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Abstract: Henipaviruses are BSL-4 zoonotic pathogens responsible in humans for severe encephalitis.
Their V protein is a key player in the evasion of the host innate immune response. We previously
showed that the Henipavirus V proteins consist of a long intrinsically disordered N-terminal domain
(NTD) and a β-enriched C-terminal domain (CTD). These terminals are critical for V binding to DDB1,
which is a cellular protein that is a component of the ubiquitin ligase E3 complex, as well as binding
to MDA5 and LGP2, which are two host sensors of viral RNA. Here, we serendipitously discovered
that the Hendra virus V protein undergoes a liquid-to-hydrogel phase transition and identified the V
region responsible for this phenomenon. This region, referred to as PNT3 and encompassing residues
200–310, was further investigated using a combination of biophysical and structural approaches.
Congo red binding assays, together with negative-staining transmisison electron microscopy (TEM)
studies, show that PNT3 forms amyloid-like fibrils. Fibrillation abilities are dramatically reduced in
a rationally designed PNT3 variant in which a stretch of three contiguous tyrosines, falling within
an amyloidogenic motif, were replaced by three alanines. Worthy to note, Congo red staining
experiments provided hints that these amyloid-like fibrils form not only in vitro but also in cellula
after transfection or infection. The present results set the stage for further investigations aimed at
assessing the functional role of phase separation and fibrillation by the Henipavirus V proteins.

Keywords: Hendra virus; V protein; intrinsically disordered proteins; amyloids; fibrils; phase
separation and transitions; TEM; SAXS; CR binding assays; Hsp70

1. Introduction

The Hendra and Nipah viruses (HeV and NiV) are members of the Paramyxoviridae
family in the Mononegavirales order that is comprised of viruses with a non-segmented,
single-stranded RNA genome of negative polarity. NiV and HeV are zoonotic agents re-
sponsible for severe encephalitis in humans that have been classified within the Henipavirus
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genus [1]. HeV emerged in 1994 in Brisbane, Australia, as a new pathogen responsible
for an outbreak of an acute respiratory and neurological disease in horses. HeV still
constitutes a threat to livestock in Australia, where sporadic and lethal transmission to
humans has also occurred. NiV appeared in 1998 in Malaysia as the ethiologic agent of a
respiratory and neurological disease mainly observed in pigs and humans. After the first
cases of human infection in 1998 in Malaysia, NiV has regularly reemerged since 2001 in
Bangladesh, India, and the Philippines with an average case fatality of 80%. The ability of
NiV to be transmitted by direct inter-human transmission further extends its potential to
cause deadly outbreaks [2–4]. The susceptibility of humans, their high pathogenicity, the
wide host range and interspecies transmission, and the lack of vaccines and therapeutic
treatments for humans led to the classification of henipaviruses as biosecurity level 4
(BSL-4) pathogens and as potential bio-terrorism agents.

Like in all Mononegavirales members, the genome of henipaviruses is encapsidated by
the nucleoprotein (N) within a helical nucleocapsid that serves as the substrate used by the
viral polymerase for both transcription and replication. The viral polymerase is a complex
made of the large (L) protein and the phosphoprotein (P). The P protein is an essential
polymerase cofactor: not only does it recruit L onto the nucleocapsid template, but it also
serves as a chaperon for it [5–8]. In addition, it chaperons the N protein, i.e., it prevents N
self-assembly by binding to its monomeric form [9].

Henipavirus P proteins consist of an exceptionally long (>400 aa) N-terminal domain
(NTD) that is intrinsically disordered [10,11] and a C-terminal region of approximately
300 aa containing two structured regions: a coiled-coil domain responsible for P multimer-
ization (PMD) [12–14] and a triple α-helix X domain (XD) [15] that is responsible for the
interaction with the C-terminal disordered domain (NTail) of the N protein [16–19].

In paramyxoviruses, the P gene also encodes the V and W proteins that are produced
upon the addition of either one (protein V) or two (protein W) non-templated guanosines at
the editing site of the P messenger. The addition of these guanosines triggers a frame shift
downstream, resulting in a protein with a unique C-terminal domain (CTD). The editing
site is located at the end of the region encoding the NTD. The P, V, and W proteins therefore
share the NTD that can be considered as a bona fide domain (Figure 1). The CTD unique
to paramyxoviral V proteins (VCTD) adopts a zinc finger conformation, with this folding
being preserved both in isolation and in the context of the Henipavirus V proteins [20]. By
contrast, the C-terminal domain unique to the Henipavirus W protein (WCTD) is predicted
to be intrinsically disordered [21].

Paramyxoviral V and W proteins are key players in the evasion of type I interferon
(IFN-I)-mediated responses [22–24]. Henipavirus V proteins prevent the detection of viral
dsRNA by binding through their CTD to the RIG-like innate immune sensor melanoma
differentiation-associated protein 5 (MDA5) and to the Laboratory of Genetics and Physi-
ology 2 (LGP2) protein [25], which is an enhancer of dsRNA recognition by MDA5 [26].
Henipavirus V proteins also bind to PLK1 (polo-like kinase), another regulator of MDA5-
dependent IFN-I induction, through their disordered NTD [27].

One of the key IFN signaling pathways relies on the activation of STAT (Signal Trans-
ducers and Activators of Transcription) proteins and the subsequent nuclear translocation.
Once imported in the nucleus, STAT proteins interact with IRF-9 to form the ISGF3 complex
that activates the transcription of IFN-stimulated genes (ISGs) whose products inhibit viral
replication [22]. The V and W proteins of henipaviruses have an antagonist activity of IFN
signaling [22,28]. They both bind to STAT1 via their NTD [29], leading to the inhibition
of either STAT1 translocation into the nucleus (V) or STAT1 sequestration in the nucleus
(W) [29]. The NTD region responsible for binding to STAT1 has been mapped to residues
114–140 [30], with this region having also been shown to bind to STAT4 [31]. Furthermore,
the CTD of the NiV V protein binds to STAT5 [31]. In addition, Henipavirus V proteins
interact via their CTD with the DNA damage-binding protein 1 (DDB1), a component
of the ubiquitin ligase E3 complex [20]. By binding to both DDB1 and STAT proteins,
Henipavirus V proteins promote rapid degradation of the latter. This ability to hijack the
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cellular ubiquitin ligase E3 complex is not unique to henipaviruses, as it has been already
documented in several other paramyxoviruses [32].
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Figure 1. Coding capacity of the P gene and modular organization of the HeV P, V, and W proteins. Abbreviations: NTD,
N-terminal region of P, V, and W; PCT, C-terminal region of P; PMD, P multimerization domain; XD, X domain of P; ZnFD,
zinc finger domain; and VCTD and WCTD, C-terminal domain of V and W. The α-helix at the N-terminus of P, V, and W
corresponds to the region shown to adopt a stable α-helical conformation upon binding of P to N [9] or upon binding of V
to host cellular transporters [33]. The crystal structure of HeV XD (PDB code 4HEO) [15] and a model of HeV PMD [13]
are shown. The WCTD is represented as disordered according to predictions [21]. Known interaction sites with human cell
partners are shown.

Beyond their ability to antagonize IFN signaling, the V and W proteins also inhibit the
production of chemokines in vitro and modulate the inflammatory response in vivo [34].
In addition, the Henipavirus W proteins bind to 14-3-3 proteins via their CTD, with this
interaction resulting in the modulation of host gene exppression and apoptosis [35].

Although the Henipavirus P protein has an anti-IFN function as well, its IFN antagonist
activity is moderate compared to V or W. This observation advocates for a critical role of
the CTD of V and W in the anti-IFN function. In further support for a critical role of the
CTD of V, in counteracting the host innate immune response, the NTD was shown to retain
its overall disordered nature also in the context of the V protein [20], a finding that rules
out the possibility that the NTD might adopt a unique conformation in the context of the
V protein that could impart function to V. Rather, this argues for a scenario in which it
is the C-terminal zinc finger domain (ZnFD) that specifically confers to the V protein the
ability to counteract viral RNA recognition and IFN-I signaling. This function relies on the
ability of the ZnFD to shield the RNA binding site of LGP2 and MDA5 [26], to enhance the
binding to DDB1 [20], and to bind to STAT4 [31].
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The pivotal role of Henipavirus V and W proteins in the evasion of the innate im-
mune response is corroborated by the fact that the Cedar virus (the lastly discovered
Henipavirus member), which lacks the V and W proteins, induces an IFN response much
more pronounced compared to HeV, as well as induces an asymptomatic infection in animal
models [36]. The fact that NiV and HeV are the paramyxoviruses with the highest fre-
quency of the P messenger edition provides further support for the critical role of the V and
W proteins in counteracting the innate immune response and hence in pathogenicity [23].

In the course of a further characterization of the Henipavirus V proteins, prompted
by the fact that they are promising targets for antiviral approaches, we serendipitously
discovered that the HeV V protein has the ability to form a hydrogel. In light of the growing
number of studies pointing to a critical role of phase separations and transitions mediated
by intrinsically disordered proteins (IDPs) and/or regions (IDRs) in various biological
processes [37–44], we decided to investigate in detail this peculiar behavior.

Using a domain approach, we identified the V region responsible for this phenomenon
and have further investigated it using a combination of biophysical and structural ap-
proaches. Using Congo red (CR) binding assays and negative-staining transmission elec-
tron microscopy (TEM), we show that this region forms amyloid-like fibrils. Through a
mutational approach, we shed light on the sequence determinants underpinning this prop-
erty. Finally, CR-staining of transfected and infected cells provided hints that fibrillation
does not only occur in vitro but also in the cellular context.

2. Materials and Methods
2.1. Generation of the Constructs

The constructs encoding the HeV V (Uniprot code O55777) and NiV V (Uniprot code
Q997F2) protein, as well as their NTD and ZnFD, have already been described [10,20].

