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The pandemic caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) has challenged the speed at which
laboratories can discover the viral composition and study health
outcomes. The small ~30-kb ssRNA genome of coronaviruses
makes them adept at cross-species spread while enabling a ro-
bust understanding of all of the proteins the viral genome enco-
des. We have employed protein modeling, molecular dynamics
simulations, evolutionary mapping, and 3D printing to gain a
full proteome- and dynamicome-level understanding of SARS-
CoV-2. We established the Viral Integrated Structural Evolu-
tion Dynamic Database (VIStEDD at RRID:SCR_018793) to
facilitate future discoveries and educational use. Here, we high-
light the use of VIStEDD for nsp6, nucleocapsid (N), and spike
(S) surface glycoprotein. For both nsp6 and N, we found highly
conserved surface amino acids that likely drive protein–protein
interactions. In characterizing viral S protein, we developed a
quantitative dynamics cross-correlation matrix to gain insights
into its interactions with the angiotensin I–converting enzyme
2 (ACE2)–solute carrier family 6 member 19 (SLC6A19) dimer.
Using this quantitative matrix, we elucidated 47 potential func-
tional missense variants from genomic databases within ACE2/
SLC6A19/transmembrane serine protease 2 (TMPRSS2), war-
ranting genomic enrichment analyses in SARS-CoV-2 patients.
These variants had ultralow frequency but existed in males hemi-
zygous for ACE2. Two ACE2 noncoding variants (rs4646118 and
rs143185769) present in ~9% of individuals of African descent
may regulate ACE2 expression and may be associated with
increased susceptibility of African Americans to SARS-CoV-2.We
propose that this SARS-CoV-2 database may aid research into the
ongoing pandemic.

The current SARS-CoV-2 outbreak has become a global pan-
demic. There is an urgent need to understand the proteins

coded by SARS-CoV-2 and how they can be targeted for inter-
vention. Coronaviruses belong to the Orthocoronavirinae sub-
family, which lies under the Coronaviridae family. Their 26–
33-kb genome consists of positive-sense, single-stranded RNA,
coding for nonstructural and structural proteins. To date, seven
coronaviruses have been discovered that are capable of human-
to-human transmission. Four of these cause the common cold
(HKU1, NL63, OC43, and 229E), whereas the other three
(MERS-CoV, SARS-CoV, SARS-CoV-2) can cause more severe
respiratory illnesses resulting in multisystem organ failure and
death (1). SARS-CoV-2 shares 79% genomic similarity with
SARS-CoV, linking it to the bat and human SARS-CoV annota-
tion. Both SARS-CoV and SARS-CoV-2 bind to the ACE2 re-
ceptor through the spike (S) protein (2, 3). The ubiquitous pres-
ence of Coronaviridae in many animals and its relatively small
genome makes these an ideal infective agent as it adapts and
evolves into a highly effective pathogen. In the case of the
SARS-CoV-2 genome, 96.2% of the genome is shared with a bat
coronavirus, suggesting a zoonotic origin (4, 5). Initial disease
propagation was detected in Wuhan, China, a major transpor-
tation hub with over 11 million people. The population density
and the heavy traffic into and out of the city made for a large out-
break that spread quickly throughout the world (6, 7). This com-
bination has given rise to a once-in-a-generation pandemic.
Insights can be gathered from SARS-CoV and MERS-CoV

regarding SARS-CoV-2 illness severity. Studies in mouse mod-
els have led to speculation that SARS-CoV and MERS-CoV
infections cause a delayed type I interferon response, which
allows for early uncontrolled viral replication. This leads to an
influx of neutrophils and monocytes/macrophages, resulting in
a hyperproduction of cytokines causing pneumonia, acute re-
spiratory distress syndrome, and global sepsis. In SARS-CoV-2,
patients experience similar changes in neutrophils and lympho-
cytes, indicating that SARS-CoV-2 infection severity may
closely depend on a delayed response of the innate immune
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system (8). Early Chinese data provide remarkable insights into
how SARS-CoV-2 drives lethality through a sepsis-driven mul-
tiple-organ failure model (9), including early spike in ferritin,
cytokine storm, and injury to the cardiac system (10, 11).
Understanding of the SARS-CoV-2 genome could provide
critical insights into the complex interplay with the host ge-
nome driving disease progression in severe risk group
patients, allowing for the identification of potential target
sites for intervention.
Several Coronaviridae proteins have been highly studied as

targets of intervention to prevent infection spread. One of these
proteins, the N protein, is of particular interest as it interacts
with host ribosomal subunits and has been shown to suppress
nonsense-mediated decay of viral mRNA by the host cell (12,
13). Enzymes encoded by SARS-CoV-2, such as the 3-chymo-
trypsin (3C)-like protease, RNA-dependent RNA polymerase,
and papain-like protease, are potential targets of drugs (14).
Proteins of the virus, including N, nsp9, nsp13, nsp15, ORF3a,
and ORF6, have been shown to target innate immune signaling
pathways (13). The S protein, surface-expressed, enters cells
through ACE2/SLC6A19 membrane receptor contact similarly
to SARS-CoV, but with higher binding affinity (2). This interac-
tion has the potential to be therapeutically inhibited through
antibody neutralization (15). ACE2 is highly expressed in the
heart, small intestine, kidney, thyroid, breast, arterial walls, adi-
pose, and testis, with a lower number of cells in lung, oral/nasal
cavity, pancreas, and liver (16). Nasal epithelial cells play a criti-
cal role in SARS-CoV-2 (17). In the lung, ACE2 is expressed in
the type 2 pneumocytes, putative progenitor cells of alveolar
epithelia linked to lung fibrosis pathways (18, 19). The spike-
ACE2 complex is further processed by TMPRSS2 for internal-
ization of the virus, which has been postulated to be a target
site with protease inhibitors (20). Currently, it is not well-
understood how the spike-ACE2 complex is impacted by viral
or human variants, suggesting a need for further research.
As we learnmore about viral pathogenesis, hopefully the cur-

rent outbreak will be brought under control and future out-
breaks prevented. In this current work, we developed the Viral
Integrated Structural Evolution Dynamic Database (VIStEDD)
for the SARS-CoV-2 proteome, enriching VIStEDD using evo-
lutionary insights of viruses and human variant mapping for
potential functional outcomes.

