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BACKGROUND: MicroRNAs (miRNAs) regulate expression of many cancer-related genes through posttranscriptional repression of
their mRNAs. In this study we investigate the proto-oncogene MYCN as a target for miRNA regulation.
METHODS: A luciferase reporter assay was used to investigate software-predicted miRNA target sites in the 30-untranslated region
(30UTR) of MYCN. The miRNAs were overexpressed in cell lines by transfection of miRNA mimics or miRNA-expressing plasmids.
Mutation of the target sites was used to validate MYCN 30UTR as a direct target of several miRNAs. To measure miRNA-mediated
suppression of endogenous N-myc protein, inhibition of proliferation and inhibition of clonogenic growth, miRNAs were
overexpressed in a MYCN-amplified neuroblastoma cell line.
RESULTS: The results from this study show that MYCN is targeted by several miRNAs. In addition to the previously shown mir-34a/c,
we experimentally validate mir-449, mir-19a/b, mir-29a/b/c, mir-101 and let-7e/mir-202 as direct MYCN-targeting miRNAs. These
miRNAs were able to suppress endogenous N-myc protein in a MYCN-amplified neuroblastoma cell line. The let-7e and mir-202
were strong negative regulators of MYCN expression. The mir-101 and the let-7 family miRNAs let-7e and mir-202 inhibited
proliferation and clonogenic growth when overexpressed in Kelly cells.
CONCLUSION: The tumour-suppressor miRNAs let-7 and mir-101 target MYCN and inhibit proliferation and clonogenic growth of
MYCN-amplified neuroblastoma cells.
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The transcription factor N-myc, which is encoded by the human
MYCN proto-oncogene, belongs to the Myc family of DNA binding
basic region/helix-loop-helix/leucine zipper (bHLHZip) proteins in
which c-Myc, L-Myc and N-myc are the best characterised
members (Meyer and Penn, 2008). The genomic sequences of
MYCN and c-MYC share wide structural homology. Both genes
consist of three exons, where the first exon is untranslated and
exons 2 and 3 encode the translated regions (Kohl et al, 1986).
N-myc and c-Myc proteins are of similar sizes (464 aa and 454 aa,
respectively). However, the MYCN mRNA is longer, mainly
because of a larger 30-untranslated region (30UTR). In addition
to structural and sequence homologies within the Myc family, the
functions of these proteins are closely related. Myc proteins
heterodimerise with the bHLHZip-protein Max to a transcription
factor complex that binds to specific E-box DNA motifs
(50-CACGTG-30 or variants thereof) and activates transcription of
genes involved in diverse cellular functions, including cell growth
and proliferation, metabolism, apoptosis and differentiation (Bell
et al, 2010; Larsson and Henriksson, 2010). In addition to Myc,

Max also dimerises with the bHLHZip-proteins Mad/Mnt. These
complexes also bind to E-box elements, but repress transcription
through the recruitment of corepressors (Nilsson and Cleveland,
2003). The N-myc protein has recently been shown to repress TrkA
and p75NTR expression by interaction with Sp1 and Miz-1 at
proximal/core promoter regions. In this repression complex,
N-myc recruited the histone deacetylase HDAC1 to silence gene
expression by deacetylating chromatin at the promoter (Iraci et al,
2011). Similar transcriptional repression by N-myc has also been
shown at an Sp1-binding site in the tissue transglutaminase (TG2)
core promoter (Liu et al, 2007).

Given the fundamental role of Myc proteins on cellular processes,
their activity in nontransformed cells needs to be spatially and timely
controlled. Although c-MYC is expressed during all developmental
stages and in a distinct pattern throughout the cell cycle of dividing
cells (Hooker and Hurlin, 2006), MYCN expression is restricted
mainly to the peripheral and central nervous system and epithelial
cells during particular embryonal stages (Stanton et al, 1992).
Expression is controlled at multiple levels, including gene transcrip-
tion through upstream regulators, mRNA turnover, and protein
activation or decay upon phosphorylation of specific protein residues
(Meyer and Penn, 2008).