The HeV PNT1, PNT2, PNT3, and PNT4 DNA fragments, encoding residues 1–110,
100–210, 200–310, and 300–404 of the HeV P/V protein, respectively, were PCR-amplified
using the pDEST14/HeV PNT construct as a template [10] and as primers: namely PNT1-
AttB1 and PNT1-AttB2; PNT2-AttB1 and PNT2-AttB2; PNT3-AttB1 and PNT3-AttB2; and
PNT4-AttB1 and PNT4-AttB2, respectively. These primers were all designed to anneal on
the desired region of the P gene, with forward primers starting with an AttB1 sequence and
reverse primers ending with an AttB2 sequence. The resulting amplicons were then cloned
into the pDest17 bacterial expression vector using the Gateway® technology (ThermoFisher
Scientific, France). This vector allows for the expression of the recombinant protein under
the control of the T7 promoter. The resulting protein is preceded by a stretch of 22 vector-
encoded residues (MSYYHHHHHHLESTSLYKKAGS) encompassing a hexahistidine tag.

For the prokaryotic expression of PNT3 fused to the green fluorescent protein (GFP),
a 6His-tagged PNT3-GFP construct was generated by PCR (Polymerase Chain reaction)
amplification using PNT3-pDest17 as a template and B1HisNT3 and NT3B2 as primers.
After DpnI treatment, 1 µL of the first PCR was used as a template in a second PCR
amplification using primers attl1a and attl2a as described in [45]. The second PCR product
was then used in an LR reaction with the expression vector pTH31 [46].

For the eukaryotic expression of PNT3, a 6His-PNT3 construct was generated by PCR
using His-PNT3-GFPq-pCDNA3.1+ (described in Supplementary Table S1) as a template
and HindNT3 and NT3XhoI as primers. After DpnI treatment, the PCR product was
digested by HindIII and XhoI, and ligated to pCDNA3.1+ as described above.

For the prokaryotic expression of the PNT3 Y211A-Y212A-Y213A triple variant (PNT33A),
the His6-PNT3-pTH31construct was used as a template in two separate PCR amplifications
using either primers attB1 and R_3ala-PNT3 (PCR1), or primers F_3ala-PNT3 and attB2
(PCR2). After DpnI treatment, 1 µL of PCR1 and 1 µL of PCR2 were used as overlap-
ping megaprimers, along with primers attB1 and attB2 in a third PCR. After purification,
the third PCR product was inserted into pDONR by BP reaction (ThermoFisher Scien-
tific, Illkirch-Graffenstaden, France). After sequencing, the mutated coding sequence was
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transferred from pDONR to pDEST17 by LR reaction (ThermoFisher Scientific, Illkirch-
Graffenstaden, France).

For the eukaryotic expression of the PNT3 Y211A-Y212A-Y213A triple variant (PNT33A),
the His-PNT3-pCDNA3.1+ construct was used as a template in two separate PCR amplifi-
cations using either primers HindNT3 and R_3ala-PNT3 (PCR1), or primers F_3ala-PNT3
and NT3XhoI (PCR2). After DpnI treatment, 1 µL of PCR1 and 1 µL of PCR2 were used as
overlapping megaprimers, along with primers HindNT3 and NT3XhoI in a third PCR. After
purification, the third PCR product was processed as described for generating His-PNT3-
pCDNA3.1+. The list and sequence of the primers used to generate the above described
constructs is provided in Supplementary Table S1.

The construct used for the prokaryotic expression of His-Hsp70 has already been
described [47].

The constructs for the eukaryotic expression of the HeV F and G surface glycoproteins
were obtained as follows. The genes encoding the full-length F protein and full-length of
the G protein, deleted of the 32 residues from the cytoplasmic tail to ameliorate cell surface
expression (referred to as G CT32), were cloned from the wt HeV in the pCAGGS plasmid.

The construct driving the mammalian expression of the HeV V protein with a N-
terminal flag tag (DYKDDDDK) was cloned from the virus cDNA. One G was introduced
at the P editing site by PCR using primestar GXL polymerase (New England Biolabs, NEB,
Évry-Courcouronnes France). The obtained amplicon was then introduced by In-Fusion
(Takara) in the pcDNA3.1 plasmid, formerly digested with Bspe1 in 3.1 buffer (NEB) at
37 ◦C and purified after gel migration using nucleospin gel and the PCR clean-up minikit
(Macherey-Nagel, Hoerdt, France).

Primers were purchased from Eurofins Genomics. All the constructs were verified
by DNA sequencing (Eurofins Genomics, Ebersberg, Germany) and found to conform to
expectations.

2.2. Proteins Expression and Purification

The E. coli strain T7pRos transformed with one of the above described bacterial
expression plasmids was used for the expression of all the recombinant proteins. Cultures
were grown over-night to saturate in LB medium containing 100 µg mL−1 ampicillin and
34 µg mL−1 chloramphenicol. An aliquot of the overnight culture was diluted 1/20 into
1 L of TB medium and grown at 37 ◦C 200 rpm. When the optical density at 600 nm
(OD600) reached 0.5–0.8, isopropyl β-D-thiogalactopyanoside (IPTG) was added to a final
concentration of 0.5 mM and the cells were grown at 25 ◦C 200 rpm overnight. The induced
cells were harvested, washed, and collected by centrifugation (5000 rpm, 10 min). The
resulting pellets were frozen at −20 ◦C.

Expression of 15N-labelled PNT3 was performed as described above except that when
the cultures reached an OD600 of 0.6, the culture was centrifuged at 4000 rpm for 10 min
and the pellet was resuspended in 250 mL of M9 medium (6 g L−1 of Na2HPO4, 3 g L−1

of KH2PO4, 0.5 g L−1 of NaCl, and 0.246 g L−1 of MgSO4) supplemented with 1 g L−1 of
15NH4Cl and 4 g L−1 of glucose. After 1 h at 37 ◦C, IPTG was added to a final concentration
of 0.5 mM and the cells were subsequently grown at 25 ◦C overnight.

The purification protocol of the Henipavirus V proteins and HeV VCTD (i.e., ZnFD)
have been already reported [20], as was that of HeV NTD [10]. The PNT1, PNT2, PNT3,
and PNT4 proteins from pDEST17 constructs, and the PNT3-GFP protein from the pTH31
construct, were purified as follows. The frozen cellular pellet was thawed and resuspended
(30 mL per liter of culture) in buffer A (50 mM Tris/HCl pH 7.5, 500 mM NaCl, and
20 mM imidazole) supplemented with 1 mM phenyl methyl sulfonyl fluoride (PMSF),
0.1 mg mL−1 lysozyme, 10 µg mL−1 DNAse I, and 20 mM MgSO4. After an incubation of
20 min at 4 ◦C, the cells were disrupted by sonication using a VCX750 sonicator (Sonics &
Materials Inc., Newtown, CT, USA) and 3 cycles of 30 s each at 45% power output. The
lysates were clarified by centrifugation at 14,000× g for 30 min at 4 ◦C and the supernatant
was loaded onto a 5 mL Nickel column (GE Healthcare, Velizy Villacoublay, France) pre-
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equilibrated in buffer A. The affinity resin was washed with 20 column volumes (CV)
of buffer A. Proteins were eluted with ~3 CV of buffer A supplemented with 250 mM
imidazole. Eluted fractions were analyzed by SDS-PAGE, pooled and concentrated using
Centricon concentrators (Merk-Millipore, Guyancourt France) (10 kDa molecular mass
cut-off), and the proteins were further purified by size exclusion chromatography (SEC)
using a Superdex S75 16/60 SEC column (GE Healthcare) and buffer B (20 mM Tris/HCl
pH 7.5, 100 mM NaCl, and 5 mM EDTA) as the elution buffer. The fraction of interest were
pooled, concentrated as described above, and stored at −20 ◦C.

In the case of PNT3 and PNT33A, the purification protocol was subsequently modified
as follows. Bacterial pellets were resupended in buffer A containing 6 M guanidium
hydrochloride (GDN). After a short incubation with gentle agitation, the suspension
was sonicated and then centrifuged as described above. The proteins were purified by
immobilized metal affinity chromatography (IMAC) as described above. The fractions
eluted from the Nickel column were pooled and concentrated in the presence of 6 M
GDN up to 1–2 mM using Centricon concentrators, and the proteins were then frozen at
−20 ◦C. Prior to each experiment, the PNT3 and PNT33A proteins were subjected to SEC
that enabled the removal of GDN and allowed to assess the sample homogeneity along
with the monomeric nature of the proteins. The SEC column was equilibrated with either
buffer B (20 mM Tris/HCl pH 7.5, 100 mM NaCl, and 5 mM EDTA) or buffer C (50 mM
sodium phosphate pH 6.5 and 5 mM EDTA). The latter was used for samples to be used in
circular dichroism (CD), small-angle X-ray scattering (SAXS), TEM, and NMR experiments.
In an alternative protocol, the fractions from SEC were pooled, supplemented with 6M
GDN, and stored at −20 ◦C. Prior to each subsequent analysis, the sample was thawed
and the buffer exchanged using Sephadex G-25 medium columns (GE Healthcare, Velizy
Villacoublay, France). IMAC and SEC were performed at room temperature (RT).

Protein concentrations were estimated using the theoretical absorption coefficients at
280 nm as obtained using the program ProtParam from the EXPASY server.

The purity of the final purified products was assessed by SDS-PAGE (Figure 2A). The
identity of the purified PNT3 and PNT33A samples was confirmed by mass spectrometry
analysis of tryptic fragments obtained after the digestion of the purified protein bands
excised from SDS-polyacrylamide gels (Supplementary Figure S1). The excised bands
were analyzed by the the mass spectrometry facility of Marseille Proteomics. Proteins
were reduced by incubation with 100 mM dithiothreitol (DTT) for 45 min at 56 ◦C and
free cysteine residues were capped by incubation with 100 mM iodoacetamide for 30 h
at 25 ◦C in the dark. Samples were digested with porcine trypsin (V5111, Promega) at
12.5 ng/µL in 25 mM NH4HCO3 for 18 h at 37 ◦C. Peptides were extracted from the gel
with 60% vol/vol acetonitrile in 5% formic acid, dried under vacuum, and reconstituted
in 5 µL of 50% vol/vol acetonitrile in 0.3% trifluoroacetic acid. Mass analyses of the
tryptic fragments were performed on a MALDI-TOF-TOF Bruker Ultraflex III spectrometer
(Bruker Daltonics, Wissembourg, France) controlled by the Flexcontrol 3.0 package (Build
51) (Bruker Daltonics, Wissembourg, France). This instrument was used at a maximum
accelerating potential of 25 kV and was operated in reflectron mode and an m/z range
from 600 to 4500 (RP_Wide range_Method) or 600 to 3400 (RP_Proteomics_2015_Method).
The laser frequency was fixed to 200 Hz and approximately 1000–1500 shots by sample
were cumulated. Five external standards (Peptide Calibration Standard, Bruker Daltonics,
Wissembourg, France) were used to calibrate each spectrum to a mass accuracy within
50 ppm. Peak-picking was performed with Flexanalysis 3.0 software (Bruker) with an
adapted analysis method. Parameters used were as follows: the SNAP peak detection
algorithm, the S/N threshold fixed to 6, and a quality factor threshold of 30. One µL of
the sample was mixed with 1 µL of a saturated HCCA (α-cyano-4-hydroxycinnamic acid)
solution in acetonitrile/0.3%TFA (1:1) and then 1 µL was spotted on the target, dried, and
analyzed with the previously described method.