Results

SARS-CoV-2 dynamicome database

A total of 24 proteins of SARS-CoV-2 (Table 1) were run
through our standardized workflow (Fig. 1), consisting of pro-
tein structure assessment, setting of protein protonation at pH
7.4, energy minimization in water with NaCl, 20 ns of molecu-
lar dynamics simulations, analysis of the movement trajecto-
ries, sequence identification from the nonredundant (nr) data-
base, mapping of conservation onto structure/dynamics, and
assessment of interactions with known binding partners. We
extracted 55,390 sequences homologous to the SARS-CoV-2
proteins that consist of 9,701 amino acids (Table 1). The
uneven sequence depth for each of the proteins made it neces-
sary to utilize a z-score conservation calculation for each of the

amino acids in the proteins so as to normalize, using the aver-
age (z-score of 0) as the starting point (yellow), followed by z-
scores of 0–0.5 (yellow), 0.5–1 (bright orange), 1–1.5 (orange),
1.5–2 (dark orange), and .2 (red) (Fig. 2). The dynamics and
evolution for each protein were integrated together into VIS-
tEDD, available at RRID:SCR_018793. VIStEDD has been built
for the addition of future viruses.Within the SARS-CoV-2 page
is a list of each of the 24 proteins in the format of Table 1, where
each protein can be clicked to assess data. On the page for each
protein is a link to the individual protein data folder system, a
video of the protein rotating with conservation, details of the
protein function, a widget to purchase a 3D print of the protein
at cost of production, the amino acid movement from molecu-
lar dynamics simulations (mds), and the table of data for each
amino acid of the protein. If protein interactions structures are
known, information is present with a link to protein–protein
interaction (PPI) data. For example, within the nsp10 data
(RRID:SCR_018793, SARS-CoV-2, nsp10), structures of nsp10
interacting with either nsp14 or nsp16 are available, both of
which show highly conserved contact sites of interaction. As
we continue to advance VIStEDD, we anticipate the addition of
more material within each page.
The raw data of each protein is the strength of VIStEDD (drive.

google.com/drive/folders/1dXBJpLo3bay1JQ9BckUsVcTViv6P0
w1q?usp=sharing). For each protein present in VIStEDD, we
have generated in the root folder of the protein a fasta sequence
file, PDB file of the protein structure, protein models with conser-
vation (sce =YASARA scene, pse- PyMOL scene), high-resolution
image of conservation, molecular video of the conservation rotat-
ing around the y axis (mpg and mp4), and compiled conservation
and dynamics data for each amino acid (csv or tab-delineated).
Five folders of data are also present: 1) 3D, containing a vrml 3D
printing file (also zipped) of conservation mapped on the protein;
2) genomics, containing aligned reads of the species sequences
extracted; 3) mds, containing all of the trajectory files for the mds;
4) report, containing all of the analysis files from YASARA assess-
ment ofmds; and 5) tab, containing all of the tab-delineated analy-
sis files of the mds. All of the 3D files can be ordered from Shape-
ways with the web links provided in Table S1. Another folder
(PPI) contains data for all of the mds performed on protein–pro-
tein interactions, including spike-ACE2-SLC6A19, TMPRSS2, the
polymerase complex, the N complex, and ACE2_S_Database con-
sisting of 235 speciesACE2 sequencesmodeledwith spike interac-
tion, energy-minimized, and binding or potential energy calcu-
lated. A tab-delineated file is in the ACE2_S_Database to label the
species for each numbered complex.
From the mds of all proteins, a total of 6,594,981 atoms

including water, there is an average movement per amino acid
(root mean square fluctuation (RMSF)) of 3.2 Å with 3 amino
acids correlated per residue.0.9 based on dynamics cross-cor-
relation calculation. The secondary structures of the proteins
are relatively similar from the beginning of the simulation com-
pared with the end (Fig. 3A), with the largest percentage coiled
(C, 45.02%) followed by helix (H, 25.42%), b-sheet (E, 15.08%),
turns (T, 13.44%), and three-turn helix (G, 1.05%). On their
own, before PPI, the nsp7, nsp8, nsp9, E, 3C-proteinase, and
RNA-directed RNA polymerase are the most helical and
b-sheet–containing proteins, whereas protein 3a, ORF8, nsp2,
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nsp6, and nsp4 are the most disordered with coil composition
(Fig. 3B). Several of the proteins contain high movement of the
structure (ORF6, ORF7a, nsp8, and nsp2), and two of the pro-
teins (papain-like proteinase and spike glycoprotein) have
more overall lower movement indicative of hydrophobic col-
lapse, with a high number of correlated amino acids per residue
(Fig. 3C).
The largest proteins of SARS-CoV-2 contain the highest