Dysregulation of Myc activity is an oncogenic hallmark in
human malignancies. Activation of Myc is mainly caused by gene

Received 28 March 2011; revised 13 May 2011; accepted 17 May 2011;
published online 7 June 2011

*Correspondence: Dr C Einvik; E-mail: christer.einvik@uit.no

British Journal of Cancer (2011) 105, 296 – 303

& 2011 Cancer Research UK All rights reserved 0007 – 0920/11

www.bjcancer.com

G
e
n

e
tic

s
a
n

d
G

e
n

o
m

ic
s

http://dx.doi.org/10.1038/bjc.2011.220
http://www.bjcancer.com
mailto:christer.einvik@uit.no
http://www.bjcancer.com


translocations or amplifications, or enhanced protein translation
or stability, leading to overexpression of a structural normal
protein (Vita and Henriksson, 2006; Albihn et al, 2010).
Neuroblastoma is a common childhood solid tumour in which
MYCN is amplified in B15% of cases. MYCN amplification (MNA)
in the tumour is closely related to poor survival of the patients,
despite all modern multi-modal treatment efforts (Maris et al,
2007; Maris, 2010). In contrast, non-amplified (non-MNA), low-
stage neuroblastoma tumours have the propensity to differentiate
into benign subtypes, or regress spontaneously. Paradoxically,
these localised, low-risk tumours also have elevated N-myc
activity. Their MYCN mRNA and protein levels exceed the levels
of high-risk non-MNA tumours with poor outcome, but do not
reach those of MNA tumours (Cohn et al, 2000; Tang et al, 2006;
Westermann et al, 2008). It has therefore been supposed that
neuroblastoma cells with moderately elevated N-myc sustain the
capacity to undergo apoptosis and neuronal differentiation (Edsjo
et al, 2004).

Despite its clinical significance, it is still largely unknown how
MYCN expression is regulated in neuroblastoma. Here, we have
investigated how microRNAs (miRNAs) contribute to the control
of MYCN expression in MNA neuroblastoma cells. MiRNAs are a
class of small (19– 22 nt), non-coding RNA molecules that repress
protein expression through imperfect binding to sequences in the
30UTR of target mRNAs. Most miRNAs are transcribed as long
monocistronic, bicistronic or polycistronic primary transcription
units (pri-miRNAs) by RNA polymerase II, and cleaved by a series
of cellular processing events to produce mature miRNAs (Siomi
and Siomi, 2009). The degree of complementarity between mature
miRNAs and target mRNAs determines the mechanism respon-
sible for blocking protein synthesis. In mammals, miRNA–mRNA
interactions are most often through imperfect base pairing,
resulting in translational repression. It has been estimated that
30% of all human genes are regulated by miRNAs (Lewis et al,
2005).

In the recent years, several studies have been carried out to
investigate how N-myc as a transcription factor affects expression
of miRNAs (Stallings et al, 2010). On the contrary, only little is
known about MYCN as a miRNA target. The tumour-suppressor
miRNA mir-34a has been experimentally validated to directly
target the 30UTR sequence of MYCN (Wei et al, 2008). In addition,
a miRNA binding site for mir-101 has also been reported in the
MYCN-30UTR sequence (Lewis et al, 2005). However, a more
systematic screening for miRNA binding sites and validation
studies of miRNA/MYCN-30UTR interactions have to our
knowledge not been performed. It is well established that cellular
proto-oncogenes are regulated by miRNAs, and that disturbances
in these relations contribute to cancer development.

In this study, we have investigated the 30UTR of the MYCN
proto-oncogene for conserved miRNA binding sites. We estab-
lished several miRNAs as MYCN-controlling miRNAs, and define a
subset with antiproliferative and anticlonogenic properties.

MATERIALS AND METHODS

Cell lines

The MNA neuroblastoma cell lines SMS-KCN, SMS-KCNR, SMS-
KANR, SK-N-BE(2), Kelly and the non-MNA cell line SK-N-AS
were grown in RPMI-1640 medium, MNA IMR-32 and LAN5 in
DMEM medium with 1% NEAA and 2 mM glutamine, and non-
MNA SH-SY-5Y in HAM-F12 with 1% NEAA and 2 mM glutamine.
The embryonic kidney cell line HEK293 was grown in DMEM.
All media were supplemented with 10% FBS. Cells were maintained
in a humidified 37 1C incubator with 5% CO2, supplied with
fresh complete medium every 3 days, and sub-cultured before
confluence was reached.