Hsp70 was purified according to [48] except that the last SEC step was replaced with
a desalting step using a HiPrep 26/10 desalting column (GE Healthcare) and buffer B. The
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protein was then concentrated to 0.5 mM using Centricon concentrators (Merk-Millipore,
Guyancourt France) with a 30 kDa molecular mass cut-off.

2.3. Turbidity Measurements

Turbidity was measured by monitoring the optical density (OD) at either 600 or 340 nm
using a NanoDrop ND-1000 (ThermoFisher Scientific, Illkirch-Graffenstaden, France) spec-
trophotometer. PNT3 samples (100 µL each), in the concentration range of 0–250 µM, were
incubated for 1 h at RT either in the absence or in the presence of increasing concentrations
of the crowding agent polyethylene glycol (PEG)300. Samples were also incubated for 1 h
at RT or at 37 ◦C in the absence of PEG and in the presence of increasing concentrations of
salt.

2.4. Fluorescence Recovery after Photobleaching (FRAP)

FRAP experiments were carried out on an Alexa-Fluor488 (FisherFisher Scientific,
Illkirch-Graffenstaden, France)-labeled PNT3 sample. Labeling was performed by adding
a 10-fold molar excess of Alexa Fluor488 to a PNT3 sample at 2 mg mL−1 in 50 mM sodium
phosphate buffer, pH 7.5, 100 mM NaCl. After an incubation of 1 h at 37 ◦C, the excess
dye was removed by gel filtration using a PD-10 (Sigma-Adrich, Saint-Quentin-Fallavier,
France) column.

FRAP measurements were performed using an inverted Zeiss LSM 780 (Jena, Ger-
many) with a Plan-Neofluar 40×/NA 1.4 DIC M27 oil immersion objective. All fluorescence
images were collected at 0.5% with a 488 nm laser to prevent bleach acquisition as much as
possible. The bleaching was performed by a single scan of the squared regions of interest of
4 µm2 inside PNT3-AF488 condensates with 100% of a 488 nm laser and a pixel dwell time
of 65.54 µs. Each FRAP experiment contains 100 images: five pre-bleach and ninety-five
post-bleach images. Experiments were conducted on different condensates to determine
the standard deviation.

Fluorescence recovery after bleaching curves were analyzed with a one phase expo-
nential curve using Zen 2.3 SP1 FP3 black software (Carl Zeiss Microscopy GmbH, Jena,
Germany).On each condensate, four regions were selected: two bleached regions, one
region inside the condensate as a reference, and one region outside the condensate as a
background reference. Raw data were normalized using Excel and plotted using GraphPad
Prism 8.3.0 software (GraphPad Prism, San Diego, CA, USA). Fluorescence and bright-field
images were formatted using ImageJ 1.53c software (http://imagej.nih.gov/ij).

2.5. Far-UV Circular Dichroism

CD spectra were measured using a Jasco 810 dichrograph (Jasco France, Lisses, France)
flushed with N2 and equipped with a Peltier thermoregulation system. Proteins were
loaded into a 1-mm quartz cuvette at 0.06 mg/mL (in 10 mM phosphate buffer at pH 6.5)
and spectra were recorded at 37 ◦C. The scanning speed was 20 nm min−1 with a data
pitch of 0.2 nm. Each spectrum is the average of five acquisitions. The spectrum of buffer
was subtracted from the protein spectrum. Spectra were smoothed using the “means-
movement” smoothing procedure implemented in the Spectra Manager package (Jasco
France, Lisses, France).

Mean molar ellipticity values per residue (MRE) were calculated as

[Θ] =
3300 m ∆A

l c n
(1)

where l is the path length in cm; n is the number of residues (133); m is the molecular mass
in Daltons (15, 138); and c is the concentration of the protein in mg mL−1.

2.6. Congo Red Binding and Shift Assays

Congo red (CR, Sigma-Aldrich) binding assays were performed using the dye at a
final concentration of 5 µM in the presence of 40 µM of either PNT3 or PNT33A in buffer C

http://imagej.nih.gov/ij
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in a final volume of 50 µL. After a 3-weeks incubation at RT, the samples were centrifuged
and the sedimented condensate was washed three times with 50 µL of buffer C.

The quantitative measurement of CR binding (herein referred to as CR shift assay)
was carried out using protein samples containing either PNT3 or PNT33A at 20 µM (in
50 mM sodium phosphate buffer at pH 7.2) in a final volume of 100 µL. The samples were
incubated at 37 ◦C for 1 week and then CR was added to a final concentration of 5 µM. The
adsorption spectrum of the CR solutions was recorded after 1 h of incubation at 37 ◦C using
a PHERAstar FSX Microplate Reader (BMG LABTECH, Champigny-sur-Marne, France) in
the 350–600 nm wavelength range. A solution of 5 µM CR in 50 mM sodium phosphate
buffer with pH 7.2 without the protein was used as a control to normalize the analysis. A
sample containing 5 µM of CR and 20 µM of the measles virus NTail protein, i.e., an IDP
with no propensities to fibrillate [49], was used as a negative control. Statistical analysis
was done using the one-way ANOVA test implemented in the PRISM 8.3.0. software
(GraphPad Prism, San Diego, CA, USA).

2.7. Small-Angle X-ray Scattering (SAXS)

SAXS and SEC-SAXS data were collected at the European Synchrotron Radiation
Facility (ESRF, Grenoble, France) and at SOLEIL (Gif-sur-Yvette, France) as described in
Table 1. In both cases, the calibration was made with water.

Table 1. SAXS and SEC-SAXS data acquisition parameters.

Experiment Type and Aim SAXS
Aggregation Process

SEC-SAXS
Conformational Studies

Data acquisition

Instrument

European Synchrotron
Radiation Facility
(Grenoble, France)

Beamline BM29

SOLEIL Synchrotron
(Gif-sur-Yvette, France)

Beamline Swing

X-rays wavelength (Å)
Energy (keV)

0.992
12.5

1.033
12

Detector type Pilatus 1M Dectris EIGER 4M

Sample-to-detector distance
(m) 2.847 2.0

q-range 0.028–4.525 nm−1 0.0036–0.5397 Å−1

Temperature (◦C) 20

Samples

Concentration (mg mL−1) 1.0 and 2.0 3.5

Sample volume (µL) 50 70

Gel filtration column
Flow rate (mL min−1) - BioSec 3-300 (Agilent)

0.2

Buffer 50 mM sodium phosphate pH 6.5, 5 mM EDTA (buffer C)

For SAXS studies, a PNT3 sample was subjected to SEC the day before using buffer
C as an elution buffer. The fractions of interest were pooled and the sample was then
kept in ice until data collection. Samples either at 1 or at 2 mg mL−1, as obtained upon
dilution of the sample from SEC, were incubated at 37 ◦C and the data were collected at
various times points (60, 90, 120, 180, 270, 300, 420, 480, and 630 min). Data reductions
were performed using the established procedure available at BM29 and buffer background
runs were subtracted from sample runs.

For SEC-SAXS analyses, a lyophilized sample from a PNT3 solution at 3.5 mg mL−1

in buffer C was rehydrated and injected onto a BioSec 3-300 SEC column. Elution was
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carried out in the same buffer. Data reduction and frames subtraction were done with the
beamline software FOXTROT (available upon request from the SOLEIL staff). Gaussian
decomposition was performed using the UltraScan solution modeler (US-SOMO) HPLC-
SAXS module (https://somo.aucsolutions.com/) [50] and the final deconvoluted scattering
curves were submitted to the SHANUM program [51] to remove noisy, non-informative
data at high angles.

For both types of experiments, data were analyzed using the ATSAS program pack-
age [51]. The radius of gyration (Rg) and I(0) were estimated at low angles (qRg < 1.3)
according to the Guinier approximation [52,53]:

Ln[I(q)] = Ln[I(0)]−
q2R2

g

3
(2)

The pairwise distance distribution functions P(r) were calculated with the program
GNOM [54]. The quality of the P(r) was always assessed with the CorMap test.

For the SAXS experiments, the Rg was calculated for both aggregates and monomeric
forms whenever possible. To plot the normalized Kratky plot, the Rg and I(0) values of
the monomer were used when clearly visible (60–180 min of incubation for the sample at
1 mg mL−1 and 60–90 min of incubation for the sample at 2 mg mL−1). The Rg and I(0)
values of the major aggregated species were used for all the other incubation times.

Using the data collected at SOLEIL, we also attempted to describe PNT3 as a conforma-
tional ensemble. To this end, we used the program suite EOM 2.0 [55] using the sequence
of the recombinant protein as input and default parameters (random coil conformers). The
quality of the EOM fit was assessed with the CorMap test.

SEC-SAXS data of PNT3 at time-zero have been deposited in the Small Angle Scat-
tering Biological Data Bank (SASBDB) [56] under code SASDLF9. The PNT3 ensemble
derived using SEC-SAXS data at time-zero have been deposited within the Protein En-
semble Database (PED-DB, https://proteinensemble.org/) [57] under accession number
PED00203.

The theoretical value of Rg (in Å) expected for an IDP was calculated using Flory’s
equation according to [58]:

Rg = R0Nν (3)

where N is the number of amino acid residues, R0 is 2.54 ± 0.01, and ν is 0.522 ± 0.01.

