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Soluble factors in blood plasma have a substantial impact on both the innate and adaptive
immune responses. The complement system, antibodies, and anti-microbial proteins and
peptides can directly interact with potential pathogens, protecting against systemic infec-
tion. Levels of these innate effector proteins are generally lower in neonatal circulation
at term delivery than in adults, and lower still at preterm delivery. The extracellular envi-
ronment also has a critical influence on immune cell maturation, activation, and effector
functions, and many of the factors in plasma, including hormones, vitamins, and purines,
have been shown to influence these processes for leukocytes of both the innate and adap-
tive immune systems. The ontogeny of plasma factors can be viewed in the context of a
lower effectiveness of immune responses to infection and immunization in early life, which
may be influenced by the striking neonatal deficiency of complement system proteins or
enhanced neonatal production of the anti-inflammatory cytokine IL-10, among other onto-
genic differences. Accordingly, we survey here a number of soluble mediators in plasma
for which age-dependent differences in abundance may influence the ontogeny of immune
function, particularly direct innate interaction and skewing of adaptive lymphocyte activity
in response to infectious microorganisms and adjuvanted vaccines.
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INTRODUCTION
Plasma, the fluid component of blood, is a complex mixture of
water, proteins, electrolytes, lipids, sugars, hormones, and gas mol-
ecules. Plasma components also infiltrate the extravascular space
and tissues and have a considerable influence on many physio-
logical processes, including being an efficient transport medium
for systemic signaling. The study of plasma is complicated by the
complexity of its composition – several hundred distinct proteins
(1), and hundreds of small molecules (2) have been analyzed in
plasma by mass spectrometry. While many of these molecules have
uncharacterized functions, there is a growing evidence that many
of the factors in plasma that are well-characterized help to shape
the response to infection, inflammation, and immunity (3–6).
Many plasma molecules vary in concentration as a function of age,
and we seek here to describe both the immunoregulatory capac-
ity of some of the best-studied molecules and the age-dependent
regulation of their abundance in circulation (see Table 1) in the
context of well-described deficits in neonatal immune system
function (7, 8). Particular consideration is given to molecules,
including cytokines, hormones, lipids, vitamins, and purines that
influence the differentiation, activation, and effector functions of
subsets of T cells (Figure 1). Additionally, several classes of pro-
teins, including immunoglobulins (Igs), the complement system,
and anti-microbial proteins and peptides (APPs), aid in the innate
response to invading microorganisms and display age-dependent
maturation (Figure 1). The critical role that plasma components
play in immune function also highlights the importance of includ-
ing autologous or pooled species- and age-specific plasma in the
extracellular milieu in in vitro assay systems, instead of xenologous
media (e.g., fetal calf serum), which is more commonly utilized.

CYTOKINES
The increased susceptibility of newborns to infection is at least
partially due to their impaired ability to mount a T-helper 1 (Th1)
response (139). Over the last decade, several in vitro and ex vivo
studies have demonstrated an impairment of neonatal leukocytes
to produce Th1-polarizing cytokines, such as IL-12p70 and tumor-
necrosis factor alpha (TNF-α), as compared to adult leukocytes
(11, 24–26). A comparison of newborn and adult serum levels
of the T-cell polarizing cytokines TNF-α and IL-6 reveals that
the ratio between these cytokines during the first 7 days of life is
significantly different from adults (11). TNF-α, a Th1-polarizing
cytokine, is consistently low in cord blood and peripheral blood
drawn during the first days of life, as compared to adult blood.
In marked contrast to TNF-α, IL-6 levels in cord blood are higher
than in adult blood, and continue to rise during the first days of
life. IL-6 is a cytokine that is capable of inducing Th2-polarization
(9) or Th17 polarization, in combination with IL-23 and TGF-β
(140). In addition, it induces the production of acute-phase pro-
teins C-reactive protein (CRP) and LPS-binding protein (LBP)
(141), and has anti-inflammatory properties such as inhibition of
neutrophil migration (10, 142).

In addition to distinct basal levels of serum cytokines, new-
borns also demonstrate a distinct pattern of cytokine production
after immunization, including impairment in the production of
the pro-inflammatory/Th1-polarizing cytokine IFN-γ to many
vaccines (33–35), with the possible exception of bacille Calmette–
Guérin (BCG) (143). IFN-γ is expressed by Th1 cells, activating
macrophages to kill microbes, promoting leukocyte cytotoxic-
ity, and inducing apoptosis of epithelial cells in the skin and
mucosa (29, 30) In addition to its role in the development of a
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Table 1 | Age-dependent changes in various soluble factors that influence innate and adaptive immune function, and list of references to

literature regarding their concentrations in blood (Levels) and their function related to immune cell function (function).