Genomic DNA from patient samples and neuroblastoma
cell lines

Genomic DNA samples from 39 primary neuroblastoma tumours
(34 MNA and 5 non-MNA) were kindly provided by Professor T
Martinsson (Gothenborg University, Sweden) after informed
consent from the patients and ethical approval by the institution.
Genomic DNA from neuroblastoma cell lines was isolated with the
DNeasy Blood and Tissue kit (Qiagen, Crawley, UK) according to
the manufacturer’s protocol.

Screening for mutations in the MYCN 30UTR

The MYCN 30UTR in each DNA sample was amplified in a 50ml PCR
reaction, using 25 ng genomic DNA, Platinum Taq polymerase
(Invitrogen, Carlsbad, CA, USA) and 10 nM primers (Supplementary
Table 1). Bi-directional sequencing was performed in 10ml
reactions, using 50 ng of purified MYCN 30UTR, BigDye3.1 reagent
(Applied Biosystems, Carlsbad, CA, USA) and 10 nM forward or
reverse primer. Sequences were analysed on an ABI Prism (Applied
Biosystems) using the in-house Sequencing Core Facility.

Exogenously overexpression of miRNAs

The sequences for pre-mir-34a, -34c and -106b flanked by 250 nt
genomic sequence in both directions were amplified from SK-N-
BE(2) genomic DNA using Platinum Taq polymerase (Invitrogen)
and primers as described in Supplementary Table 1. Pre-mir-449a
and -449b, which are expressed from the mir-449 cluster, were
amplified from SK-N-BE(2) DNA as a bi-cistronic mir-449a/449b
sequence (‘mir-449ab’). The PCR products were cloned into the
MCS of the expression vector pcDNA6.2-EmGFP (Invitrogen) by
In-Fusion cloning (Clontech Laboratories, Mountain View, CA,
USA) according to the manufacturer’s recommendations.
Bi-directional DNA sequencing verified all vectors. All other
miRNAs used in this study were purchased as miRNA mimics
(Shanghai GenePharma, Shanghai, China) as listed in Supplemen-
tary Table 1. Overexpression of miRNAs was confirmed by
miRNA-specific RT–qPCR as described (Buechner et al, 2011).

As negative controls, we used pcDNA6.2-EmGFP containing
pre-mir-346 in vector-based miRNA experiments and the Negative
Control mimic (Shanghai GenePharma) for mimic-based expression.

Luciferase/MYCN-30UTR expression constructs

To generate the pMIR-MYCN-UTR vector, the full-length MYCN-
30UTR sequence was amplified from genomic DNA and cloned into
the MCS of the Firefly luciferase expressing pMIR-REPORT
(Ambion, Austin, TX, USA). QuikChange Multi Site-directed
Mutagenesis Kit (Stratagene, La Jolla, CA, USA) was used to
specifically mutate individual miRNA seed sequences. To disrupt
miRNA binding, a two-base mismatch within position 2 –6 of the
corresponding MYCN-30UTR seed sequence was introduced
(Doench and Sharp, 2004) (Supplementary Figure 1). To ensure
complete disruption of miRNA seed sequences in selected non-
rescued cases, we extended the mutations to include a complete
seed mismatch (position 2–8). Mutagenesis was performed
according to the Stratagene’s standard protocol. All mutagenesis
primers are listed in Supplementary Table 1. All mutations were
confirmed by bi-directional sequencing.