number of sequences extracted for homology, including the pa-
pain-like proteinase, RNA-directed RNA polymerase, spike gly-
coprotein, and helicase (Fig. 3D). Several of the proteins,
including E, protein 3a, protein 7a, ORF8, and ORF6, have a
low number of mapped sequences (Fig. 3D), whereas ORF10
has no other identified sequences. Plotting the conservation
relative to the mds-based movement, RMSF, for each of the
9,701 amino acids of SARS-CoV-2 can be used to identify criti-
cal sites of proteins under high selection that might be targeted
(Fig. 3E). Highly dynamic and conserved amino acids are the
prime location for critical PPI. Therefore, we mapped sites of
high movement, .5 Å, with conservation 1–1.5 (gray), 1.5–2
(orange), or .2 (red) S.D. values higher than the mean of the
protein. Clustering these sites to the percentage of amino acid
reveals a likely high selection of dynamic amino acids (Fig. 3F).
The nsp2 protein with low coverage of species has some sug-
gested PPI contacts conserved in the range of 1–1.5 S.D. con-
servation. Proteins nsp7 and nsp8, which are known to contact
the RNA-dependent RNA polymerase (Fig. 1), have several
amino acids conserved in the 1.5–2 S.D. range with high dy-
namics, as the mds of PDB 6m71 and 7btf show stability and
correlation to PPI within VIStEDD.

nsp6 and conserved

The papain-like protease and nsp6 have conserved sites .2
S.D. values (Fig. 3F). The SARS-CoV-2 nsp6 protein is known
to interact with multiple ATPases of vesicle trafficking (21) and
interacts with nsp3 and nsp4 to induce double-membrane
vesicles (22). Nsp6 protein also interacts with the Sigma recep-
tor, which is thought to regulate ER stress response (21) and
blocks ER-induced autophagosome/autolysosome vesicle that
restricts viral production, leading to the generation of small
autophagosome vesicles, thereby limiting their expansion (23).
To date, no structures of nsp6 have been solved even though
the protein is present in 2,558 Coronaviridae genomes. We
identify two regions with minimal conserved hydrophobic col-
lapse (Fig. 3G) consisting of mostly coiled secondary structure
(Fig. 3B). These two regions of conservation (Fig. 3G) cluster
together with multiple charged and aromatic amino acids that
would tend to drive PPI (Fig. 3,H and I). Moving forward, these
nsp6 sites could be critical regions to target with therapeutics
for the broadCoronaviridae proteins.

Nucleocapsid (N) data insights

Both the S and N proteins have multiple sites conserved .2
S.D. with high dynamics (Fig. 3F), with N having around 4% of
its amino acids falling into this category. These two proteins
are further dissected below. The SARS-CoV-2 N protein has
been shown to interact with multiple RNA processing andT
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stress granule proteins (21). Using 2,261 sequences (Fig. 4A),
we mapped four highly conserved regions of N (Fig. 4B). The
conservation of region 1 contributes to a highly conserved
hydrophobic, aromatic core consisting of several b strands (Fig.
4,C andD). Conserved region 3 consists of several serine amino
acids that are likely phosphorylated and a potential 14-3-3

binding motif (Fig. 4D). Molecular dynamics of N suggests
three regions of structural organization, with region 1 corre-
sponding to a domain with structural folding (Fig. 4E). Amino
acids 331–333 were the most conserved yet dynamic site of N
(Fig. 4F). The C-terminal region of N is known to form a multi-
mer complex (Fig. 4G) with amino acids 331–333 fitting into

Figure 1. SARS-CoV-2 structural/evolution dynamicomeworkflow. Shown are data for the RNA-directed RNA polymerase.Ă

Figure 2. SARS-CoV-2 structural/evolution models. Shown in the middle is the viral RNA with protein-coding genes in red. Gray lines connect the RNA
region to each protein. Colors on themodels are based on z-score levels of conservation for each protein based on extracted sequences (Table 1). Gray amino
acids fall below the average conservation (value,0) for each protein; yellow, 0–0.5; light orange, 0.5–1; orange, 1–1.5; dark orange, 1.5–2; red,.2.
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contacts of the subunits (Fig. 4H). From the multimer N struc-
ture, conserved amino acids Val-270, Phe-274, Arg-277, Asn-
285, Gly-287, Phe-286, and Asp-288 are clustered and surface-
exposed (Fig. 4I). These sites are likely to contribute to PPI and
warrant future investigations.

Posttranslational modification analysis

Building on our insights for N, we expanded to a systematic
analysis of posttranslational modifications for SARS-CoV-2
proteins that was integrated into our amino acidmatrix insights
(Fig. 5). Current literature on SARS-CoV-2 modifications
focuses on conserved and novel glycosylation and phosphoryla-
tion sites of the S protein (24). With host–pathogen interaction
being regulated by modifications, it is now a target for pharma-

cotherapy. Data from SARS-CoV suggest modifications in the
N, M, E, 3a, nsp4, and nsp9 proteins that have yet to be
explored in SAR-CoV-2 (25–27). Specifically, the N protein
was shown to undergo extensive acetylation, phosphorylation,
sumoylation, cleavage, and ADP-ribosylation (28, 29). Inhibi-
tion of several cellular kinases (CK2 and CDK) was shown to
impact proper localization of the N protein, trapping it within
the nucleus of the host cell, further highlighting the need for N
protein phosphorylation to carry out proper function (30).
With these PTMs playing a vital role in proper virion assembly,
they must be further explored and understood in SARS-CoV-2
to elucidate all options for targeted pharmacotherapy.
With high filters on each tool, we identify 186 NetPhos3.1