2.8. Negative-Staining Transmission Electron Microscopy (TEM)

Drops of 2 µL of freshly purified PNT3 or PNT33A proteins (100–200 µM), either in
the absence or in the presence of a two-fold molar excess of Hsp70, were deposited onto
a glow-discharge carbon-coated grid (Formwar/Carbon 300 mesh Cu, Agar Scientific,
Gometz la Ville, France). Prior to protein deposition, grids were exposed to plasma glow
discharge for 20 s using a PELCO, easiGlow Glow Discharge Cleaning System (Ted Pella
Inc. Redding, CA, USA) (current 25 mA), in order to increase protein adhesion. To assess
fibrils stability, PNT3 (200 µM) supplemented with 5 mM SDS was deposited on the copper
grids. The grids were washed three times with 20 µL of deionized water before incubating
them for 1 min in 2% (w/v) Uranyl Acetate solution (Laurylab, Brindas, France). Images
were collected using a TECNAI T12 Spirit microscope (FEI company, ThermoFisher, Illkirch-
Graffenstaden France) operated at 120 kV and an Eagle 2Kx2K CCD camera (FEI company,
ThermoFisher, Illkirch-Graffenstaden France).

2.9. Nuclear Magnetic Resonance (NMR)

A sample of a freshly purified 15N-labelled PNT3 at 100 µM in buffer C, also containing
D2O (10%), was used for the acquisition of 1D 1H and 2D 1H,15N HSQC spectra with a 22.3 T
Bruker AvanceIII 950 ultra-shielded-plus spectrometer equipped with a triple resonance
CryoProbe (TCI) at 310 K (Bruker BioSpin GmbH, Rheinstetten, Germany). The sample
was incubated at 37 ◦C and spectra were recorded at various time-points. Spectra were

https://somo.aucsolutions.com/
https://proteinensemble.org/
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recorded both at 288 and 310 K. All the spectra were acquired, processed, and analyzed by
using the Bruker software TopSpin 3.6.2 using standard parameters. Chemical shifts were
referenced using DSS for 1H and indirect referencing for 15N using the conversion factor
derived from the ratio of NMR frequencies [59].

2.10. SDS Sensitivity Assays

Preformed fibers of PNT3 (100 µM after 56 h of incubation at 37 ◦C in buffer C), either
non-supplemented or supplemented with 2% (w/v) SDS, were passed through a 0.2 µm
spin filter to remove fiber particles. The absorbance at 280 nm, after the subtraction of
buffer contributions, was measured to monitor the amount of monomeric and small (i.e.,
∅ < 200 nm) oligomeric protein species that passed through the filter.

In parallel, we also monitored the evolution of the aggregation index of a fibrillated
PNT3 sample (180 µM after 72 h of incubation at 37 ◦C in buffer C) following incubation
at RT either in the presence or in the absence of 2% SDS. To this end, the fibrillated PNT3
solution was diluted with buffer C to 110 µM and divided into two samples, of which one
was supplemented with buffer C and the other with SDS to yield a final concentration of
2%. The final protein concentration was 100 µM. For each sample, 5 replicates were set up
and the aggregation index was measured as a function of time.

The aggregation index was calculated as follows:

Aggregation Index =
OD340

(OD280 − OD340)
× 100 (4)

Measurements were done on 100 µL samples using a PHERAstar FSX Microplate
Reader (BMG Labtech, Champigny-sur-Marne, France) in the 220–600 nm wavelength
range. The equality of variances between the different data sets was evaluated using
Lavene’s test and Bartlett’s test. Statistical analysis was done using the one-way ANOVA
test implemented in the PRISM 8.3.0 software (GraphPad Prism, San Diego, CA, USA).

2.11. Transfection of Mammalian Cells, CR-Staining, and Immunofluorescence Analysis

Human embryonic kidney (HEK) 293T cells were seeded in DMEM supplemented
with 10% FBS at 37 ◦C in a Forma Series II Water Jacketed CO2 incubator (ThermoFisher
Scientific, Illkirch-Graffenstaden, France). Transfections were performed 24 h after using
the TransIT®-LT1 Transfection Reagent (Mirus) with a DNA:TransIT®-LT1 ratio of 1:3 (w/v).

Cells were seeded in Lab-Tek II chamber slides with covers (8 wells, 7 × 104 cells/well)
previously coated for 2 h at 37 ◦C with Poly-D-Lysin hydrobromide 50 µg/mL (Sigma-
Aldrich) and were placed at 37 ◦C, 5% CO2. After 24 h, cells were transfected with 0.4 µg
of either empty plasmids or plasmids encoding HeV V, or PNT3, or PNT33A, or HeV F plus
G CT32, and incubated at 37 ◦C, 5% CO2. The medium was then removed at various time
intervals and cells were washed with phosphate-buffered saline (PBS, i.e., 137 mM NaCl,
2.7 mM KCl, 10 mM Na2HPO4, and 1.8 mM KH2PO4 pH 7.4). CR-staining experiments
were performed 48 h after transfection. Cells were fixed with 4% PFA, washed with PBS,
and incubated over night with 5 µM CR (Sigma-Aldrich) in 10 mM Hepes, 100 mM NaCl,
pH 7.4. Cells were then washed for 1 h with PBS diluted in water (1/4) and stored at 4 ◦C
in PBS before microscopy analysis.

Expression of PNT3, PNT33A, and V in HEK 293T transfected cells was assessed 48 h
post-transfection in Lab-Tek II chamber slides with covers (8 wells). Cells were washed
with PBS, and fixed in methanol-free formaldehyde (Sigma Aldrich) 4% in PBS for 10 min
at RT. After 3 washes in PBS, cells were then incubated in permeabilization and blocking
buffer (PBB) containing PBS, 0.3% Triton X100, and 3% bovine serum albumine (BSA) for
20 min at RT. Media were then replaced with PBB containing the 6x-His Tag Monoclonal
Antibody (HIS.H8, eBioscience™, Invitrogen) (at a 1:500 dilution) for 1 h at RT. After
3 washes, cells were incubated for 1 h at RT with the Donkey anti-Mouse IgG (H+L)
Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 555, diluted 1:750 in PBB. Cells



Biomolecules 2021, 11, 1324 11 of 33

were washed in PBS and mounted in Fluoromount™ Aqueous Mounting Medium (Sigma
Aldrich).

2.12. Infection and CR-Staining of Mammalian Cells

HEK 293T or HPMEC (human pulmonary microvascular endothelial) cells were seeded
in µ-Slide 8 Well IBIDI Chambered Coverslip for Cell Imaging, previously coated for 2 h at
37 ◦C with Poly-D-Lysin hydrobromide at 50 µg/mL (Sigma-Aldrich) (7 × 104 cells/well). The
following day, cells were infected with HeV (Hendra virus/Australie/Horse/
Hendra) (accession number: MN062017.1) at a multiplicity of infection (MOI) of 0.00025
for 1 h at 37 ◦C. Then, the medium was replaced with DMEM supplemented with 10%
FBS (or endothelial cell growth medium with supplement from Promocell for HPMEC
cells) and cells were replaced at 37 ◦C, 5%CO2, in humid atmosphere. After 48 h, cells
were fixed with 4% PFA for one week. PFA (4%) was changed and cells were fixed for an
additional week. Then, cells were washed in PBS and incubated overnight with 5 µM CR
(Sigma-Aldrich) in 10 mM Hepes, 100 mM NaCl, pH 7.4. Cells were then washed for 1 h
with PBS diluted in water (1/4) and stored at 4 ◦C in PBS before the microscopy analysis.

3. Results
3.1. Liquid-to-Hydrogel Transition by the HeV V Protein and Identification of the Region
Responsible for This Behavior

In view of an in-depth structural characterization of the Henipavirus V proteins, we
purified large amounts of both NiV and HeV V proteins at a relatively high concentrations
(i.e., ≥10 mg/mL, 200 µM) and stored them at −20 ◦C in 20 mM Tris/HCl pH 8, 300 mM
NaCl. Under these conditions, upon thawing the purified V protein samples, we noticed
that HeV V, but not NiV V, formed a hydrogel (Figure 2B). This liquid-to-hydrogel transition
is irreversible as neither dilution nor boiling can restore the liquid state, the latter being
restored only upon addition of GDN at a final concentration of 6 M.

In order to identify the region responsible for this peculiar behavior, a domain ap-
proach was used. Out of the two domains of V (i.e., the NTD and the ZnFD), NTD was
found to be sufficient to form a hydrogel under conditions similar to those under which
HeV V jellifies (Figure 2B). The NTD was subsequently divided into four overlapping
fragments (referred to as PNT1–PNT4) of 110 residues each (Figure 2A). The PNT fragments
were all purified to homogeneity (Figure 2A). PNT3 (aa 200–310) was identified as the
only fragment able to form a gel after a freezing/thawing cycle from a sample at 200 µM
(Figure 2B). This ability is also retained in the context of a PNT3–GFP fusion, although gel
formation was observed at a higher (i.e., 1 mM) protein concentration (Figure 2B).

Bioinformatics analysis carried out using the phase-separation predictors PSPredictor
(http://www.pkumdl.cn:8000/PSPredictor/) [60], catGranule (http://s.tartaglialab.com/
update_submission/365826/b2ed515dd0) [61], and FuzPred (http://fuzpred.med.unideb.
hu/fuzpred/upload_fasta.php) [62] all identified the HeV V protein and its NTD as capable
of undergoing phase separation (Supplementary Table S2). In accordance with the experi-
mentally observed inability of the NiV V protein to form a gel upon a freezing/thawing
cycle under conditions in which the HeV V protein does so, all the above-listed predic-
tors consistently returned a lower phase-separation score for NiV V compared to HeV V
(Supplementary Table S2).