Category Molecule Newborn/adult Preterm/term Refs for function Refs for levels

Cytokines (following stimulation) IL-6 ↑ ↓ (9, 10) (11, 12)

IL-10 ↑ ~ (13–16) (3, 12, 17–20)

IL-12p70 ↓ ↓ (21–23) (11, 12, 24–28)

IFNγ ↓ ↓ (29–32) (11, 12, 24–26, 33–35)

TNFα ↓ ↓ (29, 30) (11, 12, 24–26)

Adipokines Adiponectin ↑ ↓ (36–38) (39–41)

Adrenomedullin ↑ NA (42–45) (46)

Leptin ↓ ↓ (47–55) (39, 56, 57)

Complement C1q ↓ ↓ (58) (59–61)

C1r ↓ ↓ (58) (59, 60)

C1s ↓ ↓ (58) (59, 60)

C2 ↓ ↓ (58) (59–61)

C3 ↓ ↓ (58) (59, 60)

C4 ↓ ↓ (58) (59–61)

Factor B ↓ ↓ (58) (59, 60)

Factor D ↓ ↓ (58) (59, 60)

Properdin ↓ ↓ (58) (59, 60)

MBL ~ ↓ (58, 62–65) (59, 60, 66–69)

MASP ~ ↓ (58) (59, 60, 70)

C5 ↓ ~ (58) (59, 60)

C6 ↓ ↓ (58) (59, 60)

C7 ~ ↓ (58) (59, 60)

C8 ↓ ↓ (58) (59, 60, 71, 72)

C9 ↓ ~ (58) (59, 60, 71–76)

APPs Lactoferrin ↓ ↓ (77) (78, 79)

BPIa ↓ ↓ (80) (81, 82)

Cathelicidin ↓ NA (83) (84)

α-Defensinsa ~ ~ (85–87) (81)

β-Defensin-2 ↓ ↓ (4, 88) (88)

Antibodies IgM ↓ ↓ (89, 90) (91)

IgA ↓ ↓ (89, 90) (91)

IgG ~ ↓ (89, 90) (91)

Lipid-type HDL/LDL ratio ↑ ~ (92–94) (93, 95)

Molecules PGE2 ↑ NA (96–101) (102)

Vitamins Vitamin A ↓ ~ (6, 103, 104) (105)

Vitamin D3 ~ ~ (106–126) (127–130)

Purines Adenosine ↑ NA (131–137) (138)

Relative concentrations differences are shown for Newborn/Adult (↑ indicates more of soluble factor in newborn plasma/serum relative to adults, ↓ indicates less of

soluble factor in newborn plasma/serum relative to adults) and Preterm/Term (↑ indicates more of soluble factor in preterm plasma/serum relative to term subjects,

↓ indicates less of soluble factor in preterm plasma/serum relative to term subjects). Levels of some soluble factors were equal, or similar, between populations (~)

or were not reported in comparison between the two populations (NA).
aBPI and α-defensins relative concentrations in neutrophil granules.

Th1 response and B-cell isotype switching (31), IFN-γ regulates
MHC class I and II protein expression and antigen presenta-
tion as well (32). Overall, neonatal impairment in infection- or
immunization-induced IFN-γ production is believed to be an
important contributing factor in their susceptibility to intracel-
lular pathogens. In addition, mononuclear cells from preterm
newborn blood produce significantly less IFN-γ following in vitro
stimulation than mononuclear cells from term newborns (27).

Several in vitro studies comparing neonatal cord and adult
peripheral blood mononuclear cells have demonstrated a dis-
cordance in the secretion of T-cell polarizing cytokines after
stimulation with Toll-Like Receptor (TLR) agonists, providing an
explanation for the impairment in IFN-γ production by Th1 cells
that is also observed in vitro (144). Whole blood assays com-
paring cord blood and adult peripheral blood have confirmed
that newborn cells produce less TNF-α in response to common
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FIGURE 1 | Soluble factors influence innate and adaptive immune
function andT lymphocyte polarization, and vary in
concentration with age. Lower levels of complement proteins and
anti-microbial proteins and peptides contribute to neonatal
susceptibility to infection, while elevated levels of adenosine,

adiponectin, and adrenomedullin in neonatal blood may influence
immune cell polarization. Adult blood contains lower levels of many of
these immunosuppressive molecules, and adult blood leukocytes
exhibit a greater propensity to produce Th1/pro-inflammatory
cytokines, such as IL-12p70, TNFα, and IFNγ.

TLR agonists, such as polyinosinic:polycytidylic acid (Poly I:C,
TLR3), Pam3CSK4 (TLR1/2), and lipopolysaccharide (LPS, TLR4)
(138, 144, 145). Later studies supported these observations and
established that newborn monocytes as well as monocyte-derived
dendritic cells (MoDCs) produce less TNF-α and more IL-6
in response to these molecules (25, 28). In addition to TNF-
α, newborn MoDCs also demonstrated an impairment in the
production of another T-cell polarizing cytokine, IL-12p70, but
appeared to be competent if not superior in the production of
IL-1β (144, 146). Interestingly, newborn monocytes and MoDCs
are able to produce adult-like amounts of TNF-α, Il-1β, and IL-
12p70 in response to TLR7/8 agonists, such as ssRNA or the
purine analog R848 (28, 146, 147). Leukocytes from preterm
newborns produce less TNF-α, IL-6, and IL-12/IL-23p40 than
term subjects, but similar levels of IL-10, in response to TLR
stimulation (12).

IL-1β is a potent pro-inflammatory cytokine that acts as an
endogenous pyrogen. It has diverse potentiating effects on cell
proliferation, differentiation, and function of many innate and
specific immunocompetent cells and may mediate inflammatory
diseases by initiating and potentiating immune and inflammatory
responses (148). IL-1β also can also act synergistically in combina-
tion with IL-6 and IL-23, enabling the expression of RORγT, which
is an important step in the early development of Th17 cells (149).