(phosphorylation), 15 SUMO1.0 (Sumo binding or SUMOyla-
tion), 27 SNO 1.0 (S-nitrosylation), 28 YNO21.0 (tyrosine

Figure 3. SARS-CoV-2 structural/evolution statistics. A, the percentage of secondary structure for all proteins at the start ofmolecular dynamics simulations
(gray) and at the end (red). Classes consist of coil (C), helix (H), b-sheet (E), turn (T), and 3-turn helix (G). B, breakdown for each protein for secondary structure
percentage that is coil (x axis) versus helix/b-sheet (y axis). Those with themost helix/beta sheet or coiled are labeled. C, breakdown ofmolecular dynamics sim-
ulation data for each protein showing the average amino acid RMSF (Å, x axis) versus the average number of correlated amino acids per residue (y axis). Pro-
teins with high movement are labeled. D, plot of the number of amino acids in each protein versus the number of BLAST-extracted sequences. Labeled are
those that have high numbers of identified sequences (black) and those with only a few (red). E, the conservation z-score (x axis) versus the RMSF (y axis) for all
amino acids analyzed in SARS-CoV-2. The lines represent cutoffs used for F, with those.5 Å for RMSF and 1–1.5 (gray), 1.5–2 (orange), or.2 (red) value for z-
score cutoffs. F, the percentage of each protein’s amino acids that fall into identified groups from E, representing identified highly dynamic and conserved
amino acids. G, conservation/dynamics of nsp6 amino acids. Shown at the top is the RMSF of each amino acid of nsp6 with colors corresponding to cutoffs of E
and F. Shown at the bottom is a sliding window calculation of 7 amino acids for additive z-scores to map two highly conserved sites (shown in H and I). H and I,
proteinmodel of nsp6 with z-score coloring of Fig. 2. Shown are the two sites of high conservationwith amino acids labeled.
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nitration), 273 CCD1.0 (calpain cleavage), 36 Polo1.0 (polo-like
kinases), 34 PUP1.0 (pupylation), 20 TSP1.0 (tyrosine sulfa-
tion), 25 PAIL2.0 (lysine acetylation), and 41 Lipid1.0 (lipida-
tion) predicted modifications to SARS-CoV-2 viral proteins
(Fig. 5A) with data available within our VIStEDD tools. Few
modification predictions occur at highly conserved amino acids
(Fig. 5B) or within 5-amino acid conserved motifs (Fig. 5C)
based on our evolutionary analysis. Moreover, there are also
very few unique modification predictions to the SARS-CoV-2
sequence not found throughout our evolutionary conservation.
We have identified 22 modification predictions that are highly
conserved and 28 sites poorly conserved, including multiple
phosphorylation, lipidation, and acetylation events (Fig. 5, D–
F). Themost highly conservedmotif predicted to bemodified is
Ser-816 of spike (Fig. 5G), where the amino acid is found sur-
face-exposed on a loop of the protein (Fig. 5, H and I). Future
work is desperately needed to further refine the modification
sites within SARS-CoV-2.

SARS-CoV-2 S interaction with host ACE2, SLC6A19, TMPRSS2
genomics

The most highly researched protein of SARS-CoV-2, the S
surface glycoprotein, is of most interest as it is the only portion
outside of the virus that could be recognizable by B and T cells.
The coronavirus S protein is the primary determinant of viral
tropism and is responsible for receptor binding and membrane
fusion. It is a large (;180-kDa) glycoprotein that is present on
the viral surface as a prominent trimer, and it is composed of
two domains, S1 and S2 (31). The S protein interacts with
ACE2 to enter into cells, forming contacts with the ACE2-
SLC6A19 dimer complex (Fig. 6A), where the presence of
SLC6A19 is not required for spike-ACE2 binding. ACE2 serv-
ers a chaperone function on SLC6A19 and is able to stabilize

the full ACE2 dimer complex in crystallization (2). We elected
to build a full complex model for analysis to allow for simulta-
neous matrix generation for spike binding and SLC6A19 chap-
erone screening of genomic variants. This protein complex
model was built through the integration of PDB structures
6CRW, 6NB6, and 5X58 for the trimer of spike proteins with
6M17, which shows the interaction of a fragment of spike with
the ACE2-SLC6A19 dimer of dimers. From 236 species of
ACE2, we determined the conservation of ACE2 amino acids,
suggesting poor conservation of the S-ACE2 contact across all
of vertebrate evolution (Fig. 6B). The lack of conservation at
this site also suggests that ACE2 does not likely have a con-
served interaction with another human protein that would
compete with spike for function. Structural mapping of human
variants from 141,456 people of the gnomADv2 database for
ACE2 suggests a few possible variants at the interface of S-
ACE2 interaction (Fig. 6C). To go from qualitative mapping to
quantitative insights into human variants, we utilized mds of S-
ACE2-SLC6A19 complex, determining amino acids that corre-
late in movement between the proteins (Fig. 6D). From these
correlations we calculated the amino acids contributing to S-
ACE interaction (red in Fig. 6, E and F), ACE2 dimerization
(blue in Fig. 6, E and G), and ACE2-SLC6A19 interaction (ma-
genta/yellow in Fig. 6, E,H, and I).
From this mds data, along with functional variant prediction

tools (PolyPhen2, Provean, SIFT, Align-GVGD, and our con-
servation analysis), we systematically assessed functional
human variants for ACE2, SLC6A19, and TMPRSS2.
TMPRSS2 is involved in cleaving the complex for internal-
ization (20). Of these three proteins, ACE2 is the only one
found on a sex chromosome (X-chromosome), linking it to
male hemizygous status that elevates the impact of genomic
variants. Variants included are linked to protein function

