

D
-D

IG
E.

S
p

o
t

n
u

m
b

e
r

A
cc

e
ss

io
n

U
n

iP
ro

t
IP

A
G

e
n

e
n

a
m

e
M

W
[k

D
a

]
ca

lc
.

p
I

P
ro

te
in

n
a

m
e

S
C

o
v

e
ra

g
e

/
%

S
#

P
e

p
ti

d
e

s
F

o
ld

ch
a

n
g

e
2

.0
G

y
/s

h
a

m
F

o
ld

ch
a

n
g

e
0

.2
G

y
/s

h
a

m

9
P

2
0

1
5

2
V

IM
5

3
.7

5
.0

6
V

im
e

n
ti

n
4

8
2

3
1

.6
0

0
1

.1
7

0

5
P

3
1

0
0

1
D

ES
5

3
.5

5
.2

1
D

e
sm

in
3

4
1

6
1

.4
0

0
1

.0
2

0

8
Q

9
D

1
7

2
C

2
1

o
rf

3
3

2
8

.1
9

.0
0

ES
1

p
ro

te
in

h
o

m
o

lo
g

,
m

it
o

ch
o

n
d

ri
al

3
3

7
1

.3
3

0
0

.9
5

2

1
Q

3
U

9
P

7
O

X
C

T
1

5
6

.0
8

.7
3

Su
cc

in
yl

-C
o

A
:3

-k
e

to
ac

id
-C

o
A

tr
an

sf
e

ra
se

1
1

1
5

0
.5

1
3

N
.F

.

2
P

3
5

4
8

6
P

D
H

A
1

4
2

.2
8

.4
9

P
yr

u
va

te
d

e
h

yd
ro

g
e

n
as

e
E1

co
m

p
o

n
e

n
t

su
b

u
n

it
al

p
h

a
3

4
1

3
0

.6
1

3
0

.5
8

1

4
Q

9
D

0
M

3
C

Y
C

1
3

5
.5

9
.2

4
C

yt
o

ch
ro

m
e

c1
,

h
e

m
e

p
ro

te
in

,
m

it
o

ch
o

n
d

ri
al

4
0

1
1

0
.6

2
5

0
.8

4
0

3
Q

9
D

0
M

3
C

Y
C

1
3

5
.5

9
.2

4
C

yt
o

ch
ro

m
e

c1
,

h
e

m
e

p
ro

te
in

,
m

it
o

ch
o

n
d

ri
al

4
3

1
6

0
.6

6
2

0
.8

2
6

6
Q

9
C

R
F4

O
X

C
T

1
2

9
.4

8
.9

7
Su

cc
in

yl
-C

o
A

:3
-k

e
to

ac
id

-c
o

e
n

zy
m

e
A

tr
an

sf
e

ra
se

1
4

7
8

0
.7

5
2

1
.1

4
0

7
P

4
1

2
1

6
A

C
SL

1
7

8
.1

6
.8

1
Lo

n
g

-c
h

ai
n

-f
at

ty
-a

ci
d

–
C

o
A

lig
as

e
3

1
1

2
0

.7
7

0
N

.F
.

T
h

e
fo

ld
ch

an
g

e
s

in
d

ic
at

e
d

in
b

o
ld

ar
e

co
n

si
d

e
re

d
si

g
n

if
ic

an
tl

y
d

e
re

g
u

la
te

d
(.

1
.3

o
r

,
0

.7
7

).
Sp

o
ts

w
it

h
n

u
m

b
e

rs
3

,
4

,
6

,
7

w
e

re
id

e
n

ti
fi

e
d

b
y

M
A

LD
I-

T
O

F/
T

O
F.