Newborn leukocytes demonstrate an impaired ability to pro-
duce IL-12p70, a heterodimer that consists of a 35 kDa light chain
(p35) and a 40 kDa heavy chain (p40). It is produced by activated
monocytes, macrophages, neutrophils, microglia, and dendritic
cells (DCs) (21). The heterodimer, IL-12p70, is a Th1-polarizing
cytokine (22, 23). Production of the p35 subunit is impaired
in newborn monocyte-derived DCs after treatment with LPS,
correlating with a lack of nucleosome remodeling necessary for
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transcription factor Sp1 to gain access to the p35 promoter (150).
Diminished production of the p35 subunit of IL-12p70 was also
seen in newborn myeloid DCs treated with HCMV (151), and
neonatal myeloid DCs produced not only less IL12p35, but also
less IFN-β, as compared to adult DCs.

The molecular mechanism underlying the bias against Th1-
polarizing cytokines is under active investigation. A growing lit-
erature documents that age-specific soluble plasma factors exert
marked effects on TLR-mediated Th-polarizing responses (3, 25,
28, 102). Neonatal plasma contains high concentrations of adeno-
sine (138, 152) (see Purines), an immunosuppressive metabolite
that induces cyclic adenosine monophosphate in leukocytes and
thereby inhibits Th1-poalrizing cytokine production. Newborn
plasma enhances TLR4-mediated IL-10 production in newborn as
well as adult mononuclear cells (102). This study also empha-
sizes that, although intrinsic cellular differences exist between
newborn and adult immune cells (150, 153, 154), it is important
to culture cells in autologous plasma when studying differences
between age groups. In contrast, a study of neonatal mononu-
clear cells cultured in fetal bovine serum demonstrated impaired
TLR4-mediated IL-10 production in newborn cells compared to
adult cells (17). Besides macrophages and DCs, newborn reg-
ulatory B cells (Bregs) also produce IL-10 in response to TLR
activation (155). Newborn cord plasma IL-10 concentrations are
higher in newborns than in adults, both at baseline and after infec-
tion (3, 18–20). IL-10 inhibits the expression of co-stimulatory
molecules on DCs (13), inhibits the expression of several pro-
inflammatory cytokines (14) and inhibits the activation of T cells
through CD28 (15). Conversely, IL-10 also enhances antibody
(Ab) production by promoting B-cell survival and differenti-
ation and increasing the production of IgG4 Abs (13). IL-10
enhances generation of regulatory T cells (Tregs) that inhibit a
neonatal immune response to BCG (16, 19). How elevated lev-
els of IL-10 affect neonatal defense against other pathogens is
unclear, but is likely context dependent. Both beneficial and dele-
terious effects of elevated IL-10 in neonatal mice were noted
upon infection with group B Streptococcus (GBS) (156, 157).
On the one hand, elevated levels of IL-10 prior to GBS infec-
tion result in increased survival by reducing sepsis (156). On
the other hand, elevated IL-10 levels after GBS infection can
inhibit the migration of neutrophils to infected organs, result-
ing in increased mortality (157). Neonatal mice are impaired in
their response to thymus-independent antigens, ascribed to IL-
10 mediated suppression of neonatal B-cell production of IL-1β

and IL-6 (20).
As a consequence of the distinct production of T-cell polarizing

cytokines by newborn mononuclear cells, the adaptive immune
system of newborns is skewed toward the development of Th2
and Treg cells rather than Th1 cells. Elevated levels of IL-1β and
IL-6 production result in a potent acute-phase response, leading
to elevated serum levels of CRP, LBP, and anti-microbial proteins
and peptides (158–160), and can polarize naïve CD4+ T cells to
differentiate to Th2 or Th17 cells, which can protect against bacte-
rial or fungal infections. However, impaired production of pro-
inflammatory/Th1-polarizing cytokines such as TNF-α, IFN-γ,
and IL-12p70 impair the newborns’ ability to mount a protective
Th1 response, leaving them vulnerable to viral infections.

THE COMPLEMENT SYSTEM
The complement system is a triggered-enzyme cascade of plasma
proteins that deposit components with opsonin function on the
surface of microbes and to membrane disruption and cell lysis
on a subset of these targets (58). Complement was so named as
it enhances opsonization and killing of bacteria by Ab, although
it is now known that complement deposition also occurs in the
absence of Ab. There are three well-defined pathways of comple-
ment activation, named for the types of molecules that trigger the
cascade by binding to conserved polysaccharide patterns on the
surfaces of microbes: the classical pathway, initiated by Ab bind-
ing; the mannose-binding lectin (MBL) pathway, which follows
MBL recognition of distinct mannose and fucose spacing on the
surface of bacteria; and the alternative pathway in which spon-
taneous cleavage of the complement protein C3 can lead to its
deposition on the surface of microbes. These distinct early events
in complement activation converge on the central event common
to all three pathways – covalent attachment of the C3 convertase
on the surface of the microorganism. C3 convertase cleavage of C3
generates C3b, the primary effector molecule of the complement
system, and cleavage product C3a, a mediator of inflammation.
C3b bound to the C3 convertase on the surface of the microor-
ganism comprises a C5 convertase, leading to C5 cleavage and
C5b attachment to the microbial surface, and the release of C5a,
a peptide mediator of inflammation and potent chemokine that
leads to phagocyte recruitment. C5b triggers the assembly of a
membrane-attack complex that utilizes complement system pro-
teins C6, C7, C8, and C9, to damage the membrane of susceptible
bacteria. There are two primary clinical evaluations of comple-
ment function: the complement hemolysis 50% assay (CH50) in
which patient serum is co-incubated with sheep erythrocytes pre-
treated with rabbit anti-sheep Abs and the alternative pathway
hemolysis 50% assay (AP50) for which patient serum is incu-
bated with rabbit erythrocytes in the presence of calcium chelators,
which isolate the alternative pathway by inhibiting the classical
and MBL pathways. Both complement function assays evaluate
erythrocyte lysis mediated by dilutions of serum.