Figure 4. SARS-CoV-2 protein N (nucleocapsid) conserved dynamic amino acids. A, phylogenetic tree of 2,261 sequences extracted from the nr protein
sequence database for N. B, conservation of amino acids based on sequences from A. Four regions of conserved function are identified in red. C, model of N
with conservation (percentage of 2,261 sequences) colored (,50% (gray), 50–60% (yellow), 60–70% (light orange), 70–80% (orange), 80–90% (dark orange),
and.90% (red)). The four regions of B are boxed and labeled in red. D, top conservedmotifs in N. The z-scores for N conservation were placed on an 11-codon
slidingwindow to identify regions of interest in the four conserved regions of B. E, dynamics cross-correlationmatrix (DCCM) of amino acids on the nucleocap-
sid protein assessed with molecular dynamics simulations. F, intersection of conservation and dynamics of the protein with highly dynamic and conserved
amino acids in red. G, multimeric model of N with coloring based on E. H, zoom-in view of black box from F showing amino acids 331–333 identified in D. I, con-
served region 2 from B identifying the top amino acids on the multimermodel.
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(Table 2, Inclusion group = Functional), S contact (Table 2,
Inclusion group = Spike contact), SLC6A19-ACE2 contact
(Table 2, Inclusion group = ACE2 contact), posttransla-
tional modifications (Table 2, Inclusion group = Glycosyla-
tion, Disulfide bond, or Phosphoserine), or known active-
site amino acids (Table 2, Inclusion group = Zinc binding or
Active site).
47 variants are ranked by the maximum allele frequency

within the subpopulations of gnomAD. The ACE2 variant
K26R has the highest allele frequency of any variant within the
table, but the conserved polar basic amino acid at the spike con-
tact likely does not impact binding. This means that there are
only ultra-rare variants in these proteins, with SLC6A19 having
the highest-impact variants at 29, ACE2 with 13, and TMPRSS2
with 5. Outside of the European non-Finnish population, the
East Asian population carries 10 of these variants, “other”
(those individuals not falling into other populations) with 9,
African with 6, Latino with 6, and South Asian with 4. A total of
31 of the variants are predicted with a score of �4 (of 6 maxi-
mum) to be functional variants, 6 at the spike contact of ACE2,
and 5 that would alter a glycosylation signal. Themost interest-
ing ACE2 variant, H378R (rs142984500), is found in 0.019% of
European non-Finnish individuals and has been observed as
hemizygous in 6 males of gnomADv2, is one of the critical resi-
dues of the Zn binding that drives the enzyme’s function, and
has not been previously published.
ACE2’s hemizygous nature warrants an investigation of non-

coding variants that might influence expression. The ACE2

gene contains a 59 region that suggests most gene regulation for
ACE2 to occur within this region (chrX:15,612,899-15,641,393,
hg19). We extracted all noncoding variants followed by an
assessment with RegulomeDB (Table S2). Five total variants are
identified to potentially alter transcriptional regulation by Reg-
ulomeDB score. Two of these variants (rs4646118 and
rs143185769) are found in ;9% of African individuals with
hundreds of male hemizygotes identified within gnomADv3
whole-genome data. This supports the potential for noncoding
variants of ACE2, with a higher allele frequency than that of
coding variants, as contributors to increased susceptibility and
within at-risk populations (African and Male) to SARS-CoV-2
infection.

Discussion

SARS-CoV-2 represents a generational challenge to science,
racing the clock next to a global pandemic that kills ;2% of
those infected. The need to understand the viral structure is
urgent regarding therapeutic targets, repurposing compounds,
understanding zoonotic spread, and identifying gene variant
risk factors in the human host that interact with the pathogen
to increase spread and pathogenicity. In future studies, investi-
gations of known human PPI to SARS-CoV-2, similar to ACE2,
can determine how genetic variations of host proteins impact
the disease course and susceptibility to the virus. Further
insight into the genetics could provide useful information
about the susceptibility or prognosis of those exposed to or
infected with SARS-CoV-2. In this paper, we generated a

Figure 5. Posttranslational modification screening of SARS-CoV-2. A, ranking of functional predicted sites using 10 different tools. B and C, conservation
z-score (B) and z-scores put on a five-codon sliding window for additive motif conservation (C) of each site from A for each tool shown as a box and whisker
plot. D–F, top conserved sites (left) and least conserved sites that are unique to SARS-CoV-2 (right) for functional predictions. Colors of bars correspond to the
tools of A. Each functional amino acid is labeled (protein, variant, secondary structure, and tool annotating PTM). Data are shown for the z-score of conserva-
tion (D), the 5-amino acid sliding window (E), and structural movement (F). G, the highest conserved site throughout the database found on spike at Ser-816
with conservation of amino acids around the site. H and I, highlighting the phosphorylation prediction (magenta) on spike for Ser-816 (H) with a zoom-in view
of the site on one of the monomers (I).
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SARS-CoV-2 structural dynamicome database, integrating
structural/dynamic insights with viral evolution for 24 proteins
coded by SARS-CoV-2. VIStEDD has elucidated insights that
include potential druggable targets, educational material
describing each protein, and human variants that may impact
the viral life cycle.
We show here two highly dynamic protein regions that have