Sp
o

ts
w

it
h

n
u

m
b

e
rs

1
,

2
,

5
,

8
an

d
9

w
e

re
id

e
n

ti
fi

e
d

b
y

LC
-M

S/
M

S
(O

rb
it

ra
p

X
L)

.A
ll

p
ro

te
in

s
sh

o
w

in
g

si
g

n
if

ic
an

t
(p

,
0

.0
5

)
u

p
re

g
u

la
ti

o
n

(.
1

.3
-f

o
ld

)
o

r
d

o
w

n
re

g
u

la
ti

o
n

(,
0

.7
7

0
-f

o
ld

)
w

e
re

co
n

si
d

e
re

d
as

d
e

re
g

u
la

te
d

.M
W

,m
o

le
cu

la
r

m
as

s
o

f
p

re
d

ic
te

d
p

ro
te

in
s;

p
I,

is
o

e
le

ct
ri

c
p

o
in

t
o

f
p

re
d

ic
te

d
p

ro
te

in
s;

se
q

u
e

n
ce

co
ve

ra
g

e
(%

),
p

e
rc

e
n

ta
g

e
o

f
p

re
d

ic
te

d
p

ro
te

in
se

q
u

e
n

ce
co

ve
re

d
b

y
m

at
ch

e
d

p
e

p
ti

d
e

s;
n

o
.

m
at

ch
e

d
,

n
u

m
b

e
r

o
f

p
e

p
ti

d
e

s
m

at
ch

e
d

.
N

.F
.;

n
o

t
fo

u
n

d
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

0
2

7
8

1
1

.t
0

0
3

Radiation Impairs Mitochondrial Complexes

PLoS ONE | www.plosone.org 9 December 2011 | Volume 6 | Issue 12 | e27811



supply provided by oxidative metabolism, and can be easily

disturbed by mitochondrial dysfunction [60,65,66]. Suggesting

that radiation-induced oxidative stress is involved in the

development of cardiac damage, it may be reflected in the

mitochondrial status of the exposed heart. In this study, we

investigated whether cardiac mitochondria show alterations

caused by heart-focused X-ray exposure four weeks after the

irradiation.

We used two complementary proteomic approaches to study the

proteome responses of cardiac mitochondria four weeks after

exposure to ionizing radiation. ICPL approach revealed in depth

global proteomic changes with up to 421 quantified proteins. On

the other hand, 2D-DIGE revealed additional changes of protein

isoforms and protein fragments as well as posttranslational

modifications. We found that, using 2D-DIGE, the level of PDH

E1a is significantly down-regulated with both radiation doses

Figure 2. Graphical representation of the top protein interaction network of differentially regulated proteins. All deregulated proteins
(0.2 Gy and 2 Gy ICPL and 2D-DIGE; Tables 1, 2 and 3) were imported into the Ingenuity Pathway Analysis as described in Material and Methods. The
proteins marked in red represent the upregulated proteins and in green the downregulated proteins. The complex III proteins formed a clearly
defined cluster of functionally related proteins. The solid arrows represent direct interactions and the dotted arrows indirect interactions.
doi:10.1371/journal.pone.0027811.g002
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(Figure 1, Table 3). The PDH complex is a nuclear-encoded

mitochondrial multienzyme complex that catalyzes the overall

conversion of pyruvate to acetyl-CoA and CO2, and provides the

primary link between glycolysis and the tricarboxylic acid (TCA)

cycle. The PDH complex is composed of multiple copies of three

enzymatic components: pyruvate dehydrogenase (E1), dihydroli-

poamide acetyltransferase (E2) and lipoamide dehydrogenase (E3).

The E1a component has three phosphorylation sites that in large

part regulate the PDH activity, phosphorylation leading to

inactivation [67]. Confirming the 2D-DIGE data, immunoblotting

against PDH E1a revealed two bands, the high molecular weight

isoform showing downregulation (Figure 10 A, B). The PDH

activity was significantly up-regulated by 18% (Figure 10 C). We

propose that the increased activity is due to the downregulation of

the phosphorylated form of E1a. Our LC/MS/MS identification

of the downregulated 2D-DIGE spot identified the serine-

containing peptides as phosphorylated (Information S2); these

are the phosphopeptides known to be responsible for the PDH

activity [68]. The increased PDH activity suggests an enhance-

ment of substrate flow to the TCA cycle and reduction in the

lactate formation.