Multiple studies have characterized the ontogeny of comple-
ment expression in human plasma. CH50 is ~57–75% of adult
controls for preterm subjects and 69% of adult controls for term
subjects (59). AP50 values were 49, 53, and 60% of adult controls
for extreme preterm (28–33 weeks GA), preterm (34–36 weeks
GA), and term subjects, respectively. A review of >12 studies
including preterm or term neonates, or both, shows that CH50
values for preterm subjects at GA 26–27 weeks are ~32–36% of
adult controls, and that the average CH50 for term neonates, giv-
ing equal weight to each independent study, was ~59% of adult
controls (60). The average AP50 for term neonates was ∼58%
of adult controls, and although fewer studies evaluated AP50 in
preterm neonates, the values were modestly lower than those for
term neonates (60). One report showed a modest increase in CH50
activity in older adult patients (161), possibly due to increases in
C4 and C9 proteins with increasing age, although not all comple-
ment components were evaluated (noted increases were gradual
out to 70–79 years of age).

Levels of most individual complement proteins are lower in
preterm and term neonates compared to adult levels, and while we
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will highlight a few examples here, the reader is referred to a recent
review on the topic (60). One study demonstrated that classical
and MBL pathway proteins C2 and C4 reach adult levels by 1 and
6 months of life, respectively, while classical pathway protein C1q
did not reach adult levels until 18–21 months of age (61). Particu-
larly striking among the deficiencies in levels of individual proteins
are membrane-attack complex proteins C8 and C9. Levels of C8 in
preterm subjects have been reported at 29% of adult levels (59, 71),
and in term, subjects in the range of 36–38% of adult levels (59, 71,
72), while neonatal levels of C9 of have been more variable depend-
ing on the study, ranging from 11 to 84% of adult levels (59,71–76).
Low levels of membrane-attack complex proteins in neonates may
represent a delicate balance, as C9 contributes to central ner-
vous system and respiratory pathology related to hypoxia-ischemia
(162, 163), but diminished levels of membrane-attack complex
components may increase susceptibility to infection. Regarding
the developmental regulation of complement proteins, it is note-
worthy that while nearly all complement proteins that are found
at lower levels in neonates are produced in the liver, C7, which is
only modestly reduced in preterm neonates, and is at adult levels
in term neonates, is not produced in the liver, but is rather largely
neutrophil-derived (164).

It is unclear whether or not levels of MBL in circulation vary
significantly with gestational age, with several studies demonstrat-
ing increases in MBL concentration with increasing gestational
age (66–68), but a large recent study showing no such relationship
(69) while still demonstrating GA dependent increases in MBL-
MASP complex activity (70). What is clear is that MBL levels in
plasma are highly variable due to well-characterized hereditary
mutations, which effect up to 40% of the population (165, 166).
Low MBL levels have been associated with increased risk of infec-
tion in adult populations (62, 63), and there is an association of
MBL2 gene mutations with increased mortality and sepsis (64, 65).
While one study showed no increased mortality in neonates with
low MBL levels (167), several other studies have demonstrated
that neonates with infections or sepsis have lower average levels
of MBL or increased representation of genetic deficiency of MBL
than healthy counterparts (66, 70, 168–170). Newborns may be
more sensitive to genetic deficiency of MBL due to limited capac-
ity to compensate with other pathways of complement activation.
Of note, the strikingly high accumulation of genetic deficiency of
MBL in humans suggests that, at least historically, there has been
little evolutionary pressure on maintaining MBL activity in this
population, or that this genetic locus may be subject to a variety
of conflicting pressures. While this is surprising, given the strong
association of low MBL levels and increased risk of infection, it may
be that relatively recent changes in human health care practices are
associated with the increased risk, such as biofilm formation on
indwelling lines and foreign materials, or nosocomial infection,
factors, which are particularly applicable to hospitalized neonatal
subjects in recent decades, and to which a lower percentage of the
human population was exposed in previous generations.

ANTI-MICROBIAL PROTEINS AND PEPTIDES
Anti-microbial proteins and peptides play a critical role in innate
immunity by directly combating susceptible pathogens and by
recruiting and activating leukocytes at sites of infection. Cationic

APPs that are present in blood plasma include larger proteins such
as lactoferrin and bactericidal/permeability-increasing protein
(BPI); peptides such as cathelicidin; α-defensins; and β-defensins.

Lactoferrin is present in mammalian secretory fluids, and also
in blood plasma and neutrophil secondary granules, and has anti-
microbial functions that include sequestration of iron,binding and
inactivation of endotoxin, and oxidation of bacterial membrane
molecules leading to membrane integrity loss (77). Lactoferrin is
found at high concentrations in breast milk in particular, and may
contribute to innate immune protection in early life in breast-fed
children. Levels of lactoferrin are lower, however, in newborn neu-
trophils relative to adult neutrophils,possibly reflecting degranula-
tion during the stress of birth (78),and plasma lactoferrin increases
with increasing gestational age in preterm subjects (79). Levels of
BPI are also lower in neutrophils isolated from newborns, com-
pared to those from adult subjects (81), and lower in neutrophils
from preterm newborns compared to term newborns (82). BPI is
particularly active against Gram-negative bacteria and functions
to neutralize endotoxin and permeabilize sensitive bacteria (80).
Replenishing BPI, along with oral fluoroquinolone antibiotic, in
mice rendered neutropenic by total body irradiation hastens bone
marrow recovery and reduces radiation-induced mortality (171).
Adjunctive recombinant BPI therapy appears to improve outcomes
in children with meningococcal sepsis (172). Such studies suggest
that replenishing levels of APPs in select clinical settings may be
of benefit.