high conservation, indicative of PPI sites critical to viral infec-
tion and spreading. The first is the largely understudied role of
the nsp6 conserved amino acids that interact with ATPases of
vesicle trafficking (21). Evolutionary conservation throughout
thousands of Coronaviridae sequences is found in two regions
of the protein that are likely found near each other in 3D space,
yet to date, no protein structures have ever been solved of nsp6
and publicly shared, representing a challenge to the structural
biology community. ATPases are required for both endocytic

and exocytic portions of the viral infections (32) and integral to
the release of viral RNA into the cell (33). The conserved amino
acids are found on surfaces exposed on the I-TASSER–gener-
ated predicted structure of nsp6, including multiple charged
or aromatic residues. The conserved sites of nsp6 and the
ATPases they interact with can likely be therapeutically tar-
geted (21). We also show here that the N protein has several
highly conserved amino acids that contribute to a multimer
structural organization with surface-exposed conserved amino
acids and the N-terminal region of the protein that may reflect
sites of targeting to alter the ribosomal control of the protein.
Second, this new database presents many opportunities for

use in education. VIStEDD was generated through a team part-
nership known as Characterizing our DNA Exceptions (CODE)
with the intent of bringing the mds and evolutionary data to
undergraduate students across the United States. The data can

Figure 6. Spike-ACE2-SLC6A19 dynamics/evolution to human variants. A, structural model of the spike (magenta), ACE2 (red/orange), and SLC6A19
(green/blue) in lipid membranes. Black box, region zoomed in in B and C. B, conserved amino acids in 236 species ACE2. Cutoff colors are as follows: 2 (highest)
(red), 1.5 (dark orange), 1 and 1.25 (light orange), and 1 and 0.5 (yellow).C, missense variants from 141,456 people for ACE2. Cutoffs for allele frequency are
shown on the model. Several yellow low frequency variants can be seen at the ACE2/spike contact.D, dynamics correlationmatrix of interacting sites through-
out simulation of the dimer complex. High correlations are shown in yellow. E, amino acids in red are those that correlate in D between S and ACE2; those
shown as side chains and labeled have human variants. The four boxes are the sites for F–I. F, zoom-in view of variants in ACE2 predicted to alter spike contact
(red). Lys-26 is labeled inmagentawith its uncertain but relatively common variant. G, contact sites for ACE2 dimerization (blue). H and I, contact sites between
SLC6A19 (magenta) and ACE2 (yellow) at two different regions.
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be used by anyone as the full data set is publicly available (drive.
google.com/drive/folders/1dXBJpLo3bay1JQ9BckUsVcTViv6P0
w1q?usp=sharing). From these data, we provide high-resolution
figures of conservation-mapped, structural files that can be
opened in either YASARA or PyMOL tools andmolecular videos
of the molecules rotating with conservation. For the 3D files, we
have provided a vrml file for each protein that can be fed to any
3D printer, with our file containing colors for conservation as
well. To expedite 3D printing, we have provided all of the vrml
files to Shapeways to allow at-cost printing of the proteins (Table
S1), where the files can be used for education.
For this work, we utilized an integration of known PDB-

based structures using YASARA modeling tools followed by
energy minimization within a physiological environment. This
allows for reduction of crystal packing forces and merging the
structural knowledge of the PDB into a single starting protein.
Where no templates exist in the PDB (9 of 24 proteins), we uti-
lized the already existing database of I-TASSER SARS-CoV-2
proteins.

From these structures, our primary goal was to move qualita-
tive structures into a quantitative matrix that can be integrated
with evolutionary data. This strategy allows for a single amino
acid matrix of functional data for every protein of the SARS-
CoV-2. To do that, we utilized 20 ns of molecular dynamics
simulations, allowing for tracking of the constraints and corre-
lations of each amino acid using the starting structure. These
20 ns of time all provide dynamic equilibrium as can be
observed within the source data (tab-delineated folder, file
x_analysisres.tab). Whereas 20 ns of time is not enough to
give insights into allosteric movement of the protein, it pro-
vides robust quantitative maps of amino acid constraints of the
initial protein templates. In the future, we plan to integrate the
growing wealth of structural knowledge of inhibitor-bound
enzymes, protein–protein interactions, and SARS-CoV-2 pro-
tein allosteric structures into our integrated amino acid matrix
using additional starting points of the protein structures for 20-
ns simulations. The five protein–protein interaction simula-
tions shownwithin this paper were the beginning of that work.

Table 2
Top functional genomic variants of ACE2, SLC6A19, and TMPRSS2

The inclusion group consists of protein contacts based on molecular dynamics simulation correlations, protein modifications based on UniProt, and functional predic-
tions. Damaging calls are a maximum of 6 based on conservation, PolyPhen2, Provean, SIFT, and Align-GVGD. Hemizygote count, maximum allele frequency, and popu-
lation are from gnomADv2.

