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Drug-based interventions are at the heart of global efforts to reach elimination as a public health problem (trachoma, soil-transmitted 
helminthiases, schistosomiasis, lymphatic filariasis) or elimination of transmission (onchocerciasis) for 5 of the most prevalent ne-
glected tropical diseases tackled via the World Health Organization preventive chemotherapy strategy. While for some of these 
diseases there is optimism that currently available drugs will be sufficient to achieve the proposed elimination goals, for others—
particularly onchocerciasis—there is a growing consensus that novel therapeutic options will be needed. Since in this area no high 
return of investment is possible, minimizing wasted money and resources is essential. Here, we use illustrative results to show how 
mathematical modeling can guide the drug development pathway, yielding resource-saving and efficiency payoffs, from the refine-
ment of target product profiles and intended context of use to the design of clinical trials.
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Mass drug administration (MDA), by which at-risk populations 
are regularly treated without the need for individual diagnosis, 
is at the core of the preventive chemotherapy strategy recom-
mended by the World Health Organization (WHO) to elimi-
nate 5 of the most globally prevalent neglected tropical diseases 
(NTDs): trachoma, soil-transmitted helminthiases (STHs), 
schistosomiasis, lymphatic filariasis, and onchocerciasis [1]. 
Four of these are earmarked for elimination as a public health 
problem (EPHP) in the new WHO 2030 NTD roadmap, while 
elimination of transmission (EOT) is proposed for onchocer-
ciasis [2].

Therapeutic options for trachoma, the 3 major STHs (round-
worm, whipworm, and hookworm), and schistosomiasis are 
reasonably efficacious and often curative, albeit with some ex-
ceptions, such as the inadequacy of benzimidazoles alone for 
treating whipworm [3]. While the therapeutic arsenal is lim-
ited for these NTDs—and therefore potentially vulnerable to 
emerging drug resistance—there is cautious optimism that 
if MDA is delivered at adequate frequency, coverage, and du-
ration, then the WHO’s 2030 elimination goals can be met 
[4–6]. Similarly, although treatments for lymphatic filariasis 

are not generally considered “curative,” they are effective in 
strongly suppressing the microfilarial progeny (the stages that 
are transmitted to mosquito vectors) [7, 8] of adult filariae 
(macrofilariae) and may have partial anti-macrofilarial effects 
[9]. These treatments are therefore also considered compatible 
with EPHP [10].

The EOT goal for onchocerciasis places scrutiny on the 
efficacy of current treatment options for this filarial disease. 
A  single standard dose (150  µg/kg) of ivermectin—the cor-
nerstone of onchocerciasis MDA—is effective in mediating 
the killing of the microfilarial skin-dwelling transmission 
stages (to blackfly vectors) of adult Onchocerca volvulus and 
in inducing a temporary sterilizing (embryostatic) effect [11] 
(although suboptimal responses have been documented in 
Ghana [12]). But ivermectin only has partial killing or “cur-
ative” efficacy against adult worms and only after repeated 
MDA rounds [13]. Mathematical transmission dynamics 
modeling that integrates these pharmacodynamics indicates 
that ivermectin MDA alone, particularly if delivered annu-
ally, may be insufficient to achieve elimination in highly en-
demic areas where transmission is intense [14, 15]. In West 
Africa, before ivermectin MDA for onchocerciasis began in 
earnest in the late 1980s, transmission in 50–75% of endemic 
communities was deemed high (hyperendemic) or very high 
(holoendemic) [16]. Transmission remains ongoing in many 
such foci despite decades of intervention [17], attesting to the 
challenge of achieving widespread EOT by 2030.

The registration of moxidectin for the treatment of oncho-
cerciasis in 2018 [18] was a significant milestone in enhancing 
the prospects of achieving EOT. Moxidectin, like ivermectin, is 
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a macrocyclic lactone but with superior pharmacokinetics and 
pharmacodynamics, suppressing microfilariae to lower levels 
and for longer duration [18, 19]. This means that less transmis-
sion to vectors is possible between consecutive MDA rounds 
[18, 20]. But moxidectin will only be part of the solution to 
achieving widespread elimination of onchocerciasis. Financial 
and operational feasibility to allow uptake of moxidectin into 
MDA programs needs to be tackled. There are also safety con-
cerns on the use of macrocyclic lactones in people heavily 
coinfected with Loa loa [21], another filarial parasite, that oc-
curs in forest areas of central Africa [22]. Tetracycline anti-
biotics exert macrofilaricidal activity by depleting Wolbachia 
endosymbionts from O. volvulus and, crucially, are considered 
a safer alternative in people infected with L.  loa (which lacks 
Wolbachia) [23, 24]. These represent important adjuvant or al-
ternative therapies to the macrocyclic lactones and will likely 
become increasingly used if shorter treatment courses are 
found to be as efficacious as those currently available (eg, dox-
ycycline, which requires 4–6 weeks of daily treatment) [25, 26].