Luciferase reporter assay (LRA)

LRAs were performed as previously described (Henriksen et al,
2011). Briefly, HEK293 cells were co-transfected with 20 ng
pGL4.75[hRluc/CMV] (Promega, Madison, WI, USA), 2900 ng
miRNA expression vector or 0.43 ml miRNA mimic (20 mM), and
100 ng of either wild-type pMIR-MYCN-UTR or a mutant variant.
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At 48 h hours after transfection, Renilla and Firefly luciferase
activities were analysed using the Dual Luciferase Assay (Promega).
Each miRNA transfection was done in triplets and independently
repeated at least three times, resulting in at least nine LRAs for
each individual miRNA. Luciferase activities were analysed in
duplicates. Normalisation included two steps: first, the Firefly
luciferase activity was normalised to the Renilla luciferase activity,
and second, the normalised luciferase activity of transfected NC
(pre-mir-346 or Negative Control mimic) was set as relative
luciferase activity of 1. The PASW Statistics 18 software (SPSS Inc.,
Chicago, IL, USA) was used for data analyses and boxplot charts.

Western blotting

Cells were transfected in six-well plates with 5 ml miRNA mimic
(20mM) using a standard Lipofectamine2000 reverse transfection
protocol (Invitrogen). After 48 h, protein expression was deter-
mined by western blotting as previously described (Henriksen
et al, 2011) with primary antibodies against N-myc (1 : 500,
Calbiochem/Merck, Darmstadt, Germany), b-Actin (1 : 1250,
Sigma-Aldrich Corp., St Louis, MO, USA), and the secondary
antibodies IRDye800CW (1 : 5000, Rockland, Gilbertsville, PA,
USA) and Alexa Fluor 680 (1 : 5000, Invitrogen).

Cell proliferation assay

Cell growth was monitored continuously in 16-well E-plates on the
xCELLigence system (Roche, Mannheim, Germany). Kelly cells
were seeded in 160ml media (15 000 cells per well) and transfected
in triplicates 4–6 h later with 60 ml of a transfection mix containing
0.2ml Lipofectamine2000 and 0.6 ml miRNA mimic (20 mM).
Proliferation was recorded automatically as cell index every
30 min for a minimum of 72 h. The cell index is derived from
changes in electrical impedance as the cells interact
with interdigitated microelectrodes integrated on the bottom of
the E-plate.

Clonogenic cell assay

To investigate the capability of single cells to survive and
proliferate after transfection of specific miRNA mimics, cells were
transfected as described and seeded in six-well-dishes in a density
of 200 cells per well. Staining was performed as previously
described (Henriksen et al, 2011).

RESULTS

Mutational screening of the MYCN 30UTR

In order to reveal mutations or single-nucleotide polymorphisms
(SNPs) that could potentially disturb miRNA-mediated suppres-
sion of MYCN expression in neuroblastoma, the entire MYCN-
30UTR sequence from 7 MNA neuroblastoma cell lines (SMS-KCN,
SMS-KCNR, SMS-KANR, SK-N-BE(2), Kelly, IMR-32 and LAN5)
and 39 neuroblastoma primary tumours (34 MNA and 5 non-
MNA) was sequenced. According to the human MYCN germ-line
sequence (Genbank accession no. NM_005378) six cell lines
contained the wild-type MYCN-30UTR sequences, whereas the
LAN5 cell line was found to carry a homozygous point mutation at
position 250, changing a cytosine to a thymine (C250T) (Figures
1A and B). The identical homozygous mutation was found in 35%
of MNA primary tumours (12 of 34) and 20% of non-MNA
primary tumours (1 of 5). The C/T variation at this genomic
position is termed rs922 in the NCBI RefSNP database. We were
not able to detect heterozygous variants at this position, or any
other mutations in the MYCN-30UTR sequence.

Prediction of miRNAs targeting the MYCN 30UTR

As a first step to identify MYCN-targeting miRNAs, we combined
three miRNA target prediction programmes, TargetScan 5.1 (Lewis
et al, 2003), MiRanda (John et al, 2004) and PicTar (Lall et al,
2006), to predict potential miRNA binding sites in the full-length
MYCN-30UTR sequence. TargetScan, which uses site and miRNA
conservation across different species as selection criteria, predicted
43 individual miRNAs with broad conservation among vertebrates,
targeting a total of 14 different conserved miRNA binding sites. We
intersected the TargetScan miRNA seed subset with the predictions
from the MiRanda and PicTar programmes. Of the 14 conserved
binding sites predicted by TargetScan, 13 were also predicted by
one of the other programmes (Figure 2A). To completely cover
these 13 binding sites, we selected 20 individual miRNAs for
experimental validation (Supplementary Table 2). We finally
expanded the panel to include mir-202, a let-7 miRNA family
member conserved only among mammals (Figure 2B).