Inclusion Protein Chromosome rsID AA Damaging calls Hemizygote count Maximum allele frequency Maximum population

Spike contact ACE2 X rs4646116 K26R 0 282 0.011876795 Ashkenazi Jewish
Functional SLC6A19 5 rs781039193 W530C 5 0 0.000868709 Latino
ACE2 contact SLC6A19 5 rs374559483 P351S 1.5 0 0.000640872 African
Functional SLC6A19 5 rs374527866 R513S 4.5 0 0.000603136 East Asian
Functional SLC6A19 5 rs141487939 T180M 5.5 0 0.000601878 African
Functional SLC6A19 5 rs200783817 P73L 5.25 0 0.000451309 East Asian
Functional SLC6A19 5 rs752378013 P109L 5.5 0 0.000437158 East Asian
Functional SLC6A19 5 rs141497538 P230S 5.5 0 0.000417246 Other
Functional SLC6A19 5 rs552867213 R328H 5 0 0.000401091 European (Finnish)
Glycosylation ACE2 X rs761944150 N546D 2.5 1 0.00036784 African
Functional SLC6A19 5 rs374976872 A271V 5.5 0 0.000300933 East Asian
Functional SLC6A19 5 rs199795977 A329T 5 0 0.000289519 Ashkenazi Jewish
Functional SLC6A19 5 rs1253340252 Y209S 4 0 0.000278242 Other
Functional SLC6A19 5 rs139182948 R95W 5 0 0.000277701 Other
Functional SLC6A19 5 rs369804798 S314L 5.5 0 0.000276932 Other
Functional SLC6A19 5 rs142164435 R328C 5.5 0 0.000247927 European (non-Finnish)
Functional SLC6A19 5 rs762989809 R57C 5.25 0 0.000218126 East Asian
Glycosylation ACE2 X rs143158922 N103H 0.5 0 0.000210615 African
Zinc binding ACE2 X rs142984500 H378R 4.5 6 0.000194968 European (non-Finnish)
Spike contact ACE2 X rs143936283 E329G 0 1 0.000190476 Other
Functional SLC6A19 5 rs1403845937 W56R 5 0 0.000164582 Other
Functional SLC6A19 5 rs201936518 R95Q 5 0 0.00016372 Other
Functional SLC6A19 5 rs375879452 T256M 5.5 0 0.000150708 East Asian
Functional TMPRSS2 21 rs762844469 G391E 5.25 0 0.000144601 Latino
Spike contact ACE2 X rs1348114695 E35K 0 1 0.000144436 East Asian
Functional SLC6A19 5 rs757679627 G93R 5.5 0 0.00013885 Other
Functional TMPRSS2 21 rs1306483136 S460R 5.25 0 0.000138351 Other
Functional SLC6A19 5 rs202220597 T243M 5.5 0 0.000130693 South Asian
Functional SLC6A19 5 rs200745023 L242P 5 0 0.000130685 South Asian
Functional SLC6A19 5 rs778015723 P149L 5.5 0 0.000130651 South Asian
Functional ACE2 X rs200745906 P263S 5.25 0 0.000125798 European (non-Finnish)
Functional SLC6A19 5 rs765501634 E405K 5.25 0 0.000120318 African
Functional SLC6A19 5 rs748703513 T330I 5 0 0.000114404 European (non-Finnish)
Active site ACE2 X rs1395782023 E375D 3.25 1 0.000109585 Latino
Functional SLC6A19 5 rs769457402 E165K 5.25 0 0.000108755 East Asian
Functional TMPRSS2 21 rs145171279 T459I 5.5 0 0.000108731 East Asian
Functional SLC6A19 5 rs756920378 I325T 5.25 0 0.000108731 East Asian
Glycosylation TMPRSS2 21 rs1326192818 N213K 1.5 0 8.67553E205 Latino
Spike contact ACE2 X rs781255386 T27A 0 0 7.30327E205 Latino
Glycosylation SLC6A19 5 rs766784542 N158T 2.5 0 6.53381E205 South Asian
Functional ACE2 X rs766319182 M270V 4 2 6.44787E205 European (non-Finnish)
Disulfide bond TMPRSS2 21 rs906113408 C297Y 6 0 5.99988E205 Latino
Glycosylation SLC6A19 5 rs146176472 N258S 1.5 0 4.06207E205 African
Functional ACE2 X rs756358940 I291K 5.25 2 3.75756E205 European (non-Finnish)
Phosphoserine SLC6A19 5 rs754779609 S17C 2 0 3.57373E205 European (non-Finnish)
Spike contact ACE2 X rs961360700 D355N 4.25 0 2.59141E205 European (non-Finnish)
Spike contact ACE2 X rs778030746 I21V 0 2 2.44636E205 European (non-Finnish)

SARS-CoV-2 dynamicome

11750 J. Biol. Chem. (2020) 295(33) 11742–11753

http://drive.google.com/drive/folders/1dXBJpLo3bay1JQ9BckUsVcTViv6P0w1q?usp=sharing
http://drive.google.com/drive/folders/1dXBJpLo3bay1JQ9BckUsVcTViv6P0w1q?usp=sharing
http://drive.google.com/drive/folders/1dXBJpLo3bay1JQ9BckUsVcTViv6P0w1q?usp=sharing
https://www.jbc.org/cgi/content/full/RA120.014873/DC1
https://www.jbc.org/cgi/content/full/RA120.014873/DC1