Human cathelicidin anti-microbial peptide 18 (hCAP-18, also
called LL-37) is produced by epithelial cells, macrophages, and
neutrophils, and can be upregulated in response to infection and by
stimulation with the hormonally active form of vitamin D (1,25-
(OH)2D3) (83). Lower serum levels of cathelicidin are associated
with increased severity of acute respiratory infection in children
aged 0–24 months presenting with bronchiolitis (173). Newborns
have lower plasma levels of cathelicidin compared to maternal lev-
els, with vaginal delivery associated with higher cathelicidin levels
in mother and newborn compared to caesarian section (84).

α-Defensins and β-defensins are cationic peptides produced
by a wide variety of organisms with anti-infective activity against
viruses (85), bacteria (86), and fungi (87). There are 6 α-defensins,
four of which are predominately produced by neutrophils (human
neutrophil peptides 1-4, HNP1-4), which are expressed at adult-
like levels at birth (81). β-Defensins are produced primarily by
epithelial cells, macrophages, and neutrophils, and in addition to
direct anti-microbial activity related to microbial membrane dis-
ruption, also function as chemotactic peptides to recruit particular
classes of leukocytes (4). Low serum levels of β-defensin-2 have
been associated with increased risk of developing sepsis in preterm
neonates (88). This study also noted that β-defensin-2 is higher in
term than in preterm serum, and that levels of β-defensin-2 cor-
related with gestational age and weight. Overall, APPs likely play
an important role in fetal and neonatal innate immunity, helping
to regulate colonization and resisting infection (174).

ANTIBODIES
The composition of Ig isotypes in newborns and infants is distinct
from that of adults, with IgG, initially primarily of maternal ori-
gin, near adult levels but rapidly declining to a nadir of circulating
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IgG at about 3 months of age, and significantly reduced levels of
IgA and IgM at birth that gradually rise to near adult levels by
puberty (91). Fetal B cells begin producing small amounts of Ig in
the 20th week of gestation, predominantly IgM antibodies (Abs),
with limited VH-gene segment usage (175, 176). The majority
of circulating Abs in newborns is, however, of maternal origin.
Maternal Igs, which are transported across the placenta during
pregnancy, contribute to the protection of infants from infectious
diseases during the first months of life. In addition to their role
in binding antigen (89), Igs also play an important role in regu-
lating adaptive immune responses through their interaction with
Fc receptors (FcRs) (90). As a result, the presence of Igs during
the first months of life can influence how newborns and infants
respond to vaccination.

Maternal antibodies (MatAbs) are transported across the feto-
maternal interface with the help of receptors that are specific
for the Fc-portion of IgG: FcRn and FcγR I, II, and III (177).
Accordingly, only Igs of the IgG isotype are transported across the
placenta. Of the different IgG subclasses, IgG1 is the most effi-
ciently transported subclass and IgG2 is the least (178). In general,
IgG is the most potent of all isotypes with respect to Fc-receptor
binding on macrophages and NK cells. It is also able to activate
complement, though less potently than IgM.

As MatAbs are a crucial component of the humoral immune
system of newborns, it is important to note that the effector func-
tion of these Abs changes dramatically during pregnancy. The
Th2-polarized cytokine environment during pregnancy drives an
essential change in the glycosylation pattern of the mothers’ IgG,
resulting increasing asymmetrically glycosylated IgG Abs (179).
These Abs possess a mannose-rich oligosaccharide residue bound
to one of the Fab regions, making them unable to activate immu-
noeffector mechanisms, such as complement fixation, and clear-
ance of antigens and phagocytosis (179). Because the glycosylation
does not affect binding to FcRn, asymmetrically glycosylated Abs
can be found in the fetal circulation as well (180). These asym-
metrical MatAbs can of course still confer protection by binding
to pathogenic antigens.

The protective effects of MatAbs on the newborn depend on
the gestational age of the fetus at birth. Premature infants are
often vulnerable to infections, partly because of the low transpla-
cental transfer of MatAbs. For example, transplacental transfer of
MatAbs against varicella zoster virus (VZV) is significantly lower
in preterm infants born at ≤28 weeks gestational age, compared
with those in preterm infants 29–35 weeks gestational age and
term infants (181). Similarly, protective, neutralizing Abs specific
for Rubella, or cytomegalovirus (CMV) are present at higher con-
centrations in the circulation of full-term infants, as compared
to preterm infants, contributing to preterm susceptibility to these
viruses (182, 183).