We show that mitochondrial respiration was significantly

decreased in hearts exposed to 2 Gy radiation compared to

sham-irradiated hearts when succinate was used as substrate

(Figure 7). Succinate is a direct substrate for ETC, feeding

electrons into the Complex II. The observed decrease in

respiration capacity indicates an impaired function in the

respiratory chain that is confirmed by the proteomics analysis

Figure 3. Immunoblot validation of cytochrome c1 depletion.
The level of columns represent the average ratios with standard errors
(SEM) of relative protein expression in sham- and 2 Gy-irradiated
cardiac mitochondria. The protein bands were quantified using
ImageQuant 5.2 software (GE Healthcare) by integration of all the pixel
values in the band area after background correction, normalized to the
ATP synthase beta subunit expression. Five biological replicates were
used. **p#0.01, t-test.
doi:10.1371/journal.pone.0027811.g003

Figure 4. Complex III activity in 2 Gy-irradiated compared to
sham-irradiated mitochondria. Complex III activity was decreased
significantly (11%; p#0.05) in irradiated samples. It was measured by
the reduction of cytochrome c at 550 nm in the presence or absence of
antimycin (Complex III inhibitor). Four independent biological replicates
were used. *p#0.05, t-test. The error bars represent standard error
(SEM).
doi:10.1371/journal.pone.0027811.g004

Figure 5. Complex I activity in 2 Gy-irradiated compared to
sham-irradiated mitochondria. Complex I activity was decreased
significantly (32%; p,0.05) in irradiated samples. It was measured by
the dipstick assay kit as described in Experimental Section. Four
independent biological replicates were used. *p#0.05, t-test.
doi:10.1371/journal.pone.0027811.g005

Figure 6. A graphical presentation of immunoblotting analysis
of respiratory chain complexes. To compare the amounts of
Complexes I to V in sham vs. irradiated mitochondria a premixed
cocktail including one antibody against each complex was used: CI
subunit NDUFB8, CII-30 kDa, CIII-Core protein 2, CIV subunit I and CV
alpha subunit. CI subunit NDUFB8 was significantly decreased (29%;
p#0.05) in 2 Gy- vs. sham-irradiated cardiac mitochondria. CIV subunit I
was not detected, irrespectively whether the samples were heated or
not prior to the immunoblotting analysis. Four independent biological
replicates were used for statistical analysis. *p#0.05, t-test.
doi:10.1371/journal.pone.0027811.g006
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(Tables 1 and 3). No significant change was observed in the ADP-

driven respiration in vitro (Information S1).

A decrease in the mitochondrial respiration rate has been

reported to increase ROS production [61]. In mammalian cells,

including cardiac myocytes, the mitochondrial ETC is the major

source of ROS production [69,70]. Low endogenous levels of

ROS play an important role in modulating cell signaling pathways

but increased levels of ROS are known to induce cell death

[71,72].

We show that, in the presence of stressors known to have

inhibitory effects on the antioxidant system [63,64], a significant

increase in ROS production was observed in vitro in mitochondria

from 2 Gy-exposed mice (Figure 8). This suggests that irradiated

mitochondria are less able to deal with additional stress factors.

Indeed, synergistic adverse effects of metals and radiation have

been observed previously. The presence of non-toxic concentra-

tions of mercury has been shown to potentiate the effect of low-

dose ionizing radiation by disturbing brain development in

neonatal mice whereas neither agent alone had an effect [73].

Mitochondrial ROS is mainly produced by Complex I and

Complex III in the presence of a reverse flow of electrons from

succinate dehydrogenase (Complex II). We show here that the

activity of both complexes is significantly decreased by radiation

by 32% (Complex I) (Figure 5) and 11% (Complex III) (Figure 4).

Bearing in mind that in mitochondria from failing hearts the

Complex III activity was decreased by 26% [61], the radiation-

induced activity reduction seen here will probably play a major

biological role.