For other NTDs, there have been similar recent develop-
ments in the therapeutic armory. The strong and sustained sup-
pression of microfilaremia by the combination of ivermectin, 
diethylcarbamazine (DEC), and albendazole (so-called IDA 
therapy) presents a significant leap forward for the elimination 
of lymphatic filariasis [27, 28], albeit cautiously due to safety 
concerns of treating with DEC in Africa where many people 
are coinfected with onchocerciasis [28]. For whipworm, var-
ious combinations of existing antiparasitic drugs have shown 
improved efficacy over benzimidazoles alone [29, 30]. These ex-
amples all attest to drug development and repurposing being 
an active and important component of a holistic global strategy 
to enhance preventive chemotherapy for NTDs [14, 17, 31]. 
Continued drug development also provides insurance against 
the specter of emerging drug resistance, a particularly ominous 
prospect for diseases such as schistosomiasis, for which there is 
sole reliance on a single treatment [32].

Research and development (R&D) costs associated with drug 
development are high because of high attrition rates, with many 
promising molecules failing during preclinical development or 
in subsequent clinical safety and efficacy testing. The level of 
investment in R&D for new products for NTDs is nowhere near 
the level of funding required, and that funding, when available, 
is rarely allocated in a manner likely to ensure that products 
successfully move through the pipeline to reach end-users. It 
is therefore essential that stakeholders, funders, industry, aca-
demics, and nongovernmental organizations adopt a coop-
erative approach and share responsibility to reduce risks and 
overcome obstacles [33]. Joint efforts are being made to cut the 
cost of R&D for new drugs for NTDs and increase the attrac-
tiveness of this sector to funders and investors. For example, 
supportive programs by the US Food and Drug Administration 
(priority review voucher program) [34] and the European 

Medicines Agency (article 58)  aim to increase incentives for 
companies to engage in NTD drug development.

Not-for-profit organizations (eg, Drugs for Neglected Diseases 
initiative [DNDi], https://dndi.org; and Medicines Development 
for Global Health, https://www.medicinesdevelopment.com), 
supported through impact investment and philanthropic, gov-
ernmental, and supranational grants and donations—have, 
over the last decade, started to fill the space left by commercial 
pharmaceutical companies who have little incentive to invest in 
new medicines without a profitable market [18, 35]. Indeed, the 
precedent that pharmaceuticals should be donated for NTDs 
may further disincentivize investment. For not-for-profit or-
ganizations—which naturally operate with fewer resources than 
their commercial counterparts—optimizing target product 
profiles (TPPs; see, eg, https://dndi.org/diseases/filaria-river-
blindness/target-product-profile/) and the design of clinical 
trials [36] is essential to maximizing the efficiency of the drug 
development pathway. Modeling of all types has long been used 
in the commercial pharmaceutical sector to inform trial design 
[37]. However, it has only recently been adopted in the preclin-
ical [38] and clinical [36] NTD domain, where resource-saving 
payoffs can result from better informed decision making and 
quantitative insights on proposed TPPs.

Since drug discovery and development for NTDs is largely 
driven by the unmet medical needs identified by the global 
health community and without the possibility of significant fi-
nancial returns on investment, efficient use of money and other 
resources to deliver development programs is essential. To en-
sure that any development project is able to address the com-
plex requirements of patients and healthcare providers with 
drug and formulation characteristics suitable for storage and 
use in tropical climates, the TPP provides a carefully defined 
framework for describing both the ideal and acceptable attri-
butes of a novel medicine. In particular, the TPP must define the 
necessary characteristics and associated minimum and desired 
criteria against which a new therapy will be assessed. This may 
include relative safety, efficacy, effectiveness, and superiority 
against existing treatments. For NTDs in the era of elimina-
tion, specific challenges need to be tackled, beginning with the 
absence of a healthy drug discovery process. Further, the TPP 
should consider not only the individual-level therapeutic bene-
fits but also the capacity for a new drug to facilitate elimination 
at the population level. But challenges can arise when prop-
erties conferring individual-level therapeutic benefits do not 
completely align with those most compatible with enhancing 
elimination.