Experimental validation of MYCN-30UTR target sites
by LRAs

We used LRA to experimentally validate whether the 21 candidate
miRNAs were able to target the MYCN-30UTR sequence. Briefly,
the full-length MYCN 30UTR (909 bp) was cloned into the pMIR-
Report vector downstream of the luciferase gene, generating
pMIR-MYCN-UTR. This vector was co-transfected with either
miRNA mimics or miRNA-expression plasmids into HEK293 cells,
and luciferase activity was measured and compared with co-
transfections with a negative control miRNA. Overexpression of
miRNAs was confirmed by qRT–PCR assays (data not shown). As
shown in Figure 2C, 14 individual miRNAs (representing 9 of the
13 predicted miRNA binding sites) reduced the normalised
luciferase activity by 420%. These miRNAs belong to six distinct
miRNA seed families: the mir-34abc/449abc/699, mir-19a/b,
mir-29abc, mir-101, let-7/98/202, and mir-17/20/93/106/519 family.

To investigate if the observed reduction in luciferase activity was
caused by direct miRNA/MYCN-30UTR interactions, we introduced
point mutations into the seed sequences of the nine potential

MYCN-3′UTR

C250T mut

250

C250

MYCN 3′UTR wt

T250

hsa-mir-150

Human MYCN (NM_005378) 3′UTR. Length 909 bp

100 900800700600500400300200

MYCN 3′UTR C250T

-5′3′-

5′-

5′-

-3′

-3′

T T T T TAG G GG G G GC T T T T TAG G GG G G GT

Figure 1 C to T variation at position 250 in the MYCN 30UTR.
Mutational analysis of the human MYCN 30UTR (NM_005378).
(A) Schematic overview of the MYCN 30UTR including the rs922 SNP
(C250T mut) located 3 bp upstream of the predicted target sequence for
mir-150. (B) Exclusively homozygous C/C or T/T genotype variants were
detected in neuroblastoma cell lines and primary tumours.
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miRNA binding sites in the pMIR-MYCN-UTR vector to abolish
miRNA binding (Supplementary Figure 1). For miRNAs with two
potential binding sites, both seeds were mutated individually (‘m1’
and ‘m2’, where ‘m1’ is the 50-most binding site) as well as
combined (‘m1þ 2’). We then performed LRAs with the 14
luciferase-repressing miRNAs, and compared the luciferase
activities from the respective UTR-mutated and wild-type repor-
ters. As shown in Figure 3, a rescue in luciferase activity was
observed for several mutated target sites, indicating specific
miRNA/MYCN-30UTR interactions. Specifically, mir-34a/-34c/-449

(Figure 3A), mir-19a/-19b (Figure 3B), mir-29a/-29b/-29c
(Figure 3C), mir-101 (Figure 3D) and let-7e/mir-202 (Figure 3F)
were found to target the MYCN-30UTR sequence at positions
581–587 (seed 2), 32– 38, 334– 340, 494–500 and 563–569 (seeds 1
and 2) and 870–876 (seed 2), respectively. We were not able to
confirm specific targeting of mir-17/-20a/-106b to the predicted
target site at position 859–865 (Figure 3E). An alternative binding
site for mir-17/-20a/-106b at position 685–690 was uniquely
predicted by the MiRanda software. However, mutation of this
target site did not substantially affect the luciferase activity
(Supplementary Figure 2a).

To exclude the possibility that the lack of luciferase rescue was
because of incomplete destruction of target sites, we extended the
mismatch from 2 to 7 nt (complete seed mismatch) on selected
target sites (mir-17/-20a/-106b and mir-34a/-34c/-449 – Supple-
mentary Figure 1). However, the luciferase activities remained
unaffected (Supplementary Figures 2b and c).

In summary, our data reveal six conserved miRNA binding sites
in the 30UTR structure of MYCN (Figure 3G). We were able to
experimentally validate mir-34a, -34c, -449, -19a, -19b, -29a, -29b,
-29c, -101, -202 and let-7e as MYCN-targeting miRNAs.