As MatAbs may contribute to protection against infections dur-
ing the first 6 months of life, maternal immunization has been a
strategy of interest. Indeed, this approach has proved safe and ben-
eficial to immunize mothers, such as in the case of Tdap, but this
approach may reduce the infants’ response to their own primary
Tdap immunization at 6 months (184). Inhibition of vaccine effi-
cacy by MatAbs is particularly evident with live viral vaccines such
as measles or respiratory syncytial virus (RSV) (185, 186), but

has also been observed with a conjugate vaccine against Neisseria
meningitidis (187). Proposed mechanisms of inhibition are epi-
tope masking and B-cell inhibition by cross-linking of the B-cell
receptor with FcγRIIB.

HORMONES
Hormones regulate physiological functions of many cells types
including leukocytes. Two critical hormones that circulate in
plasma and influence immune cell function are leptin and
adiponectin, known as“adipokines”– cytokines produced primar-
ily by adipose tissue. Leptin is a 16 kDa protein hormone that regu-
lates hunger/satiety sensation and metabolic rate, and is produced
in relation to the mass of adipose tissue. Leptin concentrations
fluctuate considerably based in part on satiety, which increases
leptin, or starvation, which decreases leptin. Adiponectin is a
~30 kDa metabolic regulatory protein hormone that modulates
glucose levels and fatty acid oxidation (188). Intriguingly, stimula-
tion of the leptin receptor activates signal transducer and activator
of transcription 3 (STAT3), STAT5, and Janus kinase 2 (JAK2)
inducing gene transcription via IL-6-responsive gene elements
(189). Adiponectin shares sequence homology with a complement
system protein (C1q) and structural homology with TNF family
members (190). The full-length LepRb leptin receptor is expressed
in T cells, NK cells, macrophages, and polymorphonuclear cells
(5). Genetic deficiency of leptin in human beings has been associ-
ated with reduced CD4 T-cell populations, hyporesponsive T cells,
and lower levels of IFNγ, while increasing levels of transform-
ing growth factor β (TGFβ), conditions which were reversed with
leptin replacement therapy (47). Similar immunological dysfunc-
tion has been noted in subjects with leptin receptor deficiency (48,
49). In mice, leptin protects against infection with Mycobacterium
tuberculosis (50), Klebsiella pneumonia (51), and Streptococcus
pneumoniae (52–54). In vitro stimulation of cord blood and adult
T cells with leptin leads to upregulation of IFNγ, IL-2, IL-4, and
IL-10, and interestingly significantly more IFNγ was produced by
female cord blood T cells than from male (55). Circulating leptin
levels at birth are lower than, and influenced by, maternal levels
of leptin (39) and are higher in term neonates than in preterm
neonates (56). Leptin levels drop in the first days of life (39, 56)
and then gradually rise with age peaking at puberty (57). There is
moderate sex dimorphism in serum leptin levels – females having
significantly higher levels of leptin in older age groups (56, 57).

Adiponectin is found at very high levels in serum, in the range
of ~10 µg/ml (40), is elevated at birth compared to maternal
levels (41), and does not drop in the first 4 days of life (39). Cir-
culating adiponectin levels are lower in preterm newborns than
term newborns (191), and levels decrease from term birth to
approximately adult levels by 6–10 years of age (40). Adiponectin
induces anti-inflammatory IL-10 production from human mono-
cytes, macrophages, and DCs, while suppressing TNFα production
(36). Adiponectin receptors are upregulated on T cells follow-
ing activation, and adiponectin stimulation of CD8+ T cells
inhibits proliferation and IL-2 production, as well as produc-
tion of the pro-inflammatory cytokines IFN-γ and TNFα (37).
Additionally, adiponectin suppresses DC IL-12p40 production and
co-stimulatory molecule expression, and in DC/T-cell co-cultures
favor the generation of regulatory T cells (38).
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Adrenomedullin (AM), a cleavage product of preproad-
renomedullin, is a circulatory neuropeptide hormone. AM stim-
ulates calcitonin receptor-like receptor (CALCRL) or receptor
activity-modifying proteins 2 and 3 (RAMP2 and RAMP3), lead-
ing to increased cyclic-AMP (42). AM is generated by a variety
of leukocytes in response to inflammatory stimuli (43), and also
has direct anti-microbial activity (44). Pretreatment of mice, or
murine macrophages, with AM before challenge with endotoxin
suppressed the production of pro-inflammatory cytokines (e.g.,
TNFα, IL-1β, CCL5, IL-12) while promoting IL-10 production,
and reduced mortality due to cecal-ligation and puncture-induced
sepsis (45). Plasma levels of AM are elevated in pregnant moth-
ers and in cord blood relative to non-pregnant female levels
(46), which could potentially influence the suppression of pro-
inflammatory cytokine production that has been noted in both
neonates and late in pregnancy for mothers.

Sex hormones (estrogen, progesterone, and testosterone) can
also influence the immune system (192–194), which may con-
tribute to gender differences in responses to infection and immu-
nization (195–197), but they have primarily been studied in this
context in animal studies utilizing genetically modified organisms
with a complete lack of various enzymes or receptors involved
in steroid production or signaling. Androgens (including testos-
terone) generally suppress immune cell function in vitro, while
estrogen may enhance Ab production (198). Estrogen (estradiol)
in females and testosterone in males are found at relatively low
levels at birth, increase after puberty reaching their highest levels
during teenage years (10, 33, 34, 141, 142), and diminish thereafter
(57), but it is unknown if lower levels of these hormones at birth
influences immune cell activity. Increased levels of progesterone
during pregnancy may modulate the Th1/Th2 profile of adap-
tive responses – favoring production IL-4 and IL-5 and Th2 bias
(199, 200). Progesterone levels are elevated at birth (presumably
of maternal origin) in both genders relative to later in childhood,
but not to levels found in female adults (201).