Surprisingly, when the PNT3 sequence was analyzed on its own, only FuzPred pre-
dicted it as a sequence with a significant LLPS propensity (see Supplementary Table S2). In
spite of the fact that two out of three predictors do not identify PNT3 as a phase-separating
protein, its ability to jellify can be rationalized in light of bioinformatics analyses that
unveiled the presence of a low complexity region (enriched in Glu) encompassing residues
240–307 (Figure 2A). Low complexity domains are indeed known to drive the physiolog-
ically reversible assembly of IDPs into membrane-free organelles, liquid droplets, and
hydrogel-like structures [41,62,67–70]. In addition, PNT3 contains a stretch of three con-
tiguous tyrosines (aa 211–213 of V) and two non-contiguous tyrosines at positions 238

http://www.pkumdl.cn:8000/PSPredictor/
http://s.tartaglialab.com/update_submission/365826/b2ed515dd0
http://s.tartaglialab.com/update_submission/365826/b2ed515dd0
http://fuzpred.med.unideb.hu/fuzpred/upload_fasta.php
http://fuzpred.med.unideb.hu/fuzpred/upload_fasta.php
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and 250 (Figure 2A). The well-established effect of tyrosines [71] and, more generally, of
π-orbital containing residues [72–74] in promoting phase separation provides an additional
conceptual piece to rationalize the behavior of PNT3.
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Figure 2. (A) Schematic organization of the HeV V protein (top) and SDS-PAGE analysis of puri-
fied proteins (bottom). The intrinsically disordered N-terminal domain (NTD) and the zinc finger
domain (ZnFD) are represented as a narrow and large box, respectively. The various overlapping
fragments within the NTD herein generated are shown. The amino acid sequence of PNT3 is shown,
with the most amyloidogenic region, as predicted by FoldAmyloid [63], Aggrescan [64], and Arch-
Candy [65] (see Section 3.7.), framed in yellow. The low complexity region, as identified by SEG [66],
is underlined. Tyr residues are shown in green, acidic residues in red, basic residues in blue, and
phenylalanines in pink. SDS-PAGE analysis of the purified PNT1-4 fragments of PNT33A and of
PNT3-GFP. Abbreviation: MM, molecular mass markers. (B) Hydrogels formed upon freezing and
thawing of either purified V, NTD, PNT3 (all at 200 µM), or of purified PNT3-GFP (at 1 mM).

3.2. Phase-Separation Abilities of PNT3

Protein-containing gels can result from the maturation of liquid condensates deriving
from liquid–liquid phase separation (LLPS) [38,41,75]. We thus first assessed whether
PNT3 phase separates and then investigated the conditions under which this phenomenon
occurs.

After 1 h of incubation at RT in the presence of a crowding agent (i.e., 30% PEG300),
PNT3 was found to phase separate in the 80–240 µM range and to form a hydrogel at
320 µM (see inset in Figure 3A). Phase separation can be quantified by turbidity mea-
surements (Figure 3A) that show that the phenomenon is dependent on both protein
and PEG concentration, with a PEG concentration of 20% having no significant impact.
We next assessed whether PNT3 retains the ability to phase separate in the absence of
a crowding agent and investigated the impact of salt and temperature. To this end, tur-
bidity measurements were carried out at 340 nm, a wavelength that is more sensitive to
protein aggregation than 600 nm [76]. As shown in Figure 3B, the turbidity increases in a
concentration-dependent manner even in the absence of PEG. Interestingly, salt does not
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seem to significantly affect the ability of the protein to form condensates, at least in the con-
centration range herein explored, suggesting that the phenomenon relies on hydrophobic
rather than electrostatic interactions. The formation of phase-separated condensates was
slightly enhanced at 37 ◦C (Figure 3B).
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Figure 3. Phase-separation abilities of PNT3. (A) Turbidity measurements of PNT3 samples at
different concentrations either in the absence or in the presence of increasing PEG300 concentrations
after 1 h of incubation at RT. (B) Aggregate formation in PNT3 samples at different concentrations
either in the absence or in the presence of increasing concentrations of NaCl after 1 h of incubation
at 37 ◦C (continuous lines) or at RT (dotted lines). (C,D) present the FRAP analysis of an Alexa-
Fluor 488-labeled PNT3 sample at 100 nM after a one-week incubation at 37 ◦C. (C) Fluorescence
recovery curves of two condensate (blue and red) and two control (yellow and green) regions. Insets:
fluorescence images of condensate at t = 0 s and t = 100 s, and bright-field image of the condensate.
Scale bars: 10 µm. (D) Fluorescence recovery curve of PNT3-AF488 condensates. Typical error bars
represent the standard deviation (SD) of measurements on four different regions of the condensate,
including the blue and red regions shown in panel C.

Turbidity measurements cannot discriminate between liquid and solid condensates.
In order to assess the nature of the PNT3 condensates, we performed FRAP experiments
(Figure 3C,D and Supplementary Movies S1 and S2). From the evolution of the fluorescence
intensity within the region of interest (Figure 3C), the rate of (or half-time for) fluorescence
recovery of a photobleached component and the extent of fluorescence recovery (referred to
as the mobile fraction) can be derived. Fast exchange rates (in the second range) and high
percentages (~80%) of mobile fraction characterize liquid-like assemblies. The immobile
fraction value observed (78.54 ± 2.44%) is consistent with a solid-like state (Figure 3D). The
low amplitude of the error bars obtained from measurements on four different condensate
regions (Figure 3D) indicates that the condensate was spatially homogeneous in terms
of its material properties. These experiments, beyond shedding light onto the nature
of the PNT3 condensates, also confirmed the ability of PNT3 to phase separate in the
absence of crowding agents and revealed that the process takes place even in the sub-
micromolar concentration range, although a prolonged incubation period at 37 ◦C was
required. However, neither turbidity nor FRAP measurements enable the distinguishing
between amorphous and non-amorphous aggregates.
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3.3. Fibrillation Abilities of PNT3

Taking into account that solid-like condensates resulting from phase separation can
nucleate amyloid-like fibrils [38,75], we analyzed the ability of PNT3 to bind the amyloid-
specific dye CR [77]. Binding of CR to cross β-sheet structures is known to lead to hyper-
chromicity and a red shift of the absorbance maximum [77].

PNT3 was indeed found to form macroscopically observable condensates that sed-
iment on the bottom of Eppendorf tubes and that bind CR (see arrow in Figure 4A). To
quantify this phenomenon, the red shift of the absorbance maximum in the CR spectrum
of a sample containing PNT3 was spectrophotometrically measured. The addition of PNT3
does indeed promote a significant, though moderate, shift in the CR spectrum from 497 nm
to 515 nm (Figure 4B). These observations provide the first hints suggesting that PNT3 can
form β-enriched/amyloid-like structures. Interestingly and surprisingly, PNT3 was found
to be unable to enhance the fluorescence intensity of Thioflavin T, another amyloid-specific
dye [78], in a robust and reproducible manner.
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Figure 4. (A) CR binding by purified PNT3 and PNT33A. Proteins were incubated at 40 µM in
the presence of 5 µM CR for 3 weeks at RT in 50 mM sodium phosphate pH 6.5, 5 mM EDTA.
The arrow points to the dense phase on the bottom of the tube that binds the CR observed for
PNT3 but not for PNT33A. (B) Fold increase in the ratio between the absorbance at 515 and the
absorbance at 497 nm, with respect to a sample containing CR alone (at 5 µM), of a PNT3, or PNT33A,
or NTail (control) sample at 20 µM after 1 h of incubation at 37 ◦C. Note that PNT3 and PNT33A

were incubated for 1 week at 37 ◦C before the addition of CR. The error bar corresponds to the
standard deviation, with n = 9 for PNT3 and PNT33A, and n = 5 for Ntail. The four asterisks denote a
statistically significant difference (p < 0.0001) (one-way ANOVA test). (C) Output was provided by
ArchCandy [65] when submitting the amino acid sequence of PNT3. The three contiguous tyrosines
within the amyloidogenic EYYY motif, which were targeted for mutagenesis, are circled. (D) TEM
micrographs of a PNT3 or PNT33A sample at 200 µM after a 56-h incubation at 37 ◦C.

To achieve additional insights on the secondary structure content of PNT3, we
recorded the far-UV CD spectra of PNT3 as a function of time (Figure 5). The CD spec-
trum of a freshly purified sample of PNT3 was typical of an IDP, as illustrated by the
very pronounced negative peak at 200 nm and low ellipticity in the 190–200 nm region
(Figure 5). After a 24-h incubation at 37 ◦C, a dramatic decrease in the signal was observed
with no concomitant change in the spectral shape. This phenomenon likely arises from the
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formation of fibrils that cannot be crossed by the polarized light and was also observed
in the case of phase-separated Pro-Arg dipeptide repeats [69]. Note that the possibility
that the loss of signal might arise from protein degradation was checked and ruled out by
SDS-PAGE (data not shown). After an additional 48-h incubation, only a slight decrease in
the overall spectral intensity was observed, suggesting that the events that concurred to
reduce the signal mostly took place during the first 24 h. The overall shape of the spectra
does not change, which suggests that the species that contributes to the signal maintains its
prevalently disordered nature. By contrast, the possibility that structural transitions can
occur within the fibrillar species escaping detection by CD cannot be ruled out.
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Figure 5. Far-UV circular dichroism (CD) studies of PNT3 (A) and PNT33A (B). The spectra were recorded in 10 mM sodium
phosphate pH 6.5 at 37 ◦C. Protein concentration was at 0.06 mg mL−1 (4 µM). The spectra shown in cyan correspond to a
freshly purified PNT3 or PNT33A sample recorded immediately after elution from the SEC column. The spectra shown in
light and dark blue were recorded from the same samples incubated at 37 ◦C for 24 h and 72 h, respectively. Note the much
more pronounced decrease in the signal for the spectrum at 24 h of PNT3 compared to PNT33A. MRE (Θ) is expressed in
deg cm2 dmol−1.

Negative staining transmission electron microscopy (TEM) unequivocally confirmed
the presence of amyloid-like fibrils (Figure 4D). Altogether, these data provide strong evi-
dence for the presence of amyloid-like polymers as the structural basis of phase-separated
solid-like PNT3 condensates. Notably, fibril formation does not require a liquid-to-hydrogel
transition, indicating that phase-separated condensates nucleate amyloid-like fibers in
the liquid state. Considering gelation occurs upon a freezing/thawing cycle of a freshly
purified sample in the pre-fibrillation state, it seems that the fibrillation process is not a
prerequisite for gelation.