The rs922 SNP does not affect miRNA binding

The mir-150 is the only miRNA predicted to bind in close
proximity to the rs922 SNP (Figure 1A, Supplementary Table 2).
Overexpression of mir-150 in the LRA did not reduce luciferase
expression from pMIR-MYCN-UTR or a mutated luciferase
reporter containing the rs922 SNP (Supplementary Figure 3a).
We then investigated whether the confirmed MYCN-targeting
miRNAs were influenced by the rs922 SNP. We did not observe
substantial luciferase rescue for the validated MYCN-targeting
miRNAs when the rs922-containing luciferase reporter was
compared with the 30UTR wild-type sequence (Supplementary
Figure 3a). This indicates that the rs922 SNP does not significantly
influence miRNA-mediated suppression of MYCN expression.

MiRNA-mediated MYCN suppression in MNA Kelly cells

As the tumour-suppressor function of mir-34a and -34c in MNA
neuroblastoma is well documented (Welch et al, 2007; Cole et al,
2008; Wei et al, 2008; Tivnan et al, 2011), we selected the
remaining eight experimentally validated MYCN-targeting miR-
NAs (mir-19a, -19b, -29a, -29b, -29c, -101, -202 and let-7e) for
further functional analyses.

To investigate the capability of the selected miRNAs to
downregulate endogenous N-myc protein in MNA neuroblastoma,
we performed transient miRNA overexpression experiments and
analysed N-myc expression by western blotting. As shown in
Figure 4A, all eight miRNAs reduced endogenous N-myc protein
expression in Kelly cells. Particularly, let-7e and mir-202 were
strong negative regulators of MYCN expression.

Let-7e and mir-101 inhibit cell proliferation and
clonogenic growth of MNA Kelly cells

To investigate the functional role of MYCN-targeting miRNAs in
MNA neuroblastoma, we continuously monitored the proliferation
of Kelly cells after transfection with miRNA mimics. As shown in
Figure 4B, proliferation was significantly impaired when cells were
transfected with mir-101 and let-7e. Mir-202, which targets the
same seed sequence as let-7e, suppressed proliferation of Kelly
cells similar to that observed for let-7e (Supplementary Figure 4).
Cell proliferation was not substantially altered when mir-19a/b or
mir-29a/b/c were overexpressed in Kelly cells (data not shown).

We further investigated the long-term effect of transient let-7e
and mir-101 overexpression on clonogenic cell growth. Kelly cells
were transfected with let-7e and mir-101 miRNA mimics and
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Figure 2 Prediction and experimental investigation of MYCN-targeting
miRNAs. (A) Intersection of three web-based miRNA target prediction
programmes (TargetScan, PicTar and miRanda) predicted 13 conserved
binding sites for miRNAs broadly conserved among vertebrates. A total of
21 individual miRNAs were selected for target site validation.
(B) Schematic overview of MYCN 30UTR showing the localisation of the
predicted miRNA target sites investigated in luciferase reporter assays
(LRAs). (C) Results from LRAs shown as boxplot diagrams. Horizontal bars
indicate miRNAs predicted to target identical target sites (miRNA seed
families). Firefly luciferase was normalised to Renilla luciferase activity, and
then normalised to the median activity of the control miRNA. Each box
represents the distribution of the activity measured for a single miRNA (at
least 9 individual transfections, range 9–36). Ends of boxes define the 25th
and 75th percentile, a line defines the median, and bars define the lowest
and highest value except outliers and extreme values, which are indicated
by circles and asterisks, respectively. Reduction in relative luciferase activity
of X20% was defined to be indicative for a miRNA/MYCN-30UTR
interaction.
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plated at 200 cells per well in six-well tissue culture plates. Visible
cell clones were counted after 2 weeks of incubation. Compared
with the negative control mimic, overexpression of let-7e and
mir-101 in Kelly cells reduced colony formation by 80% and 50%,
respectively (Figure 4C).

In conclusion, we established that the let-7 family miRNAs,
let-7e and mir-202, and mir-101 have strong antiproliferative
properties in the MNA neuroblastoma cell line Kelly.