We can illustrate this conundrum by considering the 
(individual-level) efficacy and (population-level) effective-
ness of macrofilaricides (drugs that kill adult filariae) for the 
treatment of onchocerciasis. Figure 1a shows the modeled 
dynamics (using the transmission model EPIONCHO-IBM) 
[39] of microfilarial prevalence elicited by 4 drugs—with 
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Figure 1.  Projected dynamics, using EPIONCHO-IBM [39], of Onchocerca volvulus microfilarial prevalence. Panel a shows dynamics through 15 years of annual MDA 
with IVM or using a macrofilaricidal therapy in a mesoendemic setting. The light-blue line indicates MDA with IVM. Blue, orange, and red lines indicate, respectively, MDA 
with a hypothetical macrofilaricidal-only macrofilaricide (MOM) with 90% efficacy (90% of adult worms killed within 3 months following treatment) [36], a hypothetical 
macrofilaricidal and microfilaricidal macrofilaricide (MAMM; ie, a macrofilaricide with additional microfilaricidal activity) with 90% efficacy, and an anti-Wolbachia (AWOL) 
therapy (with 90% efficacy and pharmacodynamics based on those of doxycycline and prophylactic effect against incoming worms during the treatment course) [26]. The 
(model-predicted) probabilities of elimination (95% confidence intervals as error bars) for this scenario are depicted in panel b: 0% (0–7%), 38% (34–42%), 80% (76–83%), 
and 79% (75–82%) for IVM, MOM (90%), MAMM (90%), and AWOL, respectively. Panel c shows dynamics through 15 years of MDA with IVM followed by 15 years of IVM 
alone or in combination with a macrofilaricidal therapy in a hyperendemic setting. The light-blue line indicates MDA with IVM. Blue, orange, and red lines indicate, respec-
tively, MDA with IVM for 15 years followed by the addition of either a MOM (with 90% or 60% efficacy, respectively) or an AWOL therapy. The (model-predicted) probabilities 
of elimination (95% confidence intervals) in this scenario are shown in panel d: 0% (0–7%), 14% (11–17%), 41% (37–45%), and 64% (60–68%) for IVM, IVM + MOM (60%), 
IVM + MOM (90%), and IVM + AWOL, respectively. Model projections assumed a hypothetical treatment coverage of 80% with 1% systematic nonadherence. Potential dif-
ferences in eligibility criteria for different drugs (which would affect treatment coverage) are not considered in the interests of showing a simple vis-à-vis comparison of the 
impact of different pharmacodynamic properties. Abbreviations: IVM, ivermectin; MDA, mass drug administration.
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distinct pharmacodynamic properties—given annually by 
MDA in an onchocerciasis-endemic community. The strong 
microfilaricidal properties of ivermectin elicit immediate but 
transient declines in prevalence, which in the long term can 
suppress transmission to the point of elimination (although 
this is not necessarily the case when simulating more highly 
endemic populations) [39]. By contrast, macrofilaricides with 
either direct killing activity (MOM/MAMM in Figure 1a) or 
indirect depletion of endosymbiotic Wolbachia [26] (AWOL in 
Figure 1a)—but without substantial microfilaricidal action—
elicit only slow reductions in microfilaridermia but can, in the 
long term, enhance the likelihood of elimination. Therefore, 
from the population perspective, a TPP may stress the impor-
tance of developing a macrofilaricide or long-term sterilizing 
drug with efficacy that increases the likelihood (probability) 
of elimination compared with ivermectin. But, from an indi-
vidual perspective, as microfilariae are associated with the ma-
jority of clinical manifestations [40, 41], the slow decline in 
microfilaridermia elicited by a macrofilaricide without signif-
icant microfilaricidal activity may be associated with unaccept-
ably slow therapeutic benefit.