3.4. Small-Angle X-ray Scattering Studies of PNT3

In view of achieving a better description of the evolution of the conformational prop-
erties of PNT3 over time, we carried out SAXS studies. Synchrotron SAXS data were
collected from a PNT3 sample at two different concentrations (1 and 2 mg mL−1) and
at different times of incubation (from 1 h to 10.5 h) at 37 ◦C (Figure 6 and Supplemen-
tary Figure S2). At 2 mg mL−1 (132 µM), the calculated radii of gyration (Rg) obtained
after 1 h (Rg = 3.34 ± 0.1 nm) and 1.5 h (Rg = 3.01 ± 0.08 nm) of incubation are consistent
with the value expected for a monomeric form of PNT3 in a disordered state according
to Flory’s equation (Rg = 3.26 ± 0.03 nm) [58]. After 2 h of incubation, higher order
oligomers/aggregates dominated, as judged from the intensity increase in the low-angle re-
gion of the scattering curves (Figure 6A) and from the shape of the total scattered intensities
plots (Figure 6B). By contrast, at 1 mg mL−1 (66 µM), higher order oligomers/aggregates
were detected only after 4.5 h (Supplementary Figure S2A,B). Indeed, at this concentration,
the monomeric form persisted for up to 3 h of incubation according to the calculated Rg
(Figure 6C, inset). In agreement, the forward scattering intensity at zero angle I(0), which
is proportional to the mass of the scatterer, increased faster and to a larger extent for the
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sample at 2 mg mL−1 (Figure 6C). The kinetics of the formation of oligomers and/or fibrils
was thus accelerated at a higher protein concentration.
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For the samples containing higher order oligomers/aggregates and suffering from
high polydispersity, the Rg were calculated at the lowest angles so as to characterize the
biggest species and the derived values (see Material and Methods section) were used to
draw the normalized Kratky plots (Figure 6D and Supplementary Figure S2C). Surprisingly,
at the higher protein concentration, the PNT3 sample incubated for 1 h at 37 ◦C seems
to be almost globular, as judged from the bell shape of the plot (Figure 6D), a finding in
contrast with the calculated Rg that is close to the value expected for an IDP (Figure 6C,
inset). By contrast, after 1.5 h of incubation, PNT3 appeared, as expected, to be disordered,
as inferred from the presence of a plateau in the normalized Kratky plot (Figure 6D). At
the lower protein concentration, the protein remained disordered for up to 2 h and then
appeared to be almost globular after 3 h of incubation (Supplementary Figure S2C). Again,
the bell-shaped curve observed after 3 h of incubation is in contrast with the calculated Rg
value (Figure 6C, inset) that reflects a disordered state. This puzzling behavior may have
arisen from the poor signal-to-noise ratio arising in its turn from the polydispersity of the
samples.

The curves obtained for the sample at 2 mg mL−1 incubated for 2 h and up to 4.5 h pro-
gressively lost their initial shape, becoming more and more linear in the studied q.Rg range
(Figure 6D), consistent with the formation of extended particles with a rod-like shape [79].
This observation is supported by the shape of the pairwise distance distribution function
after 4.5 h of incubation that exhibited features typical of rod-like particles (Figure 6E).
This behavior is consistent with the formation of fibrillar species [80]. As expected, the
formation of elongated structures was delayed at 1 mg mL−1 and appeared only after 4.5 h
of incubation (Supplementary Figure S2C).
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Finally, in order to obtain an ensemble description of the monomeric species, we
sought to use the program suite EOM 2.0 [55]. To this end, we used data collected by
SEC-SAXS so as to ensure the maximal monodispersity of the sample. In addition, data
were collected both without any prior incubation at 37 ◦C, so as to enable analyzing the
sample at time zero, and after 1 h of incubation. In both cases, the SEC elution profile
features a major peak corresponding to the monomeric species and an additional peak
corresponding to aggregates (Supplementary Figure S3A). The peak of the monomeric form
is not perfectly symmetric and displays a shoulder at ~10 mL (Supplementary Figure S3A).
In line with this, the I(0) and Rg plot indicates the presence of a low-abundance high-
molecular mass contaminant (Supplementary Figure S3B and data not shown). In order to
remove the contribution of this species to the scattering data, Gaussian decompositions
were performed using US-SOMO [50]. The resulting scattering curves display linearity
in the Guinier region (Figure 7A and Supplementary Figure S3C), thereby allowing for a
meaningful estimation of the Rg.

The Rg of PNT3, as derived from the Guinier plot (Figure 7A, inset), is 3.35 ± 0.03 nm,
a value nearly identical to that obtained from the in-batch SAXS studies for the sample at
2 mg mL−1 after 1 h of incubation (Rg = 3.34 ± 0.1 nm). Incubation of the sample for 1 h at
37 ◦C led to the formation of a higher amount of aggregates but did not cause any variation
of the scattering profile of the monomeric species as shown by the CorMap p-value (0.111)
(Supplementary Figure S3A,C). The latter is a measure of goodness-of-fit that estimates the
differences between one-dimensional spectra, independently of explicit error estimates,
using only data point correlations [81].

At time zero, PNT3 was disordered as judged from the presence of a plateau in both the
Kratky–Debye (Figure 7B) and normalized Kratky (Figure 7C) plots. This conclusion holds
true also after 1 h of incubation, as the corresponding scattering curve is superimposable
to the one obtained without any prior incubation (Supplementary Figure S3C).

The scattering curve of the monomeric form of PNT3 as obtained at time zero was
thus used as input for EOM (Figure 7D). From an initial pool of 10,000 random-coil
conformations, EOM selects a sub-ensemble of conformers that collectively reproduces
the experimental SAXS data and represents the distribution of structures adopted by the
protein in solution. The average SAXS scattering curve back-calculated from the selected
sub-ensemble correctly reproduces the experimental curve (Figure 7A) as shown by the
plot of residuals (Figure 7A, bottom panel) and by the CorMap p-value (0.62). The final
ensemble consists of eight conformers (of which six are unique).

The Rg distribution of the selected sub-ensemble, as obtained from two independent
EOM runs, is almost unimodal, centered on ~35 Å, and similar to that of the initial pool
of random-coil conformers (Figure 7D). The similarity of the Rg distributions obtained in
different EOM runs attests to the reproducibility of the selection process and hence the
reliability of the inferred conformational information.

The distribution of the maximum particle sizes (Dmax) of the selected ensemble ranges
from ~50 to 200 Å, centered on ~100 Å (Figure S3D). The selected ensemble exhibits a high
flexibility (Rflex = 88.4 %), a value similar to that of the initial pool (87.2%, Rσ = 1.04) and
consistent with pure random-coil conformations.

In conclusion, SAXS experiments show that PNT3 was monomeric and disordered in
the solution, adopting a typical Gaussian chain distribution of its parameters. However,
it rapidly aggregates in a concentration-dependent manner to form rod-like particles, a
behavior compatible with the formation of fibrillar species. Moreover, these experiments
did not enable the capturing of any transition state between the monomeric and fibrillar
form of PNT3, indicating rapid aggregation kinetics.
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Figure 7. SEC-SAXS analysis of the monomeric form of PNT3. (A) Scattering intensities of PNT3 as resulting from
the Gaussian deconvolution (blue) and EOM fit (red line). The bottom panel shows the plot of residuals between the
deconvoluted scattering curve and the curve back-calculated from the EOM ensemble. Insert: Rg determination according
to the Guinier approximation. (B) Kratky–Debye plot. (C) Normalized Kratky plot. Black lines indicate the maximum of
a bell-shaped curve observed for globular proteins. (D) Rg distribution of the ensemble selected by EOM (blue, average
Rg = ~35 Å) and of the initial random coil pool of conformers (grey, average Rg = ~34 Å). Three representative low-resolution
conformers are shown. The structures were drawn using Pymol 2.0.1 (https://pymol.org/2/) [82].

3.5. Nuclear Magnetic Resonance (NMR) and Negative-Staining Transmission Electron
Microscopy (TEM) Studies of PNT3

We next carried out negative-staining TEM and heteronuclear NMR studies to directly
document fibril formation as a function of time and to reveal any possible concomitant
structural transition.

We thus recorded the 1H-15N HSQC spectra of a uniformly labeled PNT3 sample
after various incubation times at 37 ◦C. As shown in Figure 8, a time-course analysis of
the sample did not reveal any significant chemical shift variations of the signals. Rather,
an overall progressive reduction in cross-peak intensities was observed with increasing
incubation time. The observed reduction in peak intensities is reminiscent of that observed
in CD studies (see Figure 5) and is likely attributable to the formation of fibrillar species
that no longer contribute to the solution-state NMR signals, as already observed in the
case of phase-separated droplets containing the N and P proteins from measles virus [83].
In the spectrum recorded after 56 h of incubation, some secondary signals also appeared,
which are likely associated to the presence of multiple phases. Interestingly, the intensity
variation was not uniform for all the signals and is likely more significant for the residues
involved in the formation of the core of the fibrils, whose identification requires and awaits
assignment of the PNT3 resonances.

https://pymol.org/2/
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Figure 8. 1H-15N HSQC spectra of a 100 µM PNT3 sample in 50 mM phosphate buffer at pH 6.5, 5 mM EDTA after 0
(A, black), 8 (B, red), 27 (C, green), and 56 (D, orange) h of incubation at 37 ◦C. The HSQC spectrum of the sample at time 0
is shown in black in all panels. The peak intensities ratio between the amide protons signals of the sample recorded after 8
(B), 27 (C), and 56 (D) h of incubation at 37 ◦C, and those of the sample at time 0, are shown on the sides of panels (B), (C),
and (D), respectively. The intensity variation of four representative peaks is shown in the plot present in panel (A) and the
associated peaks are indicated by arrows in the spectrum. The spectra were recorded at 310 K. Insets: negative-staining
TEM micrographs of a PNT3 sample at 200 µM incubated at 37 ◦C for 0, 8, 27, and 56 h in the same buffer.

A concomitant analysis with negative staining TEM unambiguously showed the
progressive formation of amyloid-like fibrils. While those fibrils became progressively
more abundant over time, their diameter (12–17 nm) seemingly remained unvaried.