LIPIDS AND LIPID-TYPE MOLECULES
Pregnancy affects maternal metabolism of various substrates and
nutrients including lipids, which affects innate immunity. Changes
in the maternal plasma lipid profile include increased concentra-
tions of fatty acids, triglycerides, and cholesterol and by changes
in the concentration and composition of lipoproteins (202–204).
Newborns have lower levels of total cholesterol, with a preponder-
ance of high-density lipoprotein (HDL), as opposed to the abun-
dance of low-density lipoprotein (LDL) in adult blood (92–94).
Moreover, the composition of fetal HDL particles is distinct from
that of adults. Fetal HDL particles are enriched in apolipopro-
tein E (apoE) and have diminished levels of apoA-1 and apoL, as
compared to maternal HDL (93). The lipoprotein composition of
fetal HDL can vary between male and female newborns as well,
as female newborns have higher levels of HDL-cholesterol than
male newborns (205, 206). Distinct fetal HDL composition affects
fetal endothelial cell function and tissue growth (94), as well as
the developing immune system. In general, the elevated ratio of
HDL/LDL in newborns is associated with immune suppression
(93). Preterm newborns have elevated levels of cholesterol, but
similar HDL/LDL ratios compared to term newborns (95). HDL
is an acute-phase reactant that can bind and neutralize LPS. IL-6

can alter the composition of HDL particles, resulting in less apoA-1
expression and Serum paraoxonase/arylesterase 1 (PON1) activ-
ity, in turn reducing its anti-oxidant properties (207). Given HDL’s
roles in clearance of endotoxin (208), reduced levels of apoA-1
in newborns may affect their susceptibility to sepsis. Most other
immune-modulating activities of HDL, such as down-regulation
of co-stimulatory molecules on macrophages and DCs (209) and
TNF-α-induced expression of adhesion molecules on endothelial
cells (210) have been largely ascribed to the presence of apoA-1.
Despite the apparent reduction of apoA-1 in neonatal HDL par-
ticles, newborn HDL is also immunosuppressive via the activity
of apoE, which has the ability to inhibit T-cell proliferation and
nitric oxide synthesis by macrophages (211, 212).

Another important lipid mediator of the newborn immune sys-
tem is prostaglandin E2 (PGE2). PGE2 is a prostanoid that is gener-
ated from arachidonic acid by the action of cyclooxygenase isoen-
zymes. It can function in both the promotion and the resolution of
inflammation. PGE2 signals via G-protein coupled Prostaglandin
E receptors expressed on a variety of immune cells, including
DCs and T cells (96, 97). PGE2 is elevated in newborn plasma,
as compared to adults (102). Although PGE2 inhibits IL-12p70
production (98), it is not solely responsible for impaired TLR4-
mediated IL-12p70 production in newborns as additional yet to
be identified soluble plasma components appear to contribute to
that activity (102). The pleiotropic nature of PGE2 precludes a sim-
ple analysis of its overall affect on the newborn immune system.
In general, PGE2 inhibits Th1-polarizing cytokine production by
DCs and macrophages, changes DC morphology, resulting in a
loss of podosome formation and co-stimulatory receptor expres-
sion (99–101). Paradoxically, PGE2 may also increase production
of Th1-polarizing cytokines and DC function (213, 214). These
apparently conflicting in vitro activities may be due to distinct
effects that PGE2 exerts over time and at different DC:T cell ratios
in co-culture (215, 216), as PGE2 can also act directly on CD4+
T cells, promoting the expansion of Th1 and Th17 cells (217).
Stimulus-induced production of PGE2 by a human mono-mac
cell line in vitro may correlate with the tendency of vaccine adju-
vants to induce fever in vivo (218). Overall, it is likely that elevated
levels of PGE2 contribute to the acute-phase response as well as to
the skewed polarization of T-helper cells in newborns.

VITAMINS
Vitamins, especially -A and -D, exert considerable influence on
both innate and adaptive immune cell function (6, 103). Vitamin A
enhances T-cell proliferation, likely by increasing IL-2 production
(104) as well as DC maturation, antigen presentation, and migra-
tion (219).Vitamin A-deficient mice exhibit defects in helper T-cell
activity (220). Serum vitamin A levels are influenced by diet and
supplementation, but apparently only moderately by age (105).