DISCUSSION

Deregulated MYCN expression is a hallmark in high-risk
neuroblastoma. Here, we aimed to investigate how miRNAs

contribute to MYCN regulation. We systematically investigated
the MYCN-30UTR sequence for potential miRNA binding sites. We
used LRAs to show that the 30UTR sequence is directly targeted by
several miRNAs (mir-34a, -34c, -449, -19a, -19b, -29a, -29b, -29c,
-101, -202 and let-7e). These miRNAs were further shown to
decrease N-myc protein expression when overexpressed in the
MNA neuroblastoma cell line Kelly. Finally, we showed that let-7e,
mir-101 and mir-202 efficiently inhibit proliferation and clono-
genic cell growth in Kelly cells.

It has been reported that certain mutations and SNPs in the
30UTR of cancer-related genes increase cancer susceptibility and
may allow the cancer cell to escape miRNA regulation (Pelletier
and Weidhaas, 2010). Here, we show that mutations in the MYCN
30UTR are rare, both in MNA and non-MNA neuroblastoma cells.
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We detected a single SNP (rs922) at position 250 (C250T) of the
30UTR, which did not impair miRNA binding. We were unable to
detect heterozygous C/T variants in our samples, which might be
explained by the fact that only one allele is amplified in MNA
samples, and by the limited number of investigated non-MNA
samples.

The mir-19a and mir-19b, which are both expressed from the
oncogenic mir-17-92 cluster, were validated to target the MYCN
30UTR in the luciferase reporter assay system in HEK293 cells.
However, we were not able to demonstrate a significant N-Myc
protein downregulation after overexpression in Kelly cells. As
MYCN itself is a direct activator of the mir-17-92 cluster (Loven
et al, 2010), we assume that the MYCN-targeting function of
mir-19a/-b is disturbed in MNA neuroblastoma cells.

The mir-34 family consists of mir-34a, -34b and -34c. The
mir-34a is encoded by a locus at chromosome 1p36, whereas
mir-34b and -34c are coexpressed from a locus at chromosome
11q23. Both regions are commonly hemizygously deleted in
neuroblastoma (Attiyeh et al, 2005). In contrast to mir-34b, both

mir-34a and mir-34c have been shown to inhibit cell growth in
several neuroblastoma cell lines with 1p36 hemizygous deletion
(Welch et al, 2007; Cole et al, 2008; Wei et al, 2008). The mir-34a
has several experimentally validated targets involved in cellular
proliferation, including MYCN (Hermeking, 2010). In this study,
we confirm that mir-34a directly targets the 30UTR sequence of
MYCN. Whereas Wei et al (2008) concluded that both mir-34
target sites were required to obtain maximum MYCN suppression
by mir-34a, we found the 30-most target site (position 581–587)
alone to be responsible for most of the suppressive effect. Not even
complete destruction of the 50-most target site (position 23–29)
could significantly rescue luciferase activity to indicate that this
site is involved in mir-34a-mediated repression of MYCN
(Supplementary Figure 2). This result is supported by data from
a study performed by Stallings and co-workers (Welch et al, 2007),
who were unable to show mir-34a-mediated suppression of a
luciferase reporter containing only the 50-most mir-34 target site.
The observed discrepancy could be explained by the different
30UTR sequences and cells used in the LRAs. Whereas we used the
full-length 909 nt MYCN-30UTR sequence and HEK293 cells, Wei
et al (2008) used a longer sequence including additional 418 nt of
the MYCN coding sequence and SK-N-AS cells. We also verified
that mir-34c and mir-449, but not mir-34b, target the MYCN 30UTR
similar to mir-34a (Figures 2C and 3A, Supplementary Figure 2
and data not shown).