3.6. Impact of SDS and Heat-Shock Protein 70 (Hsp70) on PNT3 Fibrils

Extreme stability is a hallmark of pathogenic amyloid fibers (see [84,85] and references
therein cited). In addition, yeast ultra-stable amyloids, derived from the low complexity
sequences associated with transcription factors and RNA-binding proteins, have also
been described [86]. These prion-like amyloid fibers share a common insensitivity to the
solubilizing effects of SDS.

In order to investigate the SDS sensitivity of PNT3 fibers, heavily polymerized prepa-
rations of PNT3 (i.e., 100 µM after 56 h of incubation at 37 ◦C) were filtrated through
a membrane allowing for the passage of only monomeric and oligomeric forms with a
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diameter of less than 200 nm. As shown in Figure 9A, a very small amount of protein
was found to pass through the filter when the fibers were diluted in standard buffer and
filtrated immediately. In contrast, following incubation in the presence of 2% SDS at 37 ◦C
for 10 min, the amount of UV-adsorbing material passing into the filtrate increased. These
results suggest that the fibers are at least partly depolymerized into monomers and smaller
oligomers by SDS treatment.

Figure 9. (A) Absorbance at 280 nm of the filtrate of a sample of PNT3 at 100 µM after 56 h
of incubation at 37 ◦C before (dashed line) and after (continuous line) exposure to 2% SDS, and
10 min incubation at 37 ◦C. Exposure of SDS enables more material to pass through the filter.
(B) Aggregation index of a fibrillated sample of PNT3 at 100 µM before and after incubation at RT
either in the presence or in the absence of 2% SDS. Exposure to SDS reduces the aggregation index.
The error bar corresponds to the standard deviation with n = 5. The asterisks denote a statistically
significant difference with respect to the sample without SDS (* p < 0.0265; *** p < 0.0004, one-way
ANOVA test). (C) Micrographs of a PNT3 sample at 200 µM after 56 h of incubation at 37 ◦C either in
the absence or in the presence of 5 mM (1.44 mg mL−1) SDS.

In a similar manner, the incubation of a fibrillated PNT3 sample (as obtained after
incubation for 72 h at 37 ◦C) in the presence of 2% SDS led to a decrease in the aggregation
index compared to a sample incubated in the absence of SDS (Figure 9B). These results
therefore confirm that SDS is capable of at least partly disassembling aggregated species,
with this effect being discernible immediately after the addition of the detergent (Figure 9B).
The disassembly effects were further increased after 1 h of incubation and even more pro-
nounced after 24 h of incubation (Figure 9B). A time-course analysis as a function of hours
showed that the disassembly effect reached a plateau as soon as after 2 h (Supplementary
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Figure S4). The ability of SDS to depolymerize PNT3 fibers is further supported by TEM
studies that revealed that in the presence of 5 mM, SDS fibers disappeared (Figure 9C).
Indeed, the analysis of up to ten grid squares revealed the presence of as few as two small
fibers all over. Thus, in the presence of SDS, PNT3 fibrils showed a low stability, in line
with previous observations on stress granule proteins [87] and on α-synuclein, tau, and
Aβ42 fibrils [88].

Therefore, although PNT3 fibers share morphological similarities with the prion-like
fibers broadly described in the literature, they appear to be more fragile.

In light of previous studies that documented the ability of chaperons and, in particular,
of the major inducible heat shock protein 70 (Hsp70) to inhibit or delay fibril formation by
prion-like proteins [89–94], we sought at ascertaining whether human Hsp70 has an impact
on the fibrillation process of PNT3. In line with expectations, TEM studies showed that in
the presence of Hsp70, the formation of fibrils was hampered (Figure 10). Specifically, the
addition of hsp70 leads to the disappearance of fibrillar structures in favor of amorphous
assemblies (Figure 10), a scenario already observed in the case of α-synuclein and as
ascribed to the formation of the amorphous aggregates of both α-synuclein and Hsp70 [90].
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3.7. Rational Design of a PNT3 Variant with a Hampered Ability to Form Amyloid-like Fibrils

With the goal of generating a rationally designed, non-amyloidogenic variant of PNT3,
we carried out a bioinformatic analysis. Taking into account the ability of prion-like do-
mains (PLDs) (i.e., IDRs enriched in Asn and Gln residues) to drive fibrillation [38,41,95–98],
we first analyzed the PNT3 sequence using various PLD predictors including LPS, PAPA,
PLAAC, and PrionW (see [99] and references therein cited). No PLD was found within
the PNT3 sequence, indicating that the sequence determinants that drive the fibrillation
of PNT3 are distinct from those of typical PLDs. In search of amyloidogenic regions, we
also used several other computational methods. As a result, we identified the EYYY motif
(aa 210–213) as the common amyloidogenic region consistently predicted by three pre-
dictors. In fact, FoldAmyloid (http://bioinfo.protres.ru/fold-amyloid/) [63], Aggrescan
(http://bioinf.uab.es/aggrescan/) [64], and ArchCandy (https://bioinfo.crbm.cnrs.fr/
index.php?route=tools&tool=7) [65] predicted PEYYY, EYYYG, and EYYYGSGRRGDLS
as the most amyloidogenic regions, respectively (Figure 2A). The ArchCandy predictor
also returned a predicted fibril architecture that involves the three contiguous tyrosines
of the EYYY motif in the first β-strand of β-strand-loop-β-strand motifs (Figure 4C). The
prediction of ArchCandy relies on the assumption that protein sequences which are able
to form β-arcades are amyloidogenic. Indeed, the core structural element of a majority
of naturally-occurring and disease-related amyloid fibrils is a β-arcade, representing a
parallel and in-register stacks of β-strand-loop-β-strand motifs called β-arches [100].

http://bioinfo.protres.ru/fold-amyloid/
http://bioinf.uab.es/aggrescan/
https://bioinfo.crbm.cnrs.fr/index.php?route=tools&tool=7
https://bioinfo.crbm.cnrs.fr/index.php?route=tools&tool=7
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Taking into account the role of aromatic residues in promoting the homotypic aggre-
gation of aggregation-prone regions (APRs) via β-strand interactions [101], we targeted the
triple tyrosine motif for mutagenesis and replaced these tyrosines with three alanines to
yield the PNT33A variant. All three used computational predictors, suggesting that these
mutations will decrease the amyloidogenicity of the native PNT3 protein. The purified
PNT33A variant (Figure 2A) lost the ability to form macroscopically visible, phase-separated
condensates that bind CR (Figure 4A). CR shift assays confirmed that the variant has a
reduced ability to bind CR, although it still binds the dye more than the NTail control
(Figure 4B). Finally, TEM studies showed that the variant has a significantly reduced ability
to form amyloid-like fibrils (Figure 4D). As expected, in light of the much-reduced ability of
PNT33A to form fibrils, only a moderate signal decrease was observed in the CD spectrum
of the variant following a 24-h incubation at 37 ◦C compared to PNT3 (cf. Figure 5A,B).

3.8. CR-Staining of Transfected and Infected Mammalian Cells

Taking into account the fact that virtually every protein can phase-separate and form
amyloid-like fibrils, provided that a sufficiently wide range of experimental conditions is
explored [85], we reasoned that in vitro fibril formation by PNT3 might merely reflect this
general property of proteins and hence be devoid of functional relevance. As a first step
towards the assessment of the ability of PNT3 to also form fibrils in a cellular context, we
carried out transfection experiments of HEK 293T cells. CR-staining experiments showed
that cells transfected to express PNT3 capture CR more than cells transfected with an
empty vector (Figure 11), providing clues about the formation of PNT3 fibrils also in a
cellular context. Surprisingly, cells transfected with a construct driving the expression
of the PNT33A variant that has a significantly lower ability to form fibrils in vitro still
appeared to be able to capture CR, although the intensity of the staining appeared to be
slightly lower compared to PNT3 transfected cells (Figure 11). The difference in staining
between PNT3 and PNT33A transfected cells could be better appreciated when cells where
stained 72 h after transfection (Supplementary Figure S5). In this case, indeed, cells
transfected to express the variant appeared clearly less stained (Supplementary Figure S5),
although at this late stage of transfection, much fewer cells were present, possibly due to
the cytotoxicity of the overexpressed protein that resulted in the cell detachment. Note
that the immunofluorescence analysis ruled out the possibility that the reduced CR capture
by PNT33A transfected cells might have arose from a reduced expression of the mutated
protein (Supplementary Figure S6A–C).
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Worthy to note, cells transfected to express the full-length V protein were also found
to capture CR (Figure 11 and Supplementary Figure S5). Notably, they even appeared to
capture more CR than cells transfected by the PNT3 construct. The immunofluorescence
analysis of cells transfected by the V construct (see Supplementary Figure S6D) revealed
that the V protein was expressed at levels comparable to those of PNT3 (and PNT33A). The
more pronounced CR capture by cells expressing V might thus reflect a higher intrinsic
fibrillation propensity of the full-length protein compared to its PNT3 region, a possibility
that will be explored in future studies.
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Of even more relevance, CR capture was also observed in the case of cells infected
with HeV (Figure 12). As shown in Figure 12, infected cells were much more stained at 48 h
p.i. than non-infected (mock) cells. Note that we chose to use a very low MOI (0.00025) to
limit the very high cytopathic effects of HeV. As a result, not all cells were infected and
hence not all cells captured CR. In further support of a biologically relevant phenomenon,
syncytia induced by the co-expression of HeV F and G proteins in HEK 293T cells captured
a very low amount of CR compared to the infected cells, thus ruling out the possibility that
CR capture can merely reflect a cellular stress consecutive to the formation of virus-induced
syncytia (Supplementary Figure S6E).
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We further confirmed the observations made in the infected HEK293T cells and also
in human pulmonary microvascular endothelial cells (HPMEC), which are prototypic of
one of the main primary targets of Henipavirus infection (Supplementary Figure S7). Cells
were infected at the same MOI and both fixation and staining were performed 48 h after
infection. Here again, syncytia, which reflects the most infected cells, were found to capture
significantly more CR than other cells (Supplementary Figure S7).

Altogether, these data provide hints supporting the formation of amyloids-like fibrils
also in cellula.