Vitamin D3 is generated in the skin on exposure to sunlight
or acquired in the diet from animal sources, fish in particular,
whereas vitamin D2 is derived from plants. Both are utilized in
supplementation, although vitamin D3 metabolites have higher
affinities at human vitamin D binding proteins and receptors
than vitamin D2 metabolites and therefore vitamin D3 may be
considered preferable due to higher bioefficacy (221). Vitamin
D3 suppresses lymphocyte function in vitro. The active vita-
min D3 metabolite 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3)
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inhibits T-cell proliferation (106, 107), production of IL-2 (107–
109), and the Th1-polarizing cytokine interferon-γ (IFNγ) (110,
111), while increasing production of the Th2 cytokine IL-4 (112).
These effects are more pronounced in the effector T-cell subset
that exhibits high expression of the vitamin D receptor (VDR)
(113). Additionally, 1,25-(OH)2D3 impacts the capacity to acti-
vate Th1 T-cell responses by suppressing DC maturation and DC
production of Th1-polarizing cytokine IL-12 (both the p35 and
p40 subunits, thus preventing IL-12p70 and IL-12p40 assembly)
but increasing the production of IL-10 (114, 115) which favors
Treg differentiation (116, 117). The 1,25-(OH)2D3 also inhibits
B-cell effector functions (106, 118), likely via 1,25-(OH)2D3
suppression of antigen-presenting cell function (119). The 1,25-
(OH)2D3 stimulation of monocytes and macrophages, however,
increases proliferation (120) and cathelicidin anti-microbial pep-
tide production (108, 121), and activates the cellular process of
autophagy (122), which can destroy intracellular bacteria, such
as M. tuberculosis. Accordingly, vitamin D deficiency has been
associated with increased risk of tuberculosis in several pop-
ulations (123, 124), including children (125, 126). Circulating
concentrations of vitamin D are heavily influenced by factors
such as diet, supplementation, socioeconomic status, and sea-
son (127). Several studies have assessed the ontogeny of serum
vitamin D levels. Cord serum levels of 1,25-dihydroxyvitamin
D [1,25-(OH)2D] are moderately reduced but reach adult lev-
els in neonatal peripheral blood by 24 h of age (formula feeding
considered not likely to be the source of 1,25-(OH)2D in this
study) (128). There are moderate increases in 1,25-(OH)2D dur-
ing puberty in both sexes (129). In healthy subjects, 20–94 years
of age neither serum 25-hydroxy- nor 1,25-dihydroxyvitamin D
[25OHD and 1,25-(OH)2D] changes with age in either sex (130).
While it is unclear what the impact of age is on circulating levels
of vitamin D, it is clear that vitamin D levels play a critical role
in neonatal and infant health, and that acquisition of vitamin D
in these populations is amenable to supplementation and dietary
modification (222). Vitamin D deficiency certainly needs to be
combated, but it may also be true that supplementation could
influence immune function by polarizing the adaptive immune
response toward a Th2 profile, which should be a topic for future
research.

Other vitamins and minerals, such as vitamins C and E, B vita-
mins, and trace elements, can also impact immune function (223)
and warrant consideration in populations with limited dietary
access to these molecules.

PURINES
Plasma purine nucleotides and nucleosides, particularly adenosine
triphosphate (ATP), adenosine diphosphate (ADP), and adeno-
sine, are critical signaling molecules that regulate the function of
a wide variety of cells, including immune cells. Extracellular ATP
(eATP) influences T-cell activation (224, 225) and proliferation
(226, 227), promotes neutrophil/endothelial cell adhesion (228),
degranulation (229, 230), and reactive oxygen species (ROS) pro-
duction (231), as well as other pro-inflammatory immune cell
functions (232). eATP is transported to the extracellular space by
vesicular trafficking, secreted via pannexin-1 channels (233), or
released in large quantities from necrotic cells. Extracellular ADP
(eADP) can be derived from eATP via dephosphorylation, and

is also released into circulation from platelets following activa-
tion. eATP and eADP can stimulate P2 purinergic receptors and
also serve as a source of adenosine (Ado) through dephosphoryla-
tion by several types of ecto-nucleotidases leading to adenosine
receptor signaling (234). Extracellular adenosine (eAdo) has a
nearly opposite profile of immune cell regulating effects from
the precursor ATP: eAdo inhibits neutrophil-endothelial adhesion
(131, 132) and effector functions (133–135), macrophage produc-
tion of pro-inflammatory or Th1-polarizing cytokines (IL-12p70,
TNF-α) (232), and T-cell proliferation and effector functions
(136, 137). By modulating the amount of adenosine, enzymes
that metabolize extracellular purines, including several families
of ecto-nucleotidases (235) and adenosine deaminase (ADA1),
help regulate whether signaling is tilted toward a P2 receptor-
mediated pro-inflammatory response, or a P1 receptor-mediated
anti-inflammatory response. Cord blood plasma contains signif-
icantly higher levels of adenosine than adult peripheral blood
plasma (138). In addition, the purine enzyme profile in cord blood
plasma – elevated AMP dephosphorylating activity (alkaline phos-
phatase and soluble CD73) but lower adenosine deaminase activity
compared to adults – favors generation of adenosine from purine
nucleotides (152).

CONCLUSION
Blood plasma contains a complex mixture of bioactive mole-
cules, including proteins, sugars, hormones, vitamins, and purines,
many of which have influence on the host response to infec-
tion. The distinct molecular composition of blood plasma at birth
and during the neonatal period contributes to distinct immuno-
logical function in newborns. A molecular milieu that blunts
pro-inflammatory/Th1-polarizing responses likely serves to pro-
tect in utero against maternal adaptive non-self immune responses,
and may help mediate the transition to the foreign antigen-rich
ex utero environment. However, this polarization may come at a
cost with respect to impaired host defense against intracellular
pathogens. Such immune polarization and heightened suscepti-
bility are especially evident in preterm neonates that have lower
levels of maternal antibodies and certain complement proteins as
compared to term subjects, leaving them particularly dependent
on endogenous defense against infection. Of note, immunization
of neonates with BCG modulates Ab production to both HBV
and oral polio vaccination (OPV) (236), which, given the differ-
ent routes of administration, suggests a role for soluble mediators
induced by one vaccine impacting on the subsequent immune
response to another. Cautious manipulation of the immunoreg-
ulatory capacity of neonatal blood plasma by targeting specific
molecules and signaling pathways may optimize responses to
infection and immunization.
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