In a study to validate the TargetScan algorithm, mir-101 was
predicted to potentially target two sequences in the MYCN 30UTR
(Lewis et al, 2003). The 50-most target site (position 495– 500) was
mutated in a 409 nt 30UTR fragment coupled to a luciferase
reporter to verify it as a target of endogenous mir-101 in HeLa
cells. Here, we confirm mir-101 as a MYCN-regulating miRNA able
to suppress MYCN expression from both predicted target sites
(Figures 2C and 3D). In addition, we show that mir-101 inhibits
proliferation of MNA Kelly cells. These data from MNA
neuroblastoma confirm and extend previous reports showing
tumour-suppressor properties of mir-101 in different other cancer
types (Varambally et al, 2008; Strillacci et al, 2009; Su et al, 2009;
Cao et al, 2010; Wang et al, 2010; Zhang et al, 2011).

Xu et al (2009) have previously shown that mir-29 directly
regulates B7-H3, a surface glycoprotein of the B7/CD28 family that
is expressed on a wide variety of solid tumour cells, including
neuroblastoma. B7-H3 has immunoinhibitory effects protecting
neuroblastoma cells from NK-mediated cytotoxicity (Castriconi
et al, 2004). In addition, B7-H3 is the target of the monoclonal
antibody 8H9 (Xu et al, 2009) that showed promising results when
used in compartmental radioimmunotherapy (cRIT) in a clinical
trial for CNS-relapsed high-risk neuroblastoma (Kramer et al,
2010). Compared with normal tissue, mir-29 was found signifi-
cantly lower expressed in neuroblastoma cells, contributing to a
higher expression of B7-H3 on neuroblastoma cell surfaces (Xu
et al, 2009). It has been suggested that restoration of mir-29 and
subsequent translational inhibition of B7-H3 might therefore
prove therapeutically beneficial, both by sensitising neuroblastoma
cells to NK/T-cell-mediated immunotoxicity and by protecting
B7-H3 expressing normal tissue from 8H9-related toxicity
(Xu et al, 2009). Our data extend the therapeutical potential of
mir-29 as it was shown to directly target MYCN.

The human let-7 miRNA family consists of 10 different mature
let-7 sequences that are derived from 13 precursors (Roush and
Slack, 2008). Overexpression of let-7 has been shown to inhibit
proliferation of breast cancer (Zhao et al, 2011), lung cancer
(Johnson et al, 2007), prostate cancer (Dong et al, 2010), colon
cancer (Akao et al, 2006), malignant melanoma (Schultz et al,
2008) and glioblastoma (Lee et al, 2011) cell lines. Several
important cell cycle regulators, including cyclins, cyclin-dependent
kinases (CDKs), Ras, HMGA2 and c-Myc have previously been
confirmed to be targets of let-7 (Johnson et al, 2005, 2007; Lee and
Dutta, 2007; Schultz et al, 2008; Kim et al, 2009). We have now
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Figure 4 The miRNA-mediated N-Myc downregulation and growth
inhibition in MNA Kelly cells. (A) A representative western blot showing
strong N-Myc protein reduction upon transfection of let-7e, mir-202,
mir-29a/-b/-c and mir-101. Mir-19a/-b reduced N-Myc levels only slightly.
(B) The 72-h continuous monitoring of cell proliferation after transfection
of let-7e, mir-101 or a negative control (mir-NC) mimic into Kelly cells.
(C) Clonogenic growth of Kelly cells was significantly impaired after
transfection of let-7e and mir-101 mimics, compared with the negative
control (**Po0.001, Student’s t-test). Each boxplot represents the
distribution of colony numbers from three independent transfections,
normalised to the median number of the negative control.
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added the MYCN oncogene to the list of cell cycle regulators
targeted by let-7. The observed growth-inhibitory effect of let-7e
on MNA neuroblastoma cells is most likely because of the
combined suppression of several let-7 targets involved in cell
proliferation.

In summary, we were able to define a subset of miRNA that are
able to regulate MYCN expression when overexpressed in MNA
neuroblastoma cells. To what extent the N-myc protein is regulated
by endogenous levels of these miRNAs, and if altered levels
contribute to neuroblastoma development, needs to be addressed
in further studies. Recent data from miRNA profiling studies show
that let-7e, mir-29a and mir-29c are significantly lower expressed
in MNA primary tumours compared with non-MNA tumours

(Schulte et al, 2010) (Supplementary Figure 5), supporting the idea
that they act as endogenous MYCN regulators.
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