4. Discussion

In this paper we showed that the HeV V protein undergoes a liquid-to-hydrogel
transition and mapped the region responsible for this behavior to the long IDR of V and
specifically to residues 200–310 (PNT3). PNT3 was shown to phase-separate in vitro into
solid-like condensates, as shown by FRAP. These condensates bind the amyloid-specific
dye CR and TEM revealed that PNT3 forms amyloid-like fibrils. Interestingly, while PNT3
was found to bind CR, thioflavin T-binding assays yielded erratic and non-reproducible
results. In this regard, it is noteworthy that some amyloid-like fibrils, such as those formed
by the fused-in-sarcoma RNA-binding protein (FUS) [102] or by the Japanese variant of
Aβ [103], bind poorly (if at all) to thioflavin T, although, so far, no study has investigated
the molecular basis of this behavior in detail. Additionally, vice versa, amyloids that are
not stainable with CR have been described as well [104].

The behavior of the rationally designed PNT33A variant, which was found to have a
much reduced ability to form fibrils, provides insights into the nature of the interactions
driving fibril formation and their architecture, and enables identifying the YYY motif as
being likely part of a hydrophobic core. Converesely, the fact that the substitution of the
triple tyrosine motif only reduces but does not fully abrogate the ability of PNT3 to form
amyloid-like fibrils advocates for a scenario whereby other motifs and/or sequence at-
tributes, that remain to be identifed, contribute to fibrillation. At the same time, it provides
hints pointing to the ability of the triple alanine motif to still contribute to the formation of
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a hydrophobic core, although the latter appears to be much less stable compared to that
formed by the wt protein.

Gelation can occur with or without phase separation [105]. In gelation driven by
phase separation, multivalent proteins condense into dense droplets and gels form within
droplets. In this case, proteinaceous condensates resulting from LLPS are referred to as
undergoing “maturation” towards a gel or solid state, the phenomenon being referred to
as phase transition [38,41,43,75]. However, gels can also form without a condensation or
demixing of proteins into droplets. Gelation driven by phase separation requires lower
protein concentrations and seems to be the biologically preferred mechanism for forming
membraneless organelles [105].

Phase-separated condensates can nucleate amyloid-like fibrils, the nucleation process
being enhanced in droplets or gels due to local concentration increase effects. A recent
example is provided by the SARS-CoV2 nucleocapsid protein that forms amyloids in
phase-separated droplets [106]. In line with this, IDRs are known to form amyloid-like
structures via the formation of hydrogels [87,107,108]. Additionally, vice versa, amyloid-
like fibers are also known to be able to form highly stable hydrogels [67,109]. As such,
gelation and fibrillation appear to be intertwined, but understanding which process is the
trigger and which is the result remains difficult. To add an additional layer of complexity,
depending on the conditions, amino acid sequence, and post-translational modifications,
a given protein can condense into different high-order structures, such as liquids, glassy
solids, or amyloid fibers, whose molecular dynamics, internal organization, interaction
strength, and reversibility are distinct [38,75,110]. Although liquid-to-solid transitions can
be functional (see [111] for an example), an increasing number of evidences point to liquid-
to-hydrogel transitions as the underlying pathological protein aggregation associated with
neurodegenerative diseases [44,112].

In the present study, we have primarily documented fibril formation by PNT3 without
exploring the early stage of the process or the precise relationships between fibrillation and
gelation. Future efforts will investigate the early steps and the kinetics of the process. In
addition, future efforts will attempt to disentangle the complexity of the system both by as-
certaining whether solid-like condensates result from the maturation of short-lived droplets
resulting from LLPS and by establishing to which extent phase separation accelerates fibril
formation.

Irrespective of the mechanism driving fibrils formation, it is tempting to speculate
that the ability of PNT3 to form amyloids may constitute at least one of the possible molec-
ular mechanisms underlying the pathogenicity of HeV. Worthy to note, the CR-staining
experiments herein provide hints suggesting that PNT3 fibrils not only form in vitro but
also in the cellular context. In fact, cells transfected to express PNT3 captured CR. Most
importantly, cells infected with HeV were positive to CR-staining as well, indicating that
the formation of amyloid-like structures does not arise from the typically higher protein
expression levels achieved upon transfection but also occurs in the context of infection.
Although we cannot formally rule out the possibility that CR-staining may arise from
virus-induced fibrillation of cell components, either alone or in combination with viral
proteins, the fact that transfected cells expressing PNT3 captured CR does not advocate in
favor of this scenario. CR-capture by infected cells can arise from fibrils that are formed by
the V, W, or P protein (or a combination of them): indeed, considering all these proteins
share the NTD and hence the PNT3 region, it is conceivable that they all can undergo
fibrillation. In line with these expectations, we have recently shown that the W proteins
form amyloid-like fibrils in vitro and in fibrillar aggregates in the nuclei of transfected
cells [21]. Future studies will assess the ability of the P protein to fibrillate and establish
possible synergistic contributions to the PNT3 fibrillation that are brought by the CTD of
these proteins and, in particular, by the P multimerization domain that might enhance this
process through multivalency, a key property in phase separation (see [113] and references
therein cited).



Biomolecules 2021, 11, 1324 25 of 33

What could be the functional impact of fibril formation? The formation of amyloids
by viral proteins is a rather poorly explored field, with very few examples having been
reported so far. The first reported example pertains the human papilloma virus (HPV)-16
E7 protein (i.e., the major oncoprotein of HPV). HPV E7 was indeed shown to be able to self-
assemble into defined spherical oligomers with amyloid-like properties [114,115], although
the possible functional implications of this phenomenon were only discussed in terms
of the amyloid-cancer connection [116] and not in relation with the viral disease. After
this first study, PB1-F2 from the influenza A virus was reported to form amyloids [117].
PB1-F2 is an intrinsically disordered accessory protein involved in virulence by inducing
mitochondria-mediated immune cells’ apoptosis. Amyloids of PB1-F2 were shown to
disrupt cell membranes both when added to cells and in infected cells, and to be highly
cytotoxic [117]. A link was established between the formation of amyloid-like assemblies
and the membrane-lytic activity of the protein, thereby contributing to shed light on the
mechanisms underlying amyloid toxicity. In subsequent studies (reviewed in [118]), the
ability of viral proteins to form fibrillar aggregates was shown to be associated with various
functional effects such as the blockade of necroptosis or apoptosis via the formation of
hybrid amyloids with host-cell amyloids (RHIM-containing proteins in members of the
Herpesviridae family) [119–121] and the blockade of the stress granule assembly (VP35
from Ebola virus) [122]). In addition, fibrillar aggregates made of the NSs protein from
Rift Valley Fever virus were found to suppress host cell RNA synthesis through host
transcription factors’ sequestration [123]; later on, a functional link was established between
the formation of NSs amyloids and virulence, in which NSs fibrils were shown to suppress
IFN responses through the silencing of IFN-β expression and the degradation of PKR [124].

In light of the functional role of the V and W proteins in counteracting the IFN-
mediated host innate immune response, it is tempting to hypothesize that the fibrillar
aggregates, driven by the PNT3 region and formed in infected cells, might sequester key
cell proteins involved in the antiviral response. Future efforts will be devoted to identifying
host proteins interacting with PNT3-driven fibrils and to unravelling the functional impact
of fibril formation in the cellular context.

The relative fragility of PNT3 fibers, pinpointed by their sensitivity to SDS, might
reflect a role as regulatory switches, i.e., fibers can form and disassemble in response to
changes in the surrounding environment and this can play a role in the (in)activation of spe-
cific cellular pathways [38,40,125]. If fibers result from the maturation of droplets resulting
from LLPS, then their ability to disassemble might impart metastability (i.e., reversibility)
to membrane-less organelles containing these amyloidogenic proteins. Given the link
between material properties and pathological conditions [85,126], cells have evolved mech-
anisms to monitor and control the fluidity of phase-separated droplets. Consistent with
this, many ribonucleoprotein (RNP) bodies and granules are enriched in ATP-dependent
chaperones such as Hsp70 and Hsp40 [127]. In agreement, the viscoelasticity of nucleoli
and the dynamics of stress granule components exhibit a strong ATP dependence [128,129].
Our results showing that Hsp70 impairs fibril formation by PNT3 are in line with these
previous findings and may reflect a mechanism whereby variations in Hsp70 intracellular
levels, typically occurring during viral infections (see [130] and references therein cited),
may control the efficiency of the formation of fibrils containing the P/V/W protein. In
addition, the ability of Hsp70 to hamper fibril formation by PNT3 may also be linked to
the well-documented protective role of this chaperone against (paramyxo)viral infections,
for which Hsp70-mediated enhancement of virus transcription and replication ultimately
was paradoxically found to contribute to virus clearance through the stimulation of both
innate and adapatative immune responses [130–134].

In Mononegavirales, transcription and replication take place in viral factories, e.g., cyto-
plasmic inclusions in which viral replication and assembly take place, and where specific
viral and cellular proteins, along with nucleic acids, concentrate. They serve as platforms
for optimized viral replication via selective uptake or the exclusion of components and
shielding from the host immune defense [135–141]. In many Mononegavirales members,
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viral factories were shown to have liquid properties and to result from LLPS of their N
and P proteins [118,142–149], with IDRs playing a critical role in the process [118]. As
already mentioned, the minimal region of HeV V, conferring the ability to phase separate
(i.e., PNT3), is also part of the P protein that is a constituent of the viral factories of heni-
paviruses [150]. It is conceivable that the ability of PNT3 to phase separate may also be
functionally coupled to the formation of viral factories. As the P protein is an essential
component of the replicative complex of Mononegavirales and considering the presence of
large IDRs is a widespread and conserved property in Mononegavirales P proteins [151–165],
the present results promise to have broad implications for a large number of important
human pathogens.

5. Conclusions

The present study provides an additional example, among the few reported so far, of a
viral protein forming amyloid-like fibrils, thereby significantly contributing to enlargement
of our currently limited knowledge of viral amyloids. It also constitutes an asset for future
research avenues that will tackle the functional impact of fibrils formation in terms of
virus-induced cytopathic effects and host innate immune response evasion. In this regard,
the availability of the PNT33A variant, which has a much-reduced fibrillation ability, is a
valuable tool as it opens up the possibility of establishing possible functional links between
fibrillation and virulence.
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