The examples shown in Figure 1a are deliberately simple to 
enable vis-à-vis comparison of the effectiveness of drugs with 
contrasting pharmacodynamics. In reality, it is unlikely that a 
new macrofilaricide would be used as a replacement to iver-
mectin. It would more likely be used either to complement 
ivermectin in epidemiological settings where elimination 
has proved elusive and requires acceleration or in difficult-
to-treat areas (such as where L.  loa is highly co-endemic) as 
part of focused MDA or test-and-treat or not-treat strategies. 
As an example, Figure 1b illustrates the complementary use of 
a macrofilaricide with ivermectin in settings with a long (15-
year) history of annual MDA intervention. Particularly note-
worthy here is that the addition of a macrofilaricide—even with 
a modest 60% efficacy (assuming 60% of adult worms are killed 
within 3  months of administration)—results in an increased 
probability of elimination compared with ongoing ivermectin 
treatment alone. This example encapsulates the challenge of 
designing TPPs when faced with competing individual- versus 
population-level properties. We know from clinical trial simu-
lation that demonstrating the benefit of a macrofilaricide with 
modest efficacy would likely require prohibitively long fol-
low-up times and/or very large sample sizes [36]. Yet, should 
a macrofilaricide with 60% efficacy be discarded on this basis 
when it may be useful in accelerating progress towards elimina-
tion in mature intervention programs?

With these insights, one may choose to focus from the outset 
on comparing against ivermectin, combination therapies with 
pharmacodynamics similar to those of a a macrofilaricide with 
microfilaricidal action as shown in Figure 1a. This would restrict 
regulatory-approved usage to a combination therapy, although 
use of the macrofilaricide as monotherapy or in alternative 

combinations could continue to be further explored in clinical 
trials. Clinical studies supporting such combination use would 
be restricted to settings that align closely with the intended use 
scenario (eg, mature MDA programs where elimination has 
proved elusive and requires a new strategy). However, deter-
mining patients' past use of ivermectin is highly challenging 
and interpreting trial outcomes is complicated by the drug’s 
cumulative pharmacodynamics on O.  volvulus, which accrue 
with long-term use [13]. Irrespective of the chosen path, trans-
mission dynamics modeling can assist with evaluating the likely 
effectiveness of a new drug or combination in its proposed con-
text of use and with practical decision making to optimize the 
design of trials to demonstrate efficacy. Indeed, without mod-
eling, the implications of desired pharmacodynamic properties 
defined in the TPP may not be fully appreciated.

The use of mathematical modeling to support decision 
making along the NTD drug development pathway is still in 
its infancy. Pharmacokinetic-pharmacodynamics modeling 
has been used to translate preclinical data to humans [38] and 
transmission modeling has been used to make projections on 
the long-term epidemiological impact (effectiveness) of new 
drugs (eg, moxidectin for onchocerciasis) [18, 20] or repur-
posed combinations (eg, IDA for lymphatic filariasis [27] or 
benzimidazoles plus ivermectin for whipworm [42]) that have 
already been demonstrated as safe and efficacious in clinical 
studies. In onchocerciasis, we have partnered with DNDi to use 
transmission modeling at earlier stages of clinical development 
to inform the design of trials [36], but this is yet to become more 
commonplace for other NTD drug development programs.

Naturally, the usefulness of models is defined by the quality 
of the underlying assumptions and, as in any practical appli-
cation, it is crucial to communicate uncertainty in a clear and 
transparent manner [43]. In supporting drug development, it 
is essential that modeling acknowledges that the precise phar-
macodynamics of a new drug (or indeed an existing compar-
ator) will not be completely understood from the outset and 
exploration of the impact of key assumptions is paramount. 
Notwithstanding, qualitative insights remain useful and can 
help guide design decisions aimed at resolving uncertainties. 
For example, modeling may indicate (within a range) a min-
imum macrofilaricidal efficacy below which a new drug would 
not provide sufficient acceleration towards elimination. Armed 
with this insight, a clinical trial can be designed to collect data at 
particular time points that may not be most appropriate for final 
outcome assessment but will provide early information on likely 
pharmacodynamics properties (eg, early rates of microfilarial 
depletion) [36].

The illustrative results presented here aim to show the utility of 
transmission models when used in a prospective capacity to sup-
port decision making along the NTD drug development pathway. 
Specifically, modeling can help inform TPPs by projecting 
the likely effectiveness of new drugs, with different proposed 
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pharmacodynamics, used in different intervention and epidemi-
ological contexts. Modeling can also help to identify particular 
pharmacodynamic properties that may be useful for enhancing 
elimination—but not necessarily of immediate therapeutic benefit 
to the individual—and guide the appropriate design of phase 2/3 
efficacy trials [36]. The integration of transmission modeling with 
economic cost-benefit analyses is a further important tool that re-
mains relatively underused in the development of treatments for 
NTDs [44] but is a crucial component for informing donor invest-
ment decisions. Overall, we believe that mathematical transmis-
sion modeling should be more routinely adopted to inform NTD 
drug development decisions.
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