The 2D-DIGE approach and immunoblotting showed radia-

tion-induced down-regulation of cytochrome c1 (Table 3,

Figure 3). It is the heme-containing component of the cytochrome

b-c1 complex, the last component in ETC in Complex III,

accepting electrons from Rieske protein and transferring them to

cytochrome c of Complex IV. As the assembly of Complex III,

measured as the level of Core protein 2, was not altered (Figure 6),

we conclude that the decreased activity of this complex is mainly

due to the reduced level of cytochrome c1. Importantly, we are

able to show that the radiation-induced increase in endogenous

ROS targets the mitochondrial proteome, seen as an enhanced

level of oxidized proteins (Figure 9).

We identified four structural proteins, actin, myosin-6, desmin

and vimentin that, in contrast to many metabolic enzymes, were

up-regulated after radiation exposure. Heart mitochondria contain

the highest percentage of non-mitochondrial proteins, mainly

structural proteins such as myosin and actin [74]. The association

of mitochondria with the cytoskeleton has been known for many

years and numerous studies suggest that the cytoskeleton is

involved in movement and localization of mitochondria [75,76].

Vimentin and desmin are intermediate filaments that function in

structural support, signal transduction and organelle positioning in

the cell. Several recent findings suggest that these filaments

maintain mitochondrial morphology and organization and

support mitochondrial function [77–79]. Inactivation of the

desmin gene in mice heart tissue resulted in mitochondria showing

abnormal shape, distribution and function [80]. It has been

suggested that desmin functions to link mitochondria to myofibrils

and provides a mechanism by which contractile activity influences

the metabolic function of mitochondria [81]. Interestingly,

vimentin has been shown to have a protective role against

oxidative stress-induced damage [82]. The up-regulation of

structural proteins seen here may be explained by a stronger

association between cytoskeleton and irradiated mitochondria.

Further studies are needed to clarify this.

The radiation-induced effects on cardiac mitochondria resemble

but are not similar to hibernating mitochondria that are typical for

myocardium with regional contractile dysfunction. As in our study,

mitochondrial respiration is depressed in chronic hibernating

myocardium [83]. Several mitochondrial protein classes (PDH

complex, Complex I, structural proteins such as actin, myosin,

Figure 7. Succinate-driven respiration of the heart mitochon-
dria from sham- and 2 Gy-irradiated hearts. Succinate-driven
respiration was decreased 13% significantly (p#0.05) in 2 Gy-irradiated
mitochondria compared to sham-irradiated samples. Statistical calcula-
tions were performed using 4 independent biological replicates.
*p#0.05, t-test.
doi:10.1371/journal.pone.0027811.g007

Figure 8. ROS/RNS production in sham-irradiated, 0.2 Gy-, and 2.0 Gy-irradiated cardiac mitochondria in the presence of succinate
(8A) and stressors 50 mM mercury (8B) or 50 mM tert-butyl-COOH (8C). Mitochondria were incubated with dichlorodihydrofluorescein
diacetate (DCF) and reaction was followed by measuring fluorescence (ex 485/20, em 528/20 nm) at room temperature for 60 min. In the presence of
succinate alone, 2 Gy cardiac mitochondria showed a non-significant tendency of increase in ROS/RNS production. The further addition of 50 mM
mercury or 100 mM tert-butyl-COOH induced significantly (p#0.05, Mann Whitney test) the ROS/RNS production in 2 Gy-irradiated but not in 0.2 Gy-
irradiated cardiac mitochondria compared to sham-irradiated mitochondria. Statistical calculations were performed using at least five independent
biological replicates.
doi:10.1371/journal.pone.0027811.g008
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desmin, and vimentin) are deregulated in a similar way in a

hibernating swine myocardium as in our mouse model [84].

However, hibernating mitochondria show decreased PDH activity

and lowered ROS production that distinguishes the radiation-

induced changes from the hibernating phenotype [84].