The biophysical and structural evidence suggested that
SARS-CoV-2 may bind ACE2 with a much higher affinity than
SARS-CoV (34). Our group had previously investigated the
evolution of ACE2 throughout species, including mapping var-
iants within rat populations (35), a model system for studying
the renin-angiotensin aldosterone system (known as the
RAAS). We have expanded those tools here, generating ACE2
models for 235 species from mammals to birds/fish, where
each of the models is energy-minimized with the S protein
interaction. That database can be used by groups to investigate
species where SARS-CoV-2 may be able to enter cells, with
variants that enhance or inhibit binding. With the S-ACE2-
SLC6A19 complex resolved and mds available, a systematic
quantitative map of human variants was created. Few functional
variants were identified in ACE2, SLC6A19, or TMPRSS2. More-
over, none of the variants identified are common, all falling below
1% of the global population. In SLC6A19 or TMPRSS2, these rare
variants would have minimal outcomes as they would rarely, if
ever, reach homozygosity to cause 100% of the proteins to be
influenced by variants. However, ACE2 falls on the X-chromo-
some, linking it to male-specific hemizygous influence. Several of
the top rare ACE2 variants identified within this paper have been
seen to have hemizygous variants, suggesting a dominant out-
come. Whereas functional missense variants in ACE2 are ultra-
rare, noncoding variants reach slightly higher allele frequencies,
namely rs4646118 and rs143185769. This would suggest that as
genome sequencing of patients with SARS-CoV-2 occurs, we
should focus on analysis of ultra-rare missense variants listed
within this paper and more importantly on several likely func-
tional noncoding variants.
Through the quantitative dissection of the SARS-CoV-2–

encoded proteins and their interaction partners, we have devel-
oped a database (VIStEDD) of information that can be used to
advance our knowledge. The amino acid quantitative matrix
knowledge generated from this work can be used to pinpoint
the many human protein interaction partners, mechanisms for
PTMs, screening of SARS-CoV-2 functional mutational drift,
and drug development to sites that are unique to SARS-CoV-2
or conserved across the coronavirus family. From the ability to
regulate these interactions with pharmaceutical intervention to
understanding how host genomics can influence the viral biol-
ogy, VIStEDD will allow for more robust insight into SARS-
CoV-2 biology.

Experimental procedures

Protein modeling and molecular dynamics simulations

Similar to our laboratory’s analysis of human variants, we
have assessed the SARS-CoV-2 proteins using our previous
established workflow (36). Protein modeling was performed by
utilizing YASARA homology modeling (37, 38) when a struc-
tural template was available that matched the sequences listed
in Table 1. Homology modeling is the preferred platform as it
allows molecules associated with the proteins to be included in
the protein structure, including Zn ions critical to folding of Zn
fingers within the papain-like proteinase, nsp10, RNA-directed
RNA polymerase, helicase, and guanine-N7 methyltransferase.
The transmembrane portions of S were manually cleaned and

clustered, allowing for insertion into a phosphatidylethanolamine
membrane before mds using the YASARA md_runmembrane
macro. For those proteins without structural homologs, we uti-
lized models that are part of the I-TASSER SARS-CoV-2 data-
base (39). Each of these models was then fed through homology
modeling in YASARA to normalize energetic predictions to the
homology models. mds were performed on each of the proteins
in YASARA (38) using the AMBER14 force field (40), 0.997 g/ml
explicit water, NaCl at 0.9 mass fraction, a pH of 7.4 for protona-
tion predictions, saving trajectory files every 25 ps for 20 ns total.
The trajectory files were analyzed with the YASARAmd_analyze
and md_analyzeres macros, generating an HTML file present in
each of the protein report folders. If this report folder is down-
loaded and the HTML file opened, it generates a full report of the
protein dynamics, including multiple figures of analysis. Addi-
tionally, all of the tab-delineated analysis files are within the tab
folder of VIStEDD proteins and the trajectory files, allowing for
reanalysis of trajectory.

Generation of database information

From the models and mds, we generated files for VIStEDD.
Sequences (within the genomics folder of each protein) were
extracted using the sequences listed in Table 1 with BLASTp
against the nr protein sequences and aligned using ClustalW
(41). An amino acid matrix of all sequences was generated in
MEGA (42), followed by calculating the percentage of all amino
acids at each spot that are the same as in SARS-CoV-2. The
conservation of each protein was normalized using a z-score
((value 2 mean)/S.D.) for comparison across all proteins. The
generated models were loaded into YASARA (z-score 0–0.5
(yellow), 0.5–1 (color 166), 1–1.5 (color 157), 1.5–2 (color 145),
.2 (red)) or PyMOL (z-score 0–0.5 (yellow), 0.5–1 (bright or-
ange), 1–1.5 (orange), 1.5–2 (warm pink), .2 (red)), colored
based on conservation, and saved as respective scene files for
the tool. The YASARA colored molecule was saved as a y axis
rotation inmpg and converted into mp4, which is more amena-
ble to PowerPoint. Within PyMOL, the structure was also
exported as a vrml file for 3D printing. Motifs and posttransla-
tional modification predictions for the N protein were gener-
ated using ELM (43) andNetPhos3.1 (44).

Human variant analysis

Models for ACE2 and SLC6A19 were homology-modeled
using PDB 6M17 (S-ACE2-SLC6A19) followed by alignment
back onto the complex. TMPRSS2 was homology-modeled
using YASARA followed by manual correction of the trans-
membrane helix. Each of the two models was embedded into a
phosphatidylethanolamine lipid membrane using the YASARA
macro md_runmembrane followed by mds as done on SARS-
CoV-2 proteins. Vertebrate sequences of the three proteins
were extracted using NCBI orthologs for the transcript, open
reading frames were assessed using Transdecoder (45), and
sequences were aligned using ClustalW codons in MEGA.
Conservation was performed on the data as previously pub-
lished (46). Genomic missense variants were extracted from
gnomADv2 for each of the three genes followed by assess-
ment using PolyPhen2 (47), Provean (48), SIFT (49), and
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Align-GVGD (50). The ACE2 regulatory region was identi-
fied using the Roadmap Epigenomics 18-state model (51), fol-
lowed by the extraction of all gnomADv3 variants and assess-
ment with RegulomeDB (52).

Data availability

All data published in this paper are available at 10.6084/
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