Based on our data we suggest that initial mitochondrial

dysfunction leads to increasing disbalance of the heart redox

status. Our recent data using total body irradiation (3 Gy gamma-

ray) shows that mitochondrial damage occurred within hours after

irradiation and that the mitochondria were the organelles most

sensitive to radiation and thus a direct target of radiation damage

[42]. In addition, irradiation caused an immediate increase in the

levels of protein oxidation and lipid peroxidation.

We suggest that an altered redox status will result in impaired

heart function and/or increased vulnerability towards additional

stress conditions in the long term. In line with this hypothesis

Fedorova, et al. showed that total body irradiation (5 Gy X-ray)

induced preferential oxidation of myofibrillar proteins with intra-

and intermolecular disulphide bridges between actin and various

isoforms of myosin light chain [85]. As mitochondria are closely

associated with myofibrils it is reasonable to suggest that increased

mitochondrial ROS production may lead to impaired contractility

through disruption of actin-myosin interactions [86].

In conclusion, we show here that a local dose of 2 Gy results in

both functional and proteomics alterations in cardiac mitochon-

dria whereas using the 0.2 Gy dose only a few alterations can be

observed in the mitochondrial proteome and no effect is seen in

the mitochondrial function. Although there seems to be a dose-

dependent enhancement in the total number of deregulated

proteins, it is too early to make a statement about the possible

Figure 9. General oxidative status of the sham- vs. 2 Gy- irradiated mitochondrial proteomes. The level of oxidized proteins was
analyzed by saturation DIGE labeling (A). The bands 1–4 were chosen for further analysis as they showed different intensities between sham and
exposed samples after the saturation DIGE labeling. The normalization was done by comparing the DIGE band intensities to the total amount of silver
stained protein bands (B). In the graphical presentation (C) the columns marked ‘‘a’’ represent bands from the sham-irradiated sample and the
columns marked ‘‘b’’ represent bands from irradiated samples. Bands 2 and 3 are significantly downregulated in irradiated samples thus representing
oxidized protein groups. Two biological replicates are shown. *p#0.05, t-test, n = 3.
doi:10.1371/journal.pone.0027811.g009

Figure 10. The protein amount and activity of pyruvate dehydrogenase. Immunoblot analysis confirmed the 2D-DIGE data showing that
protein level of pyruvate dehydrogenase E1a was significantly decreased by 33% (*p#0.05, t-test). Columns represent the average ratios of relative
protein expression in sham- and 2 Gy-irradiated cardiac mitochondria (Figure 10A). The protein bands were quantified using ImageQuant 5.2
software (GE Healthcare) by integration of all the pixel values in the band area after background correction, normalized to the ATP synthase beta
subunit expression. The protein appeared in two isoforms, one of which was significantly downregulated by radiation (upper band on the blot). Five
biological replicates were used (Figure 10B). The PDH activity was measured by the dipstick assay kit as described in Experimental Procedures
(Figure 10C). It was significantly enhanced in the irradiated mitochondria by 18% (*p#0.05, t-test). Three biological replicates with 5 technical
replicates each were used.
doi:10.1371/journal.pone.0027811.g010

Radiation Impairs Mitochondrial Complexes

PLoS ONE | www.plosone.org 13 December 2011 | Volume 6 | Issue 12 | e27811



increase in the risk for CVD with doses lower than 0.5 Gy.

Consequently, the discrepancy seen in the epidemiological data

remains unsolved. To elucidate the progression of the radiation-

induced damage with low doses we intend to investigate later time

points such as 40 weeks after irradiation.

With higher doses (2 Gy) ionizing radiation causes non-transient

mitochondrial alterations in three major biological categories: the

pyruvate metabolism, the oxidative phophorylation and the

mitochondria-associated cytoskeleton. The changes in the pyru-

vate metabolism and structural proteins are seen with both low

and high radiation doses. Our data confirm that the radiation-

induced impairment of the respiratory chain is tightly coupled to

increased ROS levels in the heart and is reflected as increased

protein oxidation. This may contribute to cardiac remodelling

seen here as alteration of the structural proteins and simulta-

neously serve as a first stage in the etiology of radiation-induced

heart